

DEPARTMENT OF CHEMISTRY

NATIONAL INSTITUTE OF TECHNOLOGY SRINAGAR 190006 (J&K) India

M.Sc. Chemistry

Revised Curriculum and Syllabi (w.e.f. Autumn-2023)

REVISED CURRICULUM FOR POST-GRADUATE PROGRAM LEADING TO MASTER OF SCIENCE (MSc) DEGREE IN CHEMISTRY

(2023)

Revised Scheme MSc Chemistry (Two-Year Full-Time Programme)-Autumn-2023

	FIRST YEAR												
		I Semester							II Semester				
S. No.	Course Code	Course Name	L	Т	Р	С	S. No.	Course Code	Course Name	L	Т	Р	С
		Core Courses							Core Courses				
1.	MSCYT- 101	Structure, Reactivity and Stereochemistry of Organic Molecules	2	1	0	3	1.	MSCYT- 201	Organic Reaction Mechanisms	2	1	0	3
2.	MSCYT- 102	General Inorganic Chemistry	2	1	0	3	2.	MSCYT- 202	Bio-Inorganic & Nuclear Chemistry	2	1	0	3
3.	MSCYT- 103	Quantum Chemistry	2	1	0	3	3.	MSCYT- 203	Advanced Electrochemistry & Chemical Kinetics	2	1	0	3
4.	MSCYT- 104	Instrumental Methods of Chemical Analysis	2	1	0	3	4.	MSCYT- 204	Chromatographic Techniques	2	1	0	3
	Electives (S	tudents have to choose any two	out o	f four	electi	ves)		Electives (Students have to choose any two out of four electives)					
1.	MSCYE-105	Supramolecular Chemistry	2	0	0	2	1.	MSCYE- 205	Bio-molecules	2	0	0	2
2.	MSCYE-106	Environmental Chemistry	2	0	0	2	2.	MSCYE-206	Group Theory	2	0	0	2
3.	MSCYE- 107	Tribochemistry of Lubricating Materials	2	0	0	2	3.	MSCYE- 207	Energy Conversion and Storage Systems	2	0	0	2
4.	MSCYE- 108	Fundamentals of Analytical Techniques	2	0	0	2	4.	MSCYE- 208	Spectrochemical Methods	2	0	0	2
	Lab Courses							Lab Courses	I.	T			
1.	MSCYL-109	Organic Practical-I	0	0	3	1.5	9.	MSCYL-209	Organic Practical-II	0	0	3	1.5
2.	MSCYL-110	Inorganic Practical-I	0	0	3	1.5	10.	MSCYL-210	Inorganic Practical-II	0	0	3	1.5
3.	MSCYL-111	Physical Practical-I	0	0	3	1.5	11.	MSCYL-211	Physical Practical-II	0	0	3	1.5
	Total Hrs./Credits			25		20.5		То	tal Hrs./Credits		25		20.5

Scheme-2023

					SE	ECOND	YEAR						
		III Semester							IV Semester				
S. No.	Course Code	Course Name	L	Т	Р	С	S. No.	Course Code	Course Name	L	Т	Р	С
		Core Courses							Project				
1.	MSCYT- 301	Organic Spectroscopy and Modern Organic Synthesis	2	1	0	3	1.	MSCYS- 401	Project Seminar	0	0	0	1
2.	MSCYT- 302	Organometallic Chemistry	2	1	0	3	2.	MSCYP-402	Project Work/ Dissertation	0	0	0	14
3.	MSCYT- 303	Solid State Chemistry and Thermodynamics	2	1	0	3							
4.	MSCYT- 304	Advanced Instrumentation Techniques	2	1	0	3							
	Electives (S	tudents have to choose any two	out o	f four	electiv	ves)						15	
1.	MSCYE- 305	Applied Organic Chemistry	2	0	0	2			Curriculum Summa	ry			
2.	MSCYE- 306	Nanotechnology	2	0	0	2	1.		Category				С
3.	MSCYE- 307	Organic Flexible Electronic Materials	2	0	0	2	2.		Core Courses				36
4.	MSCYE- 308	Polymer Chemistry	2	0	0	2	3.		Elective Courses				12
	Lab Courses			4.		Laboratory				12			
1.	MSCYL-309	Analytical Chemistry Lab	0	0	3	1.5	5.		Project				14
2.	MSCYL-310	Computer Methods in Chemistry Lab	0	0	3	1.5	6.		Project Seminar				1
	Тс	otal Hrs./Credits		22		19		Tota	al Hrs./Credits				75

CREDITS POINTS SUMMARY							
Semesters	Sem-I	Sem-II	Sem-III	Sem-IV	Overall		
Credits	20.5	20.5	19	15	75		

Scheme-2023

List of Electives

S. No.	Course Code	Course of the Study	L	Т	Р	С
1.	MSCYE- 105	Supramolecular Chemistry	2	0	0	2
2.	MSCYE- 106	Environmental Chemistry	2	0	0	2
3.	MSCYE- 107	Tribochemistry of Lubricating Materials	2	0	0	2
4.	MSCYE- 108	Fundamentals of Analytical Techniques	2	0	0	2
5.	MSCYE- 205	Bio-molecules	2	0	0	2
6.	MSCYE- 206	Group Theory	2	0	0	2
7.	MSCYE- 207	Energy Conversion and Storage Systems	2	0	0	2
8.	MSCYE- 208	Spectrochemical Methods	2	0	0	2
9.	MSCYE- 305	Applied Organic Chemistry	2	0	0	2
10.	MSCYE- 306	Nanotechnology	2	0	0	2
11.	MSCYE- 307	Organic Flexible Electronic Materials	2	0	0	2
12.	MSCYE- 308	Polymer Chemistry	2	0	0	2

Students have to opt any two of the electives in each semester as per the MSc Scheme-2023.

Subject: Structure, Reactivity and Stereochemistry of Organic Molecules (Code-MSCYT-101)	Syllabus for M.Sc (I Yea	Syllabus for M.Sc 1 st Semester (I Year)		Total Course Credit: 3		
Mid-Term	Class Assessment	Final-Term	L	Т	Р	
26 (Marks)	24 (Marks)	50 (Marks)	2	1	0	
Course Instructor (s)		Prof. J. A. Banday				

Course	The course has been designed to enable the students to learn the structure,							
Objective	reactivity and stereochemistry of organic molecules.							
	Course Outcomes (COs)							
On successful	On successful completion of the course, the student will be able to about:							
C01	lectronic effects and concept of aromaticity.							
CO2	Involvement of reactive intermediates and understand their structure and							
	reactivity through various organic reactions.							
CO3	Stereochemistry of organic compounds at an advanced level.							
CO4	Substitution & elimination reactions in aliphatics.							
	Nature of Bonding in Organic Molecules[11 L]							
	Electron Displacement effects: Inductive effect, Resonance effect,							
	Hyperconjugation, Rules for writing resonance structures. Tautomerism:							
Module-I	Different types including valence tautomerism. Aromaticity: Concept of							
noune i	aromaticity-Huckel rule, Classification of aromatic compounds-homocylcic and							
	heterocyclic, Homo-aromaticity and Anti aromaticity. Annulenes: Aromaticity of							
	hetero annulenes. Aromaticity in fused ring systems. Aromaticity of ferrocene							
	and azulene. Molecular orbital diagram of annulenes.							
	Bond Cleavage & Reaction Intermediates[10 L]							
	Homolytic and heterolytic bond cleavage.							
Module-II	Reactive Intermediates: Generation, Structure, fate and stability of Carbocations							
	(Classical and Non- Classical), Carbanions, Free radicals, Carbenes, Nitrenes,							
	Arynes and Radical ions.							
	Stereochemistry[11 L]							
Module-III	Conformations: Origin of conformational energy. Angle and Pitzer strain.							
	Conformational analysis of cycloalkanes. Effect of conformation on reactivity in							
	acyclic and cyclic systems. Conformation of sugars & anomeric effect.							

	Conformation of cyclohexane, cyclohexanones and bicycloheptane – a bridged
	system. Chirality: Introduction, Chirality due to chiral centre. Molecules with
	more than one Chiral centers, Threo and erythro isomers. Configuration-
	Relative (D, L) and absolute configuration (R, S) configurations. Optical activity
	due to chiral axis, chiral plane and helicity. Enantiotopic and diastereotopic
	atoms, groups and faces.
	Substitution & Elimination Reactions in Aliphatic compounds [10 L]
	Nucleophilic Substitutions: The SN2, SN1, mixed SN1 and SN2 and SET
	mechanisms. The neighboring group mechanism, neighboring group
	participation by π and σ bonds, anchimeric assistance. The SNi mechanism.
	Nucleophilic substitution at an allylic, aliphatic trigonal and a vinylic carbon.
Modulo-IV	Reactivity effects of substrate structure, attacking nucleophile, leaving group
Moune-iv	and reaction medium, phase transfer catalysis and ultrasound, regioselectivity.
	Elimination reactions: Factors affecting elimination reactions, Mechanism of E1,
	E2, E1cB and E2C reactions. Competition between substitution and elimination
	reactions. Stereochemistry and regioselectivity of E2 eliminations, Elimination
	in cyclic systems and vinyl halides. Mechanism and orientation in pyrolytic
	eliminations, Shapiro reaction.

Books Recommended:

- 1. Smith, M. B., March J., Advanced Organic Chemistry, 7th Ed., 2016. Wiley.
- 2. Carey F. A., Giuliano R. M., Organic Chemistry, 8th Ed. 2012, McGraw Hill.
- 3. Kalsi P. S., Stereochemistry of Organic Compounds, 7th Ed., 2012, New Age Inter.
- 4. Solomons, T.W.G., Organic Chemistry, 11th Ed., 2015, Wiley.
- 5. Carey F. A., Sundberg, R. J., Advanced Organic Chemistry Part A: Structure and Mechanisms, 5th Edition, 2007, Springer.
- 6. Carey, F. A. and Sundberg, R. J., Advanced Organic Chemistry Part B: Reactions and Synthesis, 5th Edition, 2007, Springer.

Subject: General Inorganic Chemistry (Code-MSCYT-102)		Syllabus for M.Sc (I Yea	Syllabus for M.Sc 1 st Semester (I Year)			ırse 3			
M	lid-Term	Class Assessment	Final-Term	L	Т	Р			
26	6 (Marks)	24 (Marks)	50 (Marks)	2	1	0			
Course	Instructor (s)		Prof. Hamida Chis	ti					
	The course sime at	understanding the ch	omistry of main	aroun t	ranciti	ion and			
Course	inner transition olo	monts and the detail	led intercontion	group, t	ing co	on conte			
Objective	reaction mechanism	in coordination con	nnounds	or bonu	ing co	ncepts,			
	reaction meenamon	Course Outcomes ((COs)						
On successful	completion of the cou	urse, the student will	be able to about:						
C01	Structure and reactiv	vity of main group co	mpounds.						
CO2	Chemistry of Transit	ion and Inner-transit	tion elements.						
CO3	Theories, bonding ar	Theories, bonding and structure of coordination compounds.							
CO4	Reaction mechanism in coordination complexes.								
	Chemistry of Main Group Elements								
	General introduction to Chemical Periodicity, Structure and bonding (VBT and								
	MOT) in homo and hetero nuclear molecules -H2, O2, N2, F2, and NO, CO, HCl.								
	Molecular shape and the VSEPR model: Effect of Lone pairs, Effect of								
Module-I	electronegativity, isoelectronic principle (e.g., NH ₃ , BF ₃ , [BF ₄] ⁻ , PCl ₅ , SF ₄ , I_3^- , SF ₆ ,								
Niouule I	IF7. Synthesis, Prop	erties, Structure and	l Bonding of: Nit	rogen,	Phosp	horous,			
	Sulfur, Pseudohalog	gen, Interhalogen a	and Xenon Com	pounds	s, Boi	azines,			
	Phosphazenes, Sulfur-Nitrogen compounds, Silicones, bonding and reactions in								
	higher boranes, Wades rules and STYX numbers, Carboranes, Metallocarboranes.								
	Preparation, structu	re.				540.53			
	Chemistry of Trans	ition & Inner Trans	ition Elements	Chart	.1	[10 L]			
	I ransition elements	E Introduction, Uxid	ation state, Size,	Chemic	al pro	perties			
Modulo II	and Complexes of	Group 3- Group12	elements. Inner	transiti	on ele	ements:			
Module-II	hinery compounds	cteristics, Extraction	i, Lanthanide Cor	itractio	n, ene	rgetics,			
	pumbors in lantha	rido and actinido	sury, General Pili	icipies,	nd m	agnotic			
	numbers in faitura	umbers in ianthanide and actinide complexes, electronic and magnetic							
	Coordination Chem	istrv-I	ence opectra.			[11 I.]			
Module-III	Theories of electron	ic Structure: Termino	logy and Historic	al backe	round	of VBT			
	and CFT. Ligand Field Theory: Molecular Orbitals for octahedral complexes,								

	Orbital splitting and electron spin, ligand Field stabilization energy, pi bonding,
	square planer complexes, tetrahedral complexes. Angular overlap: Sigma-donor
	interactions, pi acceptor interactions, pi donor interactions, types of ligands and
	the spectrochemical series. The Jahn Teller effect: octahedral and tetrahedral
	Complexes. Absorption of light: Beer Lamberts Absorption law. Quantum
	numbers of multi electron atoms: Spin-Orbit Coupling, term Symbols. Electronic
	Spectra of coordination compounds: selection rules, Correlation diagrams
	(Orgel Diagrams), Tanabe Sugano Diagrams.
	Coordination Chemistry-II [11 L]
	Substitution reactions: Inert and Labile Compounds, Mechanisms of
	substitution. Kinetic consequences of reaction pathways: Dissociation,
	interchange and Association. Experimental evidence in octahedral substitution:
	Dissociation, Linear free energy relationships, associative mechanisms, the
Modulo-IV	conjugate base mechanism, the kinetic chelate effect. Stereochemistry of
Module-IV	reactions: substitution in trans complexes, substitution in Cis-complexes,
	Isomerization of chelate rings. Substitution reactions in square planar
	complexes: Kinetics and stereochemistry of square planner substitutions,
	Evidence for Associative reactions. Trans effect: Explanations of trans effect.
	Oxidation reduction reactions: inner and outer sphere reactions, conditions for
	high and low oxidation numbers.

- 1. Huheey J. E., Inorganic Chemistry, 4th Edn., 2008, Pearson.
- 2. Miessler G. L., Tarr D.A., Inorganic Chemistry, 3rd Edn., 2008, Pearson.
- 3. Cotton F. A., Wilkinson G., Murillo C. A., Bochmann M., Advanced Inorganic Chemistry, 6th Edn., 1999, Wiley.
- 4. Weller and Armstrong, Inorganic Chemistry, 6th Edn., 2015, Oxford.
- 5. Lee J. D., Concise Inorganic Chemistry, 5th Edn., 1999, Wiley,
- 6. Atkins and Shriver, Inorganic Chemistry, 5th Edn., 2009.

Subject: Quantum Chemistry (Code-MSCYT-103)	Syllabus for M.Sc (I Yea	Total Course Credit: 3				
Mid-Term	Class Assessment	Final-Term	L	Т	Р	
26 (Marks)	24 (Marks)	50 (Marks)	2	1	0	
Course Instructor (s)	Dr. Shrikant Shivaji Maktedar					

Course	The course has been designed to enable the students to learn about the							
Objective	quantum chemistry.							
	Course Outcomes (COs)							
On successful	completion of the course, the student will be able to about:							
C01	Quantum mechanics.							
CO2	Electronic structure of atoms.							
CO3	Quantum chemistry.							
CO4	Molecular orbital theory of conjugates systems.							
	Quantum Chemistry-I[12 L]							
	Need for quantum mechanics, Operator concept, Quantum mechanical operators							
	(Cartesian and spherical polar co-ordinate systems), Eigen value equations and							
Module-I	their significance. Properties of quantum mechanical operators, Postulates and							
	theorems of quantum mechanics. Review of particle in a box problem, extension							
	to two and three dimensions, applications. Solution of harmonic oscillator and							
	the rigid rotator problems. Quantum mechanical tunneling.							
	Quantum Chemistry-II[10 L]							
	Born-Oppenheimer approximation, Solution of the Hydrogen-like atom							
	problem- radial and angular wave functions. Angular momentum and electronic							
Module-II	structure of atom, General theory of angular momentum, Eigen functions and							
	eigenvalues of angular momentum operators, Ladder operators, Spin angular							
	momentum, Anti-symmetry, and Pauli's principle. Atomic term symbols, Term							
	symbol of pn and dn configurations, Spin-Orbit coupling.							
	Quantum Chemistry-III[10 L]							
	The Schrodinger Equation, Particle in a One-Dimensional Box, Eigen Values and							
Module-III	Eigen Functions, Operators, Properties of Quantum Mechanical Operators,							
Module III	Hermitian, Linear, Ladder, Hamiltonian and Angular Momentum Operators.							
	Particle in Three-Dimensional Box, Harmonic Oscillator, Rigid Rotator and							
	Numericals.							

Module-IV	Quantum Chemistry-IV[10 L]
	Term Symbols and Selection Rules, Spin-Orbital Coupling, The Variation
	Theorem, Non-Degenerate Perturbation Theory and Applications. Huckel
	Molecular Orbital Theory of Conjugated Systems, Application to Ethylene,
	Butadiene, Cyclopropenyl Radical, Cyclobutadiene and Benzene, Numericals.

- 1. McQuarie D. A., Quantum Chemistry, Student Edn., 2018, Viva Books Pvt Ltd.
- 2. Prasad R. K., Quantum Chemistry, 4th Edn., 2010, New Age Publishers.
- 3. Levine I. N., Quantum Chemistry, 7th Edn. 2013., Prentice Hall.
- 4. Atkins P. W., Physical Chemistry, 8th Edn. 2006, Oxford University Press.

Subject: Instrumental Methods of Chemical Analysis (Code-MSCYT-104)	Syllabus for M.Sc (I Yea	: 1 st Semester ar)	Tot C	tal Co Credit:	urse 3
Mid-Term	Class Assessment	Final-Term	L	Т	Р
26 (Marks)	24 (Marks)	50 (Marks)	2	1	0
Course Instructor	Dr. Mohammad Aslam				

Course	The course has been designed to enable the students to learn the analysis of
Objective	experimental data and learn various analytical techniques used which would be
	applied in all areas of research and various industries.
	Course Outcomes (COs)
On successful	completion of the course, the student will be able to about:
C01	Data handling and statistical treatment of data.
CO2	Thermal methods like TGA, DTA, DSC and their applications to material science.
CO3	Electroanalytical techniques like voltammetry and polarography.
CO4	Atomic spectroscopy techniques like AAS, AES, AFS etc.
Module-I	Data Analysis[11 L]Errors, classification of errors and their minimization; absolute, relative, determinate and indeterminate errors, statistical treatment of random errors, accuracy and precision, methods of expressing accuracy and precision, significant figures, computation rules for significant figures, The Gaussian distribution, mean and standard deviation, confidence intervals, statistical tests of data (the F test, the t test, Q test, ANOVA).
Module-II	Thermal Methods[10 L]Introduction to thermal methods, classification of thermal methods, Thermogravimetric analysis, apparatus, methodology, applications; derivative thermogravimetry, instrumentation, methodology, applications; differential thermal analysis, apparatus, methodology, applications; differential scanning calorimetry; instrumentation, methodology and applications. Comparative study of TGA, DTA and DSC. Interpretation of various thermograms of important compounds e.g., silver nitrate, calcium oxalate monohydrate, magnesium oxalate dihydrate. Thermogravimetric analysis of dolomite and calcite samples and their purity analysis. Applications of thermal methods in material science.

	Electroanalytical Methods[11 L]
	Introduction to electroanalytical methods, principle of voltammetry, excitation
	signals in voltammetry, types of voltammetry, voltammetric instrumentation,
	working, reference and auxiliary electrodes, voltammogram, hydrodynamic
Modulo III	voltammetry and their applications, cyclic voltammetry, anodic and cathodic
Module-III	peak currents, anodic and cathodic peak potential, Randles-Sevcik equation,
	cyclic voltammograms of K ₃ [Fe(CN) ₆], applications of voltammetry.
	Polarography; principle of polarography, instrumentation, dropping mercury
	electrode (DME), residual, diffusion and limiting currents, half-wave potential,
	Ilkovic equation, applications of polarography.
	Atomic Spectroscopy [10 L]
	Atomic Absorption Spectroscopy (AAS): Origins of atomic spectra, production of
	atoms and ions, Principles, instrumentation and applications. Atomic Emission
Module-IV	Spectrometry (AES): Principles, Instrumentation, Analytical Measurements and
	Applications. Atomic fluorescence spectrometry (AFS): principle,
	instrumentations, working and applications. Inductively Coupled Plasma-mass
	Spectrometry (ICP–MS): Principles, Instrumentation and Applications.

- 1. Christian G. D., Dasgupta P. K., Schug K. A., Analytical Chemistry, (2020), Willey Publisher.
- 2. Skoog D., Holler F., Crouch S., Principles of Instrumental Analysis, 7th Edition 2017, Brooks/Cole Publishers.
- 3. Willard, Merritt, Dean, Settle, Instrumental Methods of Analysis, 7th Edition, 1986, CBS Publisher.
- 4. Harvey D., Modern Analytical Chemistry, 2000, McGraw Hill Education, New York.
- 5. Skoog D. A., Donald M. W., Holler F. J., Crouch S.R., Fundamentals of Analytical Chemistry, 9th Edition, 2014, Brooks/Cole Publishers.
- 6. Chatwal G.R., Anand S. K., Instrumental Methods of Chemical Analysis, 5th Edition, 2019, Himalya Publishing House, New Delhi.
- 7. Kaur H., Instrumental Methods of Chemical Analysis (Analytical Chemistry), 2012, Pragati Prakashan, Meerut.
- 8. Khopkar S.M., Basic Concepts of Analytical Chemistry, 2020, New Age International Publisher, New Delhi.

Subject: Supramolecular Chemistry (Code-MSCYE-105)	Syllabus for M.Sc 1 st Semester (I Year)		Total Course Credit: 2		
Mid-Term	Class Assessment	Final-Term	L	Т	Р
26 (Marks)	24 (Marks)	50 (Marks)	2	0	0
Course Instructor (s)	Dr. Ravi Kumar				

	The course aims to provide a general overview and basic knowledge of
Course	supramolecular chemistry, emphasizing its character as a versatile and effective
Objective	tool for building complex systems from well-defined units and their application
	in different areas of work and research.
	Course Outcomes (COs)
On successful	completion of the course, the student will be able to about:
C01	Fundamentals of supramolecular chemistry
CO2	Molecular recognition using various supramolecular hosts.
CO3	Supramolecular reactivity and the applications of supramolecular systems in catalysis.
CO4	Applications of supramolecular systems as sensors and devices.
	Fundamentals of Supramolecular Chemistry[7 L]
	Terminology and definitions in supramolecular chemistry. Intermolecular
Module-I	forces: Ion pairing, ion-dipole and dipole-dipole interactions; hydrogen
	bonding; cation-pi, anion pi, pi-pi interactions and Van der Waal forces.
	Solvation and hydrophobic effect. Binding constants; definition and use.
	Molecular Recognition[7 L]
	Principle of molecular recognition, host-guest complementarity, pre-
Module-II	organization, chelate effect, cooperativity. Synthesis and applications of
	supramolecular host (Crown ethers, Porphyrin and other Tetrapyrrolic
	Macrocycles, cryptands, cyclodextrins) as cation and anion binding receptors
	and receptors for ion-pair recognition.
	Supramolecular Reactivity and Catalysis[7 L]
Module-III	Organocatalysis mediated through hydrogen bonding, preconcentration, self-
	assembly of catalysts and preorganisation of catalyst-substrate systems.
	Influence of organization (effective molarity) on catalysis, catalytic acyl transfer.
	Supramolecular devices[7 L]
Module-IV	Supramolecular Sensors and Devices –Thermochromism and Solvatochromism,
	Charge Transfer Complexes, theory of π - π stacking, Organic Light Emitting

Diodes (OLEDs), transistors and organic lasers (elementary idea).	
---	--

- 1. Principles and methods in Supramolecular chemistry by H. J. Schneider and A. Yatsimirsky, Wiley, New York, 2000.
- 2. Modern Supramolecular Chemistry by F. Diederich, P. J. Stang, R. T. Tykwinski, 2008.
- 3. Supramolecular Chemistry by J. W. Steed and J. L. Atwood, 2ndEdn John Wiley, 2009

Subject: Environmental Chemistry (Code-MSCYE-106)		Syllabus for M.Sc (1 st Ye	ar)	To (tal Cou Credit:	urse 2
M	lid-Term	Class Assessment	Final-Term	L	Т	Р
26	6 (Marks)	24 (Marks)	50 (Marks)	2	0	0
Course	Instructor (s)		Prof. S. A. Shah			
	To introduce the co	ncepts of Environme	ntal Chemistry, va	arious a	aspects	s of the
Course	four main spheres of earth: Atmosphere, Biosphere, Hydrosphere and			re and		
Objective	Lithosphere, their interactions amongst each other and their influence on					
	human beings.					
Course Outcomes (COs)						
On successful	On successful completion of the course, the student will be able to about:					
C01	Environmental pollu	tion.				
CO2	Water pollution and its control.					
CO3	Water treatment methods.					
CO4	Water analysis.					
	Environmental pollution [7]		[7 L]			
	Structure of atmosp	ohere- bio geological	cycles -oxygen -	nitroge	n – ca	irbon –
	nhosphorous –sulphur - bio distribution of elements- air pollutions- reactions in					

Module-I phosphorous –sulphur - bio distribution of elements- air pollutions- reactions in atmosphere- primary pollutants -air quality standards - analysis of CO, nitrogen oxides, sulphur oxides, hydrocarbons and particulate matter - particulate pollution - control methods –vehicular pollution- greenhouse effect and global warming - climatic changes –ozone photochemical smog-acid rain - sampling - monitoring – control.

Module-IIWater pollution[7 L]Hydrological cycle- chemical composition - sea water composition -water
quality criteria for domestic and industrial uses - BIS and WHO standards -
ground water pollution-surface water pollution- lake and river water-
eutrophication- marine pollution water pollutants - biodegradability of
detergents -pesticides- microplastics.[7 L]Water treatment[7 L]

	electrodialysis - reverse osmosis- other purification methods - chemical specification
	of elements.
	Water analysis[7 L]
	Colour - odour - conductivity - TDS - pH - acidity - alkalinity – chloride residual
	chlorine - hardness- trace metal analysis- elemental analysis -ammonia - nitrite
	- nitrate - fluoride - sulphide - phosphate -phenols - surfactants - BOD - COD -
Module-IV	DO. Soil pollution: Soil humus - soil fertility- inorganic and organic components
	in soil -acid - base and ion exchange reactions in soils -micro and macro
	nutrients -waste and pollutants in soil- introduction to geochemistry- solid
	waste management- treatment and recycling- soil analysis- radioactive
	pollution- disposal of radioactive waste.

- 1. Environmental chemistry; A. K. De ; Wilay Eastern ; 1995.
- 2. Environmental chemistry; S. E. Manahan; Lewis Publishers; 2000
- 3. Environmental Sciences; Dr. R.J. Chhatwal; 2nd Revised Edition 2011.
- 4. Environmental Pollution analysis; S. M. Khopkar; Wiley Eastern.
- 5. Environmental Chemistry, L. W. Moore and E. A. Moore McGraw Hill Publication, New York, 2002.

Subject: Tribochemistry of Lubricating Materials (Code-MSCYE-107)	Syllabus for M.Sc 1 st Semester (1 st Year)		Total Course Credit: 2			
Mid-Term	Class Assessment	Final-Term	L	Т	Р	
26 (Marks)	24 (Marks)	50 (Marks)	2	0	0	
Course Instructor (s)	Prof. Kowsar Majid					

Course	The course has been designed to enable the students to learn the tribochemistry				
Objective	of various lubricating materials, their reaction mechanism and related surface				
Objective	chemistry. Related Environmental issues are also included at the end.				
Course Outcomes (COs)					
On successful	On successful completion of the course, the student will be able to about:				
C01	To understand the area of tribochemistry				
	Aiming at main kinds of lubricants including oil additives, nanoparticles				
	additives, ionic liquids, rare earth, ceramics, diamond like carbon films, organic				
CO2	thin films, and polymers. Studying the tribochemistry reaction mechanism, the				
	structure and composition of reaction products to understand the failure				
	mechanism and the theory of property regulation of lubricants				
	Introduction to the Tribochemistry Concept [14 L]				
	Introduction, lubricant additives, tribochemical interactions of additives,				
	synthetic engine oils, lubricant requirements and specifications, Tribochemistry				
Module-I	of oil additives, Tribochemistry of nanoparticle additives, The structure and				
	tribology of ionic liquids, Tribochemistry of rare earth, Tceramics, diamond-like				
	carbon films, Molecular structures and tribology of organic thin films,				
	Tribochemistry of polymers.				
	Surface Tribochemistry, Activated Processes and Environmental Issues				
	[14 L]				
	Chemical nature of metal surfaces, Catalytic activity of rubbing surfaces,				
Module-II	Tribochemical reactions on surfaces, Organomolybdenum compounds in				
Module II	surface engines protection, lubricant additives, tribochemical interactions of				
	additives, synthetic engine oils, lubricant requirements and specifications,				
	Environmental issues: recyclability, biodegradability and toxicity, clean air and				
	energy efficient cars.				

- 1. Tribochemistry of Lubricating Oils, 1st Edition December 2, 2003, **Author:** Zenon Pawlak, eBook ISBN: 9780080543260
- 2. Tribocatalysis, Tribochemistry and Tribocorrosion, 1st Edition, Edited by C Kajdas and K Hiratsuka, eBook ISBN: 978981431695

Subject: Fundamentals of Analytical Techniques (Code-MSCYE-108)	Syllabus for M.Sc 1 st Semester (1 st Year)		Total Course Credit: 2		ırse 2
Mid-Term	Class Assessment	Final-Term	L	Т	Р
26 (Marks)	24 (Marks)	50 (Marks)	2	0	0
Course Instructor (s)	Dr. Jignesh V. Rohit				

Course	The course has been designed to enable the students to learn the basic	
Objective	analytical techniques to strengthen their basics and make ready to lean advance	
	analytical techniques used for chemical analysis.	
	Course Outcomes (COs)	
On successful completion of the course, the student will be able to about:		
CO1	Volumetric methods and their application in qualitative chemical analysis.	
CO2	Gravimetric methods for quantitative chemical analysis	
CO3	Conductance of solutions and their measuring technique.	
CO4	Solution potential and their application in titrations.	
	Volumetric Methods of Analysis[7 L]	
	Standard solutions, indicators, theory of indicators, types of volumetric	
Module-I	titrations; acid-base, precipitation, redox, complexometric, theory of acid base	
Moutie-1	indicators, Mohr, Volhard and Fajans methods, EDTA based titration, redox	
	indicators and their use in volumetric analysis, iodometry and iodimetry,	
	Problems.	
	Gravimetric Analysis [7 L]	
	Precipitation Methods, Impurities during precipitation, Purity of precipitation	
Module-II	(Coprecipitation), Optimum Conditions, Washing and drying/Ignition of	
Fibuare II	precipitates, Role of organic precipitants in gravimetric analysis, Precipitation	
	Equilibria: The Solubility Product, Diverse Ion Effect on Solubility: Ksp and	
	Activity Coefficients, Problems.	
	Potentiometric Methods [7 L]	
	General Principles, Reference Electrodes, Liquid-Junction Potentials, Indicator	
Module-III	Electrodes (Liquid-Membrane Ion-Selective Electrode LMISE, Ion-Sensitive	
Moure-III	Field Effect Transistors ISFET, Instruments for Measuring Cell Potential (Error	
	in Potential Measurements, Voltage Measurements), Direct Potentiometry,	
	Potentiometric Titrations, Potentiometric Determination of Equilibrium	

	Constants, Problems.
	Conductometric Methods [7 L]
	Principle of Conductometric analysis, Measurement of conduction,
	Conductometric titrations (Strong Acid Vs Strong Base, Weak Acid Vs Strong
Module-IV	Base, Strong Acid Vs Weak Base, Weak Acid Vs Weak Base, Mixture of a Strong
	Acid and Weak Acid Vs Strong Base or Weak Base), Dielectric constant,
	Measurement of dielectric constant, Direct Current conductivity analysis,
	Impedance measurement, Problems

- 3. Skoog D. A., Donald M. W., Holler F. J., Crouch S.R., Fundamentals of Analytical Chemistry, 10th Edition, 2022, Cengage Learning Publication.
- 4. Christian G. D., Dasgupta P. K., Schug K. A., Analytical Chemistry, 2020, Willey Publisher.
- 5. Willard H.M., Merritt L.L., Dean J.A., Settle F.A., Instrumental Methods of Analysis, 7th Edition, 2020, CBS Publisher.
- 6. Skoog D., Holler F., Crouch S., Principles of Instrumental Analysis, 7th Edition, 2017, Cengage Learning Publication.
- 7. Khopkar S.M., Basic Concepts of Analytical Chemistry, 3rd Edition, 2020, New Age International Publisher.

Subject: Organic Chemistry Lab-I (Code-MSCYL-109)	Syllabus for M.Sc 1 st Semester (I Year)		Total Course Credit: 1.5		
Evaluation Schomo	Continuous Assessment	End-Term	L	Т	Р
Evaluation Scheme	60 (Marks)	40 (Marks)	0	0	3
Course Instructor (s) Prof. Tabassum Ara					

Course	The course has been designed to enable the students to learn the organic			
Objective	chemistry practical skills.			
Course Outcomes (COs)				
On successful completion of the course, the student will be able to about:				
C01	Purification techniques.			
CO2	Separation and purification of organic compounds.			
CO3	Separation of a binary mixture of organic compounds.			
CO4	Qualitative analysis of organic compounds.			
Exp.1	Purification techniques (Demonstrations).Purification of solvents and reagents using Techniques like crystallization,sublimation, fractional distillation, vacuum distillation, drying and storage ofsolvents.			
Exp.2-4	Separation and Purification Separation and Purification of organic compounds using thin layer chromatography and column chromatography. (Two exercises).			
Exp.5-7	Separation of a binary mixture Separation of a binary mixture of organic compounds based on solubility in water and organic solvents. (Two exercises)			
Exp.8-10	Identification of the organic compounds Identification of the organic compounds by systematic qualitative organic analysis (Two exercises).			

- 1. Vishnoi N.K., Advanced Practical Organic Chemistry, 2nd ed. 1999, Vikas.
- 2. Pasto D., Johnson C., Miller M., Experiments and Techniques in Organic Chemistry, 1992, Prentice-hall.

Subject: Inorganic Chemistry Lab-I (Code-MSCYL-110)	-I Syllabus for M.Sc 1 st Semester (I Year)		Tot Cr	al Cou edit: 1	rse 5
Evaluation Schomo	Continuous Assessment	End-Term	L	Т	Р
Evaluation Scheme	60 (Marks)	40 (Marks)	0	0	3
Course Instructor (s) Prof. S. A. Shah/Prof.		h/Prof. Hamida	ı Chisti		

Course	To gain practical knowledge of inorganic chemistry.				
Objective					
Course Outcomes (COs)					
On successful	On successful completion of the course, the student will be able to about:				
C01	Synthesis of Inorganic complexes.				
CO2	Structure elucidation of the complexes.				
CO3	Percentage of ions by titration methods.				
CO4	Complexometric titration.				
	Synthesis of tris(acetylacetonato)manganese(III), [Mn(C ₅ H ₇ O ₂) ₃].Calculate the				
Exp.1	percentage yield and give the structure of the complex. Also write the				
	chemical reactions involved.				
	Synthesis of Copper(I) tetraiodomercurate (II), Cu ₂ [HgI ₄]. Calculate the				
Exp.2	percentage yield and give the structure of the complex. Also write the chemical				
reactions involved.					
	Synthesis of pentaaminechlorocobalt(III) chloride, [Co(NH ₃) ₅]Cl ₂ . Calculatethe				
Exp.3	percentage yield and give the structure of the complex. Also write the				
chemical reactions involved.					
	Synthesis of tris(acetylacetanato)Chromium(III), $[Cr(C_5H_7O_2)_3]$. Calculate the				
Exp.4	percentage yield and give the structure of the complex. Also write the chemical				
	reactions involved.				
	Synthesis of nitropentaammine cobalt(III) chloride, [Co(NH ₃) ₅ NO ₂]Cl ₂ .				
Exp.5	Calculate the percentage yield and give the structure of the complex. Also write				
	the chemical reactions involved.				
	Synthesis of Sodium trioxalato ferrate trihydrate. Calculate the percentage				
Exp.6	yield and give the structure of the complex. Also write the chemical reactions				
	involved.				
Fyn 7	Synthesis of Mohr's Salt (Ferrous Ammonium Sulphate). Calculate the				
LAP. /	percentage yield and give the structure of the complex. Also write the chemical				

	reactions involved.
	Synthesis of Reinecke's salt (Ammonium Tetrathiocyanate diamine chromate).
Exp.8	Calculate the percentage yield and give the structure of the complex. Also write
	the chemical reactions involved.
Evp 0	Synthesis of Hexaamine Nickel-II chloride. Calculate the percentage yield and
Ехр.9	give the structure of the complex. Also write the chemical reactions involved.
E 10	To estimate the percentage of copper ions in a given solution by titration
Exp.10	method.

- 1. Vogel A. I., Qualitative Inorganic Analysis, 6th Edition, Revised, G. Svehla ELB–London.
- 2. Vogel A. I., Textbook of Chemistry Analysis.
- 3. Raj G., Advanced Practical Inorganic Chemistry, Goel Publishing House, Meerut.

Subject: Physical Chemistry Lab-I (Code-MSCYL-111)	Syllabus for M.Sc 1 st Semester (I Year)		Total Course Credit: 1.5		
Evaluation Schomo	Continuous Assessment	End-Term	L	Т	Р
Evaluation Scheme	60 (Marks)	40 (Marks)	0	0	3
Course Instructor (s) Prof. Kowsar Majid/Dr. Shrikant Shivaji Makt		aktedar	•		

Course	To develop the experimental skills by providing practical course dedicated to			
Objective	physical chemistry.			
Course Outcomes (COs)				
On successfu	l completion of the course, the student will be able to about:			
CO1	Titrations using potentiometry			
CO2	Coloumetric measurements.			
CO3	Viscosity measurements.			
CO4	Kinetics and surface reactions.			
S. No.	Details of the Experiments			
Fyn 1	Titrate potentiometrically a phosphoric acid solution against NaOH and calculate			
Ехр.1	pK ₁ , pK ₂ and Pk ₃ of the acid.			
Fyn 2	Determine redox potential of Fe^{2+}/Fe^{3+} system by titrating it with standard			
Ехр.2	K ₂ Cr ₂ O ₇ solution.			
Exp.3	Determine λ_{max} for KMnO ₄ by colorimetric measurement.			
Exp.4	Verify Beer's law by colorimetric measurement.			
Exp.5	Determine viscosity of given liquid by using Ostwald's viscometer.			
Exp.6	Study variation of viscosity with composition of the mixture (any one).			
Exp.7	Study the hydrolysis of ester in presence of hydrochloric acid.			
Exn 8	Investigate the autocatalytic reaction between potassium permanganate and			
	oxalic acid.			
Fyn 9	Investigate the adsorption of oxalic acid by activated charcoal and test the			
LAP. 7	validity of Freundlich and Langmuir's isotherms.			
Fyn 10	Investigate the adsorption of acetic acid from aqueous solution by activated			
Lypito	charcoal and examine the validity of Freundlich and Langmuir's isotherms.			

- 1. Vogel A. I., A Text Book of Quantitative Inorganic Analysis, 3rd Edition.
- 2. Findary A., Kitchner T.A., Practical Physical Chemistry, Longmans, Green and Co.

- 3. Wilson J.M., Newcombe K.J., Denko A.R., Richett R.M.W., Experiments in Physical Chemistry, Pergamon Press
- 4. Khosla B.D., Garg V.S., Senior Practical Physical Chemistry, R. Chand and Co., Delhi.

Subject: Organic Reaction Mechanisms (Code-MSCYT-201)	Syllabus for M.Sc2 nd Semester (I Year)		Total Course Credit: 3		
Mid-Term	Class Assessment Final-Term		L	Т	Р
26 (Marks)	24 (Marks)	50 (Marks)	2	1	0
Course Instructor (s)		Dr. Ravi Kumar			

Course	The course has been designed to enable the students to learn the various types					
Objective	of reactions and rearrangements in organic molecules.					
	Course Outcomes (COs)					
On successful	On successful completion of the course, the student will be able to about:					
CO1	Reaction mechanisms in organic chemistry.					
CO2	Advance organic synthesis on account of additions to multiple bonds.					
CO3	Molecular rearrangements of synthetic importance.					
CO4	Orbital interactions in concerted reactions.					
	Substitution Reactions in Aromatic Compounds[11 L]					
	Electrophilic Substitutions: The arenium ion mechanism, orientation and					
	reactivity, ortho/para ratio, ipso attack, orientation in other ring systems.					
Modulo-I	Quantitative treatment of reactivity in substrates and electrophiles. Diazonium					
Mouule-1	coupling, Vilsmeir reaction, Gattermann-Koch reaction.					
	Nucleophilic Substitutions: The SNAr, SN1, benzyne and SRN1 mechanisms.					
	Reactivity-effect of substrate structure, leaving group and attacking nucleophile.					
	The von Richter, Sommelet-Hauser, and Smiles rearrangements					
	Addition to Multiple Bonds[10 L]					
	Addition to carbon-carbon multiple bonds: General mechanism, reactivity,					
	orientation and stereochemical implications of additions reactions involving					
	electrophiles, nucleophiles and free radicals. Addition to cyclopropane ring.					
Module-II	Hydrogenation of double/triple bonds and aromatic rings. Hydroboration.					
	Addition to carbon-hetero atom double bonds: Mechanisms of addition of water,					
	hydrogen cyanide, alcohols, amines, organometallic reagents and hydrides to					
	aldehydes and ketones. Mechanism of Wittig, Mannich, Aldol, Cross Aldol,					
	Cannizarro's, Knoevenagel, Robinson annulation, Claisen, Dickma, Benzoin,					
	Perkin and Stobbes reactions					
Modulo-III	Molecular Rearrangements[11 L]					
Mouule-III	General mechanistic treatment of nucleophilic, electrophilic and free radical					

	rearrangements. Nature of migration and migratory aptitude and memory				
	effect. Detailed study of following rearrangements: Wagner-Meerwein, Pinacol-				
	Pinacolone, Demyanov, Benzil-Benzilic acid, Favorskii, Arndt-Eistert, Neber,				
	Hofmann, Curtius, Lossen, Schmidt, Beckmann, Baeyer-Villiger, Pyne and				
	Dienone - phenol rearrangements.				
	Pericyclic Reactions [10 L]				
	Molecular orbital symmetry, Frontier orbitals of ethene, 1,3- butadiene, 1,3,5-				
	hexatriene and allylic systems. HOMO, LUMO concept, FMO approach.				
	Classification of Pericyclic reactions. Woodward Hofmann rules for the				
	following pericyclic reactions. Cycloadditions: Thermal and Photochemical				
Module-IV	and 4+2 cycloadditions. Suprafacial and antrafacial cycloadditions.				
	Electrocylic Reactions: Thermal and Photo-induced Electrocyclic reactions of 4n				
	and 4n+2 systems and their stereochemistry. Conrotatory and disrotatory				
	motions. Sigmatropic rearrangements: Classification, [1,3], [1,5] and [3,3]				
	sigmatropic shifts. Cope and Claisen rearrangements. Suprafacial and antrafacial				
	shifts of hydrogen atom.				

- 1. Kurti L., Czako, B., Strategic Applications of Named Reactions in Organic Synthesis, 2004.
- 2. Dupey C., Chapman O., Molecular Reactions and Photochemistry, 2006, Prentice Hall.
- 3. Mukherjee S.M., Singh S. P., Reaction Mechanism in Organic Chemistry, 2009, Macmillan India Limited.
- 4. Nasipuri D., Stereochemistry of Organic Compounds, 2nd Edition, 2007, New Age International.
- 5. Gilchrist T. L., Heterocyclic Chemistry, 3rd Edition, 2007, Pearson Education.
- 6. Bansal R. K., Heterocyclic Chemistry, 5th Edition, 2006, New Age International.
- 7. Carruthers W., Modern Methods of Organic Synthesis, 4th Edition, 2007, Cambridge University Press.

Subject: Bio-inorganic & Nuclear Chemistry (Code-MSCYT-202)	Syllabus for M.Sc2 nd Semester (I Year)		Tot (tal Co Credit:	urse : 3
Mid-Term	Class Assessment	Final-Term	L	Т	Р
26 (Marks)	24 (Marks)	50 (Marks)	2	1	0
Course Instructor (s) Prof. S. A. Shah/ Prof. Hamida Chisti		sti			

Course	The course has been designed to enable the students to learn the details of bio-		
Objective	inorganic chemistry and basics of nuclear chemistry.		
	Course Outcomes (COs)		
On successful	completion of the course, the student will be able to about:		
C01	Bioinorganic chemistry of elements.		
CO2	Biochemical reactions in living systems.		
CO3	Metals in enzymes and medicine: anti-cancer agents, diabetes, arthritis,		
	radionuclides and related applications.		
CO4	Nuclear changes or processes including fission, fusion and decay reactions.		
	Metal ions in Biochemical Systems[11 L]		
	Introduction to bio-inorganic chemistry, Concept of essentiality, Criteria and		
Madula I	classification of essential elements as per their role in living systems, Bulk		
Module-1	metals and trace metals, Role of alkali and alkaline earth metals in biosystems,		
	Metal ion toxicity, Na ⁺ - K ⁺ pump, Transport and storage of Iron (Ferritin,		
	Transferrin and siderophores).		
	Metalloporphyrins, Respiration & Electron Transport in Biosystems [10 L]		
	Metalloporphyrins, Cytochromes (Cytochromes C, Cytochrome C-oxidase,		
	Cytochrome P-450). Dioxygen transport (hemocyanin and hemerythrin),		
Module-II	Structure and physiological role of hemoglobin and myoglobin, Bohr Effect and		
	cooperativity, Chloride effect, Iron-Sulfur proteins, Ferredoxins, Rubredoxin,		
	Copper proteins, Enzymes and co-enzymes, Structure and function of		
	carboxypeptidase A, Carbonic anhydrase, Xanthine oxidase, Vitamin B12.		
	Enzymes and medicinal Chemistry [11 L]		
Module-III	Enzymes and co-enzymes, Structure and function of carboxypeptidase A,		
	Carbonic annydrase, Xanthine oxidase, Vitamin B12, Nitrogen fixation,		
	Biochemical basis of essential metal deficient diseases and their therapies (Iron,		
	Linc, Copper and Manganese). Chelate therapy, Anticancer drugs-cisplatin,		

	Auranofin and arthritis treatment, Vanadium complexes in medicine.	
	Nuclear Chemistry[10 L]	
	Introduction, Nuclear binding energy, Mass defect and binding energy, The	
	average binding energy per nucleon. Radioactivity: Nuclear emissions, nuclear	
	transformations, The kinetics of radioactive decay, Units of radioactivity.	
	Artificial isotopes: Bombardment of nuclei by high-energy a-particles and	
Module-IV	neutrons, Bombardment of nuclei by 'slow' neutrons. Nuclear fission: The	
	fission of uranium-235, The production of energy by nuclear fission, nuclear	
	reprocessing. Syntheses of trans uranium elements. The separation of	
	radioactive isotopes: Chemical separation, The Szilard–Chalmers effect. Nuclear	
	fusion. Applications of isotopes: Kinetic isotope effects, Radiocarbon dating.	

- 1. Huheey J.E., Inorganic Chemistry, 4th Edn., 2008, Pearson.
- 2. Miessler G. L., Tarr D.A., Inorganic Chemistry, 3rd Edn., 2008, Pearson.
- 3. Catherine E., Croft H., Sharpe A. G., Inorganic Chemistry, 2nd Edn., 2005.
- 4. Cotton F. A., Wilkinson G., Murillo C. A., Bochmann M., Advanced Inorganic Chemistry, 6th Edn., 1999, Wiley.
- 5. Weller and Armstrong, Inorganic Chemistry, 6th Edn., 2015, Oxford.
- 6. Lee J. D., Concise Inorganic Chemistry, 5th Edn., 1999, Wiley,
- 7. Gupta B.D., Elias A.J., Organometallic Chemistry, 2nd Edn., 2013, University Press.
- 8. Cotton F. A., Chemical Applications of Group Theory, 3rd Edn., 2008, John Wiley & Sons.
- 9. Atkins and Shriver, Inorganic Chemistry, 5th Edn., 2009.

Subject: Advanced Electrochemistry & Chemical Kinetics (Code-MSCYT-203)	Syllabus for M.Sc2 nd Semester (I Year)		Total Course Credit: 3		
Mid-Term	Class Assessment	Final-Term	L	Т	Р
26 (Marks)	24 (Marks)	50 (Marks)	2	1	0
Course Instructor (s)	Prof. Kowsar M	ajid/Dr. Shrikant	Shivaji I	Makte	dar

Course	The course has been designed to enable the students to learn the
Objective	electrochemistry and chemical kinetics.
	Course Outcomes (COs)
On successful	completion of the course, the student will be able to about:
C01	Electrochemistry and semiconductors.
CO2	Electrochemistry of redox systems.
CO3	Theories of chemical reactions.
CO4	Surface chemistry.
	Electrochemistry-I [10 L]
	Metal-electrolyte electrified interfaces, Concept of surface excess,
	Thermodynamics of electrified interface, Lippmann equation, Electrocapillary
	curves, Methods for determination of surface excess. Structural models of
Madula I	metal-electrolyte interface: Helmholtz-Perrin, Gouy-Chapman and Stern
Module-1	models, Semiconductor electrodes: Structure of semiconductor/electrolyte
	interface, Theories of heterogeneous electron transfer: Electron transfer at
	electrified interface at and away from equilibrium, Butler-Volmer Equation,
	Low and high field approximations, Significance of transference-coefficient.
	Marcus theory of charge transfer.
	Electrochemistry -II[12 L]
	Electrochemistry of redox enzymes: Direct and mediated electron transfer,
	Enzyme modified electrodes-challenges and applications. Mechanism and
Madula II	approach to bio-electrosynthesis, examples of bio-electrosynthesis-oxidation of
Mouule-II	alcohols, synthesis of dihydroxyl acetone phosphate, site specific oxidation of
	sugars, reduction of carbonyl compounds, hydrogenation. Solar Cells:
	Principles of Operation and Energetics of Conversion, Photoelectrochemical
	splitting of water, Photoelectrochemical reduction of CO_2 and N_2 .
Module-III	Chemical Kinetics-I [10 L]

	Micro kinetic analysis of reaction rates and orders. Fast reactions: General			
	features of fast reactions, Study of fast reactions by flow method, Relaxation			
	method and flash photolysis. Theories of chemical reactions: Arrhenius theory,			
	Collision theory and its limitations, Potential energy surfaces, Activated			
	complex theory of reaction rates, Statistical and thermodynamic formulations,			
	Comparison with collision theory. Theories of unimolecular reactions			
	(Lindman and Hinshelwood theories, RRK theory).			
	Chemical Kinetics-II [10 L]			
	Surface Reactions: Unimolecular & bimolecular surface reactions, Langmuir-			
	Hinshelwood and Langmuir-Riedel mechanism, Classical and Statistical			
	treatments. Reactions in liquid solutions: Diffusion controlled reactions (partial			
Module-IV	and full microscopic diffusion control), Ionic reactions: Single and double			
	sphere models of ionic reactions, Ionic strength effect, Catalysis: introduction			
	to catalysis, Mechanism of catalysis, Use of solvents as catalysts, Enzyme			
	catalysis, Michaelis–Menten Equation, Inhibition, Effects of pH and			
	Temperature on enzyme catalysis reactions.			

- 1. Bockris J. O., Reddy A.K., Modern Electrochemistry, 1, 2A, 2nd Edn., 2002, Kluwer Academic/plenum Publishers, New York.
- 2. Bard A. J., Faulkner L. R., Electrochemical methods, Fundamentals and Methods, 2nd Edn.; 2002, Wiley.
- 3. Gileadi E., Physical Electrochemistry-Fundamentals, Techniques and Applications, 2011, Wiley-VCH.
- 4. Hamann C. H., Hammett A., Vielstich W., Electrochemistry, 2nd Edn., 2007, Wiley-VCH.
- 5. Margaret R. W., An Introduction to Aqueous Electrolyte Solutions, Ist Edn., 2007, Wiley.
- 6. Atkins P. W., Physical Chemistry, 2010, Oxford.
- 7. Laidler K. J., Chemical Kinetics, 4th Edn., Revised, 2002, Mcgraw-Hill.
- 8. Masel R. I., Chemical Kinetics and Catalysis, 2001, Wiley.
- 9. Steinfeld J. I., Francisco J. S., Hase W. L., Chemical Kinetics and Dynamics, 2nd Edn.; 1998.

Subject: Chromatographic Techniques (Code-MSCYT-204)	Syllabus for M.Sc2 nd Semester (I Year)		Total Course Credit: 3		
Mid-Term	Class Assessment	Final-Term	L	Т	Р
26 (Marks)	24 (Marks)	50 (Marks)	2	1	0
Course Instructor (s) Dr. Mohammad Aslam		nad Aslam/Dr. Jig	nesh V.	Rohit	

Course	The course has been designed to enable the students to learn the analysis of			
Objective	experimental data and learn various analytical techniques which would be			
Objective	applied in all areas of research and various industries.			
	Course Outcomes (COs)			
On successful	completion of the course, the student will be able to about:			
CO1	Gas chromatography.			
CO2	Liquid chromatography like high-performance liquid chromatography.			
CO3	Ion and ion-exchange chromatography.			
CO4	Size exclusion and super critical fluid chromatography.			
	Gas Chromatography[11 L]			
	Introduction to chromatography, classification of chromatographic methods,			
	planar and column chromatography techniques. Principle of gas			
	chromatography, instruments; carrier gases; columns and stationary phases;			
Modulo-I	sample injection systems, detectors-characteristics of the ideal detectors,			
Mouule-1	thermal conductivity detector, flame ionization detector, thermionic detector,			
	mass spectrometer detector, factors affecting the efficiency of the column,			
	qualitative analysis, Kovats retention index (I), quantitative analysis, analyses			
	based on peak height and peak areas, numeric problems based on gas			
	chromatography, applications of gas chromatography.			
	High Performance Liquid Chromatography[10 L]			
	Principle of HPLC, stationary and mobile phases in HPLC, instrumentations;			
	isocratic and gradient elution, mobile phase delivery system, sample injection			
Module-II	system, separation columns and column packings, detectors-absorbance,			
	fluorescence, refractive-index and electrochemical detectors, basic difference			
	between HPLC and conventional liquid chromatography, hyphenated			
	techniques viz. HPLC-MS, advantages and applications of HPLC.			
Module-III	Ion & Ion-Exchange Chromatography[11 L]			
Mouule-III	Principles of separation, ion-exchange equilibria and selectivity, types of			

	stationary phases, mobile phases, effect of pH on separation of amino acid,
	effect of complexing agent on separation of metal ions, distinction between ion-
	exchange and ion chromatography, ion-suppression in ion chromatography,
	ion chromatography with eluent suppressor column, single column ion
	chromatography, properties of mobile phases, detectors, applications.
	Size Exclusion and Super Critical Fluid Chromatography[10 L]
	Size Exclusion Chromatography; Principles of separation, theoretical basis-
	calibration curve, exclusion limit, total permeation and selective permeation
Module-IV	regions, relation between elution volume and molecular weight, packing
	materials and applications. Super critical fluids and its properties, principle,
	instrumentation, stationary and mobile phases, detectors, operating variables,
	comparisons with other types of chromatography, applications.

- 1. Miller J. M., Chromatography: Concepts and Contrasts, 2nd Edition, 2004, Wiley-Interscience.
- 2. Harold M. M., Miller J. M., Nicholas H. S., Basic Gas Chromatography, 3rd Edition, 2019, Willey.
- 3. Meyer V. R., Practical High-Performance Liquid Chromatography, 5th Edition, 2010, Willey.
- 4. Raymond P.W. S., Introduction to Analytical Gas Chromatography, Volume 76, 2017, CRC Press.
- 5. Robert L. G., Eugene F. B., Modern Practice of Gas Chromatography, 4th Edition, 2008, Wiley-Interscience.
- 6. Miller L. M., Pinkston J. D., Taylor L. T., Modern Supercritical Fluid Chromatography: Carbon Dioxide Containing Mobile Phases (Chemical Analysis: A Series of Monographs on Analytical Chemistry and Its Applications, 2019, Wiley.
- 7. Kaur H., Instrumental Methods of Chemical Analysis (Analytical Chemistry), 2012, Pragati Prakashan, Meerut.
- 8. Chatwal G.R., Anand S.K., Instrumental Methods of Chemical Analysis, 5th Edition, 2019, Himalya Publishing House, New Delhi.

Subject: Bio-Molecules (Code-MSCYE-205)	Syllabus for M.Sc 2 nd Semester (1 st Year)		Total Course Credit: 2		
Mid-Term	Class Assessment	Final-Term	L	Т	Р
26 (Marks)	24 (Marks)	50 (Marks)	2	0	0
Course Instructor (s)		Prof. J. A. Banday	у		

Course	The course has been designed to enable the students to learn the structure and		
Objective	Functions of Bio-molecules.		
	Course Outcomes (COs)		
On successful	completion of the course, the student will be able to about:		
C01	Carbohydrates, their structure and classification.		
CO2	Structure, reactions and functions of amino acids and proteins.		
CO3	Nucleic acids and their role in living systems.		
CO4	Lipids in daily life.		
	Carbohydrates [7 L]		
	Classification of carbohydrates: Monosaccharides: Structure with special		
Module-I	reference to glucose and fructose, Configuration, Reactions, Anomers, epimers		
	and epimerization, mutarotation. Chain shortening and lengthening		
	Disaccharides and polysaccharides; brief idea.		
	Amino Acids and Proteins[7 L]		
Module-II	Amino acids: structure and classification of amino acids, iso-electric point,		
	Polypeptides and proteins; structure of proteins (Primary, secondary, tertiary &		
	quaternary), classification of proteins. Peptide synthesis in laboratory.		
	Nucleic Acids [7 L]		
Module-III	Introduction, structure and classification of nucleic acids, Nucleosides,		
	Nucleotides, base pairing in DNA. Functions of nucleic acids; Nucleic acids and		
	heredity, replication of DNA, protein synthesis, mutations.		
	Lipids [7 L]		
Module-IV	Classification, Fats and Oils, Fatty acids, Steroids, triglycerides, Phospholipids,		
	Soaps and detergents.		

Recommended Books:

1. Clayden, J. Greeves, N., Warren, S., Wothers, P., Organic Chemsitry, 3rd. Edition Oxford University Press,

- 2. U. Satyanarayanan and U. Chakrapani, Biochemistry, 4th. Edition-2013, (Elsevier).
- 3. John McMurry, Eric Simanek, Fundamentals of Organic Chemistry, 7^{th.} Edition, (Cengage India Pvt. Ltd.)
- 4. David L. Nelson and Michael M. Cox, Principles of Biochemistry, 6^{th.} Edition-2013 (Lehenger).

Subject: Group Theory (Code-MSCYE-206)	Syllabus for M.So (1 st Y	M.Sc 2 nd Semester Total Co s ^t Year) Credit			urse 2
Mid-Term	Class Assessment	Final-Term	L	Т	Р
26 (Marks)	24 (Marks)	50 (Marks)	2	0	0
Course Instructor (s)	Prof. S.	A. Shah/Prof. Ham	ida Chi	sti	

Course Objective	To introduce the concepts of Group theory.
	Course Outcomes (COs)
On successful	completion of the course, the student will be able to about:
C01	Molecular symmetry.
CO2	Symmetry classification of molecules
CO3	Orthoganality theorem.
CO4	Applications of group theory
Module-I	Molecular Symmetry[7 L]Symmetry elements and operations: Identity, rotation axis, reflection plane, inversion center, improper rotation axis. Combination of symmetry operations, Introductory idea to permutation group. Group multiplication tables.
Module-II	Symmetry Classification of Molecules[7 L]Symmetry groups, Point groups. Schoenflies notation of point groups.Identification of point groups. Matrices and their combination, block factored matrices, Matrix representation of symmetry operations.
Module-III	The Great Orthoganality Theorm-[7 L]Elementary idea, consequences of the Great Orthogonolity Theorem. Reducibleand Irreducible representations (IRs), Mullikan symbols for IRs, Properties ofIRs. Character table-construction of character tables for C2v, C3v and C4v pointgroups.
Module-IV	Applications of group theory:[7 L]Applications of group theory to IR and Raman spectroscopy. Degrees of freedom/molecular motions-Vibrational motions. Selection rules. Symmetry of IR and Raman active normal vibrational modes of AB2, AB3, AB4, AB5, and AB6 type molecules. Applications of symmetry to Molecular Chirality, Polarity and

hybridization. Projection Operators (Elementary Idea).

- 1. Chemical Applications of Group Theory; 2nd edn.;
- 2. F. A. Cotton; Wiley Eastern; (1994) 2. Molecular Symmetry and Group Theory; L. Carter; Wiley; 1998.
- 3. Symmetry and Spectroscopy of Molecules; K. Veera Reddy; New Age 1998.
- 4. Inorganic Chemistry, Principles of structure and reactivity; 4th Edition.
- 5. Physical Methods for Chemists; R.S.Drago; 2nd edn; Saunders; 1992.

Subject: Energy Conversion & Storage Systems (Code-MSCYE-207)	Syllabus for M.Sc 2 nd Semester (1 st Year)		ter Total Course Credit: 2		
Mid-Term	Class Assessment	Final-Term	L	Т	Р
26 (Marks)	24 (Marks)	50 (Marks)	2	0	0
Course Instructor (s)	Dr. Shrikant Shivaji Maktedar				

Course	The course has been designed to enable the students to understand & learn the		
Objective	energy conversion & storage systems through electrochemical techniques.		
	Course Outcomes (COs)		
On successful	On successful completion of the course, the student will be able to about:		
C01	Fundamentals of working of supercapacitors & battery.		
CO2	Interfacial phenomenon through double layer at capacitor electrode interface.		
CO3	Kinetics of electrode processes.		
CO4	Electrostatics involved in capacitor electrode interphases.		
	Supercapacitor & Battery[7 L]		
	Modes of Electrical Energy Storage by Capacitors and Batteries, Faradaic and		
	Non-Faradaic Processes, Types of Capacitors and Types of Batteries,		
Module-I	Differences of Densities of Charge Storage in Capacitors and Batteries,		
	Comparison of Capacitor and Battery, Li Intercalation Electrodes-A Transition		
	Behavior, Charging of a Nonideally Polarizable Capacitor Electrode, Properties		
	of Electrochemical Capacitors and Batteries.		
	Double Layer at Capacitor Electrode Interfaces[7 L]		
	Models and Structures of the Double Layer, Two-Dimensional Density of		
	Charges in the Double Layer, Ionic Charge Density and Interionic Distances on		
Module-II	the Solution Side of the Double Layer, Electron-Density Variation: "Jellium"		
	Model, Electric Field across the Double Layer, Double-Layer Capacitance and the		
	Ideally Polarizable Electrode, Equivalent Circuit Representation of Double-Layer		
	Electrical Behavior.		
	Kinetics of Electrode Processes[7 L]		
	Energetics of Electrode Processes, Energy Factors in Relation to Electrode		
Module-III	Potential, Kinetics of Electrode Reactions at Metals, Currents and Rate		
	Equations, Linearization of the Butler-Volmer, Equation for Near-Equilibrium		
	Conditions (low η), Graphical Representation of the Exchange Current Density,		

	io and Behavior Near Equilibrium, Onset of Diffusion Control in the Kinetics of
	Electrode Processes, Kinetics when Steps Following an Initial Electron Transfer
	are Rate Controlling, Double-Layer Effects in Electrode Kinetics, Electrical
	Response Functions Characterizing Capacitative Behavior of Electrodes.
	Elements of Electrostatics Involved in Treatment of Double Layers and
	Ions at Capacitor Electrode Interphases[7 L]
	Electrostatic Principles, Coulomb's Law: Electric Potential and Field, and the
Module-IV	Significance of the Dielectric Constant, Lines of Force and Field Intensity-A
	Theorem, Capacity of a Condenser or Capacitor, Field Due to a Surface of
	Charges: Gauss's Relation, Poisson's Equation: Charges in a 3-Dimensional
	Medium, The Energy of a Charge .

- 1. Electrochemical Supercapacitors: Scientific Fundamentals & Technological Applications, B. E. Conway
- 2. Electrochemical Methods: Fundamentals & Applications, Allen J Bard, Larry R Faulkner, Second Edition, John Wiley & Sons Inc.

Subject: Spectrochemical Methods (Code-MSCYE-208)	Syllabus for M.Sc 2 nd Semester (1 st Year)		Syllabus for M.Sc 2nd Semester (1st Year)Total Co Credit			Fotal Course Credit: 2		
Mid-Term	Class Assessment	Final-Term	L	Т	Р			
26 (Marks)	24 (Marks)	50 (Marks)	2	0	0			
Course Instructor (s)	Dr. Mohammad Aslam/Dr. Jignesh V. Rohit							

The course has been designed to enable the students to learn the principles and		
working of spectrochemical methods, widely used for routine and research at		
academia and industries.		
Course Outcomes (COs)		
On successful completion of the course, the student will be able to about:		
Absorption spectroscopy and its application in qualitative and quantitative		
measurements.		
Fluorescence spectroscopy and its use in analysis of chemical and biological		
species.		
Mass spectrometry and application		
Fourier transform mass spectrometer (HRMS).		
Molecular Absorption Spectrometry [7 L]		
Ultraviolet and Visible Molecular Absorption Spectroscopy (Absorption by		
Organic and Inorganic Compounds, Charge-Transfer Absorption, Qualitative		
Applications of Ultraviolet/Visible Spectroscopy, Quantitative applications, The		
Relationship between Absorbance and Concentration, Standard Addition		
Method, Analysis of Mixtures, Photometric and Spectrophotometric Titrations),		
Automated Photometric and spectrophotometric Methods (Flow-Injection		
Analysis).		
Molecular Fluorescence Spectroscopy [7 L]		
Theory of Molecular Fluorescence (Relaxation Processes, Fluorescence and		
Structure, Effect of Structural Rigidity, Temperature and Solvent Effects), Effect		
of Concentration on Fluorescence Intensity, Fluorescence Instrumentation,		
Applications of Fluorescence Methods (Determination of Organic, Inorganic and		
biochemical species), Molecular Phosphorescence Spectroscopy,		

	Mass spectrometry [7 L]
	Introduction, principle of mass spectrometry, ion production, electron
	ionization (EI), chemical ionization (CI), field ionization (FI), mass to charge
	ratio. Mass spectrometers, components of mass spectrometer, sample handling
Module-III	system, ionization chamber, electrostatic accelerating system, ion separator, ion
	collector, vacuum system, mass analyzers, sector analyzer, quadrupole mass
	analyzer, time of flight mass analyzer, transducers for mass spectrometry,
	resolution, applications of mass spectrometry to volatiles/non-volatiles.
	High Resolution Mass Spectrometry[7 L]
	High Resolution Mass Spectrometry[7 L]Introduction to advanced mass spectrometry, high resolution mass
	High Resolution Mass Spectrometry[7 L]Introduction to advanced mass spectrometry, high resolution massspectrometry (HR-MS), Fourier transform mass spectrometer (FT-MS),
Module-IV	High Resolution Mass Spectrometry[7 L]Introduction to advanced mass spectrometry, high resolution massspectrometry (HR-MS), Fourier transform mass spectrometer (FT-MS),principle of Fourier-transform mass spectrometer, instrumentation, detection,
Module-IV	High Resolution Mass Spectrometry[7 L]Introduction to advanced mass spectrometry, high resolution massspectrometry (HR-MS), Fourier transform mass spectrometer (FT-MS),principle of Fourier-transform mass spectrometer, instrumentation, detection,scanning, working, applications of FTMS to volatiles and non-volatiles.
Module-IV	High Resolution Mass Spectrometry[7 L]Introduction to advanced mass spectrometry, high resolution massspectrometry (HR-MS), Fourier transform mass spectrometer (FT-MS),principle of Fourier-transform mass spectrometer, instrumentation, detection,scanning, working, applications of FTMS to volatiles and non-volatiles.Advanced hyphenated techniques of analysis; GC-MS, HPLC-MS, UPLC-MS and
Module-IV	High Resolution Mass Spectrometry[7 L]Introduction to advanced mass spectrometry, high resolution massspectrometry (HR-MS), Fourier transform mass spectrometer (FT-MS),principle of Fourier-transform mass spectrometer, instrumentation, detection,scanning, working, applications of FTMS to volatiles and non-volatiles.Advanced hyphenated techniques of analysis; GC-MS, HPLC-MS, UPLC-MS andtheir applications.

- 4. Skoog D., Holler F., Crouch S., Principles of Instrumental Analysis, 7th Edition, 2017, Cengage Learning Publication.
- 5. Willard H.M., Merritt L.L., Dean J.A., Settle F.A., Instrumental Methods of Analysis, 7th Edition, 2020, CBS Publisher.
- 6. Harvey D., Modern Analytical Chemistry, 2000, McGraw Hill Education, New York.
- 7. Skoog D. A., Donald M. W., Holler F. J., Crouch S.R., Fundamentals of Analytical Chemistry, 10th Edition, 2022, Cengage Learning Publication.
- 8. Patnaik P., Analytical Chemistry Handbook, Second Edition, McGraw Hill Education.
- 9. D. Kealey, P. J. Haines, Analytical Chemistry, BIOS Scientific Publishers Limited, 2002.
- 10. David Sparkman, Zelda Penton and Fulton G. Kitson, Gas Chromatography and Mass Spectrometry: A Practical Guide, 2nd Ed., Elsevier, 2011, ISBN: 978-0-12-373628-4.

Subject: Organic Chemistry Lab-II (Code-MSCYL-209)		Syllabus for M.Sc2 nd Semester (I Year)		Total Course Credit: 1.5		rse 5
Fyalu	ation Scheme	Continuous Assessment	End-Term	L	Т	Р
Evalu		60 (Marks)	40 (Marks)	0	0	3
Course	Instructor (s)	Prof. Tabassum Ara/Pr	of. J. A. Banday/I	Dr. Rav	i Kum	ar
	1					
Course	The course has bee	en designed to enable the	e students to le	earn th	e org	ganic
Objective	chemistry practical s	skills.				
		Course Outcomes (COs)				
On successful	l completion of the cou	irse, the student will be ab	le to about:			
C01	Synthesis of organic	compounds.				
CO2	Isolation of natural p	oroducts				
CO3	Characterization of o	Characterization of organic compounds by IR spectroscopy.				
CO4	Determination of the λ_{max} of organic compounds.					
	Preparations of the following compounds					
	1. Aspirin from salicylic acid					
	2. Haloform reaction: Preparation of Iodoform.					
Fyn 1-4	3. Nitrobenzene to m-dinitrobenzene to m-nitroaniline					
	4. Benzophenone_Benzophenoneoxime_Benzanilide					
	(Beckmannrearrangement)					
	5. Aniline to Diazonium salt to p-Aminoazobenzene					
	6. Glucazone from glucose					
	7. Benzoin to Benzil to BenzilicAcid					
	Isolation of					
Exp.5-6	1. Caffeine from teal	eaves				
	2. Lycopene from tomatoes					
	3. Casein from milk					
Exp.7-8	Detection of funct	ional groups using IR s	pectroscopy in	a give	n org	ganic
	compound (Two exe	rcises).		_		
Exp.9-10	Determination of	λ_{max} for a given org	anic compound	l usin	g U\	/-Vis
	spectrophotometer. (Two exercises).					

Books Recommended:

1. Vishnoi N.K., Advanced Practical Organic Chemistry, 2nd ed., 1999, Vikas.

- 2. Pasto D., Johnson C., Miller M., Experiments and Techniques in Organic Chemistry, 1992, Prentice-hall.
- 3. Williamson K.L., Microscale and Macroscale Organic Experiments, 1989, D.C. Heath and Co.
- 4. Tatchell A.R., Vogel's Textbook of Practical Organic Chemistry, 5th ed.- 1996.
- 5. Ahluwalia V. K., Aggarwal R., Comprehensive Practical Organic Chemistry, 2000, University Press.

Subject: Inorganic Chemistry Lab-II (Code-MSCYL-210)	Syllabus for M.Sc2 nd Semester (I Year)		Total Course Credit: 1.5		
Evoluction Cohomo	Continuous Assessment	End-Term	L	Т	Р
Evaluation Scheme	60 (Marks)	40 (Marks)	0	0	3
Course Instructor (s)	Prof. S. A. Shah/Prof. Hamida Chisti				

Course	To gain practical knowledge of Inorganic Chemistry	
Objective	To gam practical mitorreage of morganic chemistry.	
	Course Outcomes (COs)	
On successful	completion of the course, the student will be able to about:	
C01	Synthesis of coordination complexes.	
CO2	Structure elucidation of inorganic complexes.	
CO3	Spectrophotometric determination.	
CO4	Estimation of metal ions.	
Exp.1	Synthesis of dichlorobis (triphenylphosphine) cobalt (II).	
Exp.2	Synthesis of tris (2,4-pentadionato) chromium (III).	
Exp.3	Synthesis of tris (2,4-pentadionato) manganese (III).	
Exp.4	Synthesis of dichlorobis (triphenylphosphine) nickel (II).	
Exp.5	Synthesis of Ammonium dodecamolbedophosphate.	
Evn 6	Synthesis of cis-Potassium Dioxalato diaqua chromate (III) i.e., cis-	
Exp.0	$K[Cr(C_2O_4)_2(H_2O)_2].$	
Fyn 7	Synthesis of Tetra ammine copper (II) Sulphate monohydrate i.e.	
схр.7	[Cu(NH3)4]SO4.H2O.	
Exp.8	Synthesis of tris (ethylenediamine) cobalt (III) chloride.	
Exp.9	Synthesis of Mercurytetrathiocyanatocobaltate (II).	
Fyn 10	Determination of the amount of (Fe ²⁺) in the given	
Exp.10	sample spectrophotometrically using 1,10-phenanthroline.	

- 1. Vogel A. I., Qualitative Inorganic Analysis, 6th Edition Revised, G. Svehla ELB– London.
- 2. Vogel A. I., Textbook of Chemistry Analysis.
- 3. Raj G., Advanced Practical Inorganic Chemistry, Goel Publishing House, Meerut.

Subject: Physical Chemistry Lab-II (Code-MSCYL-211)	Syllabus for M.Sc2 nd Semester (I Year)		Total Course Credit: 1.5		
Evoluction Cohomo	Continuous Assessment	End-Term	L	Т	Р
Evaluation Scheme	60 (Marks)	40 (Marks)	0	0	3
Course Instructor (s) Prof. Kowsar Majid/Dr. Shrikant Shivaji Mal		akteda	r		

Course	To develop the experimental skills by providing the practical course dedicated to	
Objective	the physical chemistry.	
Course Outcomes (COs)		
On successfu	l completion of the course, the student will be able to about:	
CO1	Conductometric titration.	
CO2	pH-metry measurements.	
CO3	Colorimetric titration.	
CO4	Potentiometry, colorimetry and kinetics.	
S. No.	Details of the Experiments	
Evn 1	Determine the concentration of KCl solution by titrating it with standard AgNO ₃	
Exp.1	conductometrically.	
Evn 2	Determine amount of trichloroacetic acid, monochloroacetic acid and acetic acid	
Exp.2	in given solution by conductometric titration against sodium hydroxide solution.	
Exp.3	Determine pKa value of given organic acid by pH measurement.	
Fyn A	Determine acidic and basic dissociation constant of amino acid and hence	
Елр.+	isoelectric point of the acid.	
Fyn 5	Determine simultaneous dichromate and permanganate ions in the given acid by	
Exp.5	colorimetric measurements.	
Fyn 6	Determine concentration of Cu ²⁺ ion in given solution titrating with EDTA	
Exp.0	solution by colorimetric measurements.	
Evn 7	Titrate ferrous ammonium sulphate with ceric sulphate and hence find out	
LXP.7	formal redox potential of Fe^{2+}/Fe^{3+} and Ce^{3+}/Ce^{4+} system.	
Evn 8	To determine basicity and pKa value of given organic acid by potentiometric	
Ехр.о	measurements.	
Exp.9	Determine indicator constant of given indicator by colorimetric measurements.	
Exp.10	Study the hydrolysis of ethyl acetate in presence of sodium hydroxide.	

- 1. Vogel A. I., A Text Book of Quantitative Inorganic Analysis, 3rd Edition.
- 2. Findary A., Kitchner T.A., Practical Physical Chemistry, Longmans, Green and Co.
- 3. Wilson J.M., Newcombe K.J., Denko A.R., Richett R.M.W., Experiments in Physical Chemistry, Pergamon Press
- 4. Khosla B.D., Garg V.S., Senior Practical Physical Chemistry, R. Chand and Co., Delhi.

Subject: Organic Spectroscopy and Modern Organic Synthesis (Code-MSCYT-301)	Syllabus for M.Sc 3 rd Semester (II Year)		Tot C	Total Course Credit: 3	
Mid-Term	Class Assessment	Final-Term	L	Т	Р
26 (Marks)	24 (Marks)	50 (Marks)	2	1	0
Course Instructor (s)	Prof. Tabassum Ara				

Course	The course has been designed to enable the students to learn various spectral		
Objective	techniques and designing the synthesis of organic molecules.		
	Course Outcomes (COs)		
On successful	completion of the course, the student will be able to about:		
C01	Organic structure determination using spectroscopic techniques.		
CO2	Photochemical excitation/de-excitation events.		
CO3	Modern synthetic methods used in functional group transformations.		
CO4	Retrosynthetic approach in the art of modern organic synthesis.		
	UV, IR Spectroscopy and Mass Spectrometry[11 L]		
	UV Spectroscopy: Electronic transitions in organic molecules, Woodward-Fieser		
	rules for alkenes, Woodward rules for enones and aromatic compounds		
	IR Spectroscopy: IR frequencies of alkanes, alkenes, alkynes, aromatic		
	compounds, and for all other functional groups. Effects of hydrogen bonding		
Module-I	and solvent on vibrational frequencies, overtones, combination bands and		
	Fermi resonance. Mass spectrometry: Basic principles, hard and soft ionization		
	techniques, mass analyzer in ESI-MS and MALDI-MS, high resolution MS, isotope		
	abundance, molecular ion, fragmentation processes (McL) of organic molecules,		
	deduction of structure through mass spectral fragmentation, molecular ion		
	peak, metastable peak, McLafferty rearrangement. Nitrogen rule High resolution		
	mass spectrometry.		
	Nuclear Magnetic Resonance Spectroscopy[10 L]		
Module-II	Basic concepts, Mechanism of Measurements, Chemical shift values for various		
	classes of compounds. Fourier Transform (FT) Techniques and advantages,		
	Nuclear OVERHAUSER effect (NOE). One bond coupling, two bond coupling,		
	three bond coupling, second order spectra A ₂ , AB, AX, AB ₂ , AX ₂ , A ₂ B ₂ . Proton		
exchange, deuterium exchange, Peak broadening exchange			
Module-III	Photochemistry [11 L]		

	Photochemical Reactions, Interaction of electromagnetic radiation with matter.		
	Types of excitations. Singlet and triplet states and their lifetimes. Fate of excited		
	molecule: Physical and chemical processes. Transfer of excitation energy:		
	Sensitization and Quenching. Photochemistry of alkenes, Geometrical		
	isomerisations, cyclisation and dimerization reactions. Photochemical reactions		
	of 1,3- butadiene (excluding pericyclic reactions). Rearrangements of 1,4 and		
	1,5- dienes. Photochemistry of saturated carbonyl compounds, Intramolecular		
	reactions of saturated acyclic and cyclic carbonyl compounds. (Norrish type-I		
	and Norrish type-II processes). Intermolecular cycloaddition reactions		
	(Paterno- Buchi reaction). Photochemistry of unsaturated carbonyl compounds,		
	Photochemical reactions of $\alpha,\ \beta\mbox{-unsaturated}$ carbonyl compounds. (H-		
	Abstraction and isomerization to β , γ -unsaturated carbonyl compounds).		
	Photolysis of cyclic α , β - unsaturated ketones (dimerization and lumiketone		
	rearrangement) and cyclohexadienones.		
	Designing Organic Synthesis [10 L]		
	Retrosynthetic analysis: Basic principles and terminology of retrosynthesis,		
	guidelines, one group and two group C-X disconnections, one group C-C and two		
Module-IV	group C-C disconnections, amine and alkene synthesis, important functional		
	group interconversions, reversal of polarity (umpolung).		
	Protection and deprotection of functional groups: Protection and de-protection		
	of hydroxy, carboxyl, carbonyl, amino acids.		

Books Recommended:

- 1. Smith M.B., Organic Synthesis, 3rd Ed., 2010, Academic Press.
- Warren S., Wyatt P., Organic Synthesis: The Disconnection Approach, 2nd Edition, 2008, Wiley-VCH.
- 3. Carey F.A., Sundberg R.J., Advanced Organic Chemistry, Part B: Reactions and Synthesis, 5th Edition, 2007, Plenum.
- 4. Clayden J., Greeves N., Warren S., Organic Chemistry, 2nd Ed., 2012, Oxford.
- 5. Kemp W., Organic Spectroscopy, 3rd Edition, 2009, Macmillan.
- 6. Pavia D. L., Lanyman G. M, Introduction to Spectroscopy, 3rd Edition, 2008, Thompson Publishers.
- 7. Kalsi P.S., Spectroscopy of Organic Compounds, 6th Edition, 2004, New Age International Publishers.
- 8. Sharma Y. R., Elementary Organic Spectroscopy-Principles and Applications, 5th Edition, 2007, S. Chand Publishers.

Subject: Organometallic Chemistry (Code-MSCYT-302)	Syllabus for M.Sc 3 rd Semester (II Year)		Total Course Credit: 3			
Mid-Term	Class Assessment	Final-Term	L	Т	Р	
26 (Marks)	24 (Marks)	50 (Marks)	2	1	0	
Course Instructor (s)	Prof. S.A. Shah					

Course	To familiarize the students to the synthesis, structure and reactivity of metal		
Objective	carbonyls, nitrosyls, metal clusters and organometallic reactions.		
	Course Outcomes (COs)		
On successful	completion of the course, the student will be able to about:		
CO1	Study of metal carbonyls in organometallic chemistry.		
CO2	Synergistic effect of ligands in metal complexes.		
CO3	Spectral analysis, Metal-Metal bonding & clusters of organometallic complexes.		
CO4	Industrially important homogenous catalysis cycles.		
	Metal Carbonyls [11 L]		
	Organic Ligands and Nomenclature. The 18-electron Rule: Counting electrons in		
	octahedral, tetrahedral and square planar complexes. Ligands in Organometallic		
Modulo I	chemistry: Carbonyl complexes, Ligands similar to carbonyl, hydride and		
Mouule-1	dihydrogen complexes, ligands having extended pi systems. Bonding between		
	metals and organic pi systems: Linear pi systems, cyclic pi- systems, and		
	fullerene complexes. Complexes containing M-C, M=C and M \equiv C bonds: Alkyl and		
	related complexes, Carbene and Carbyne complexes.		
	Metal Nitrosyls [10 L]		
	Introduction, modes of bonding of NO as NO ⁺ , Nitrosylating agents for synthesis		
Module-II	of metal nitrosyls, Structure, bonding and important reactions of transition		
moutie-ii	metal nitrosyls, Vibrational spectra for structural elucidation and bondig in		
	metal nitrosyls. Structure of Roussins red and black salts. Dinitrogen, dioxygen		
and tertiary phosphine as Ligands. Bonding Schemes.			
	Metal Clusters [11 L]		
	Spectral analysis and characterisation of organometallic complexes: Infra-red		
Module-III	spectra and NMR spectra. The Isolobal Analogy: Extensions of the Analogy.		
	Metal-Metal bonds, Multiple Metal-Metal bonds. Cluster compounds: Boranes,		
	Heteroboranes, Metallo-boranes and MetalloCarboranes, Carbonyl Clusters,		

	Carbide Clusters. Metal Halide Clusters: major structural types in Dimuclear
	Metal-Metal systemsEdge Sharing Bioctahedra, face sharing Bioctahedra,
	Tetragonal prismatic and trigonal antiprismetic structures, Quadruple bonds,
	Structure and bonding in (Re ₂ Cl ₈) ²⁻ .
	Organometallic Reactions [10 L]
	Reactions involving gain or loss of ligands: Ligand dissociation and substitution,
	oxidative addition, reductive elimination, nucleophilic displacement. Reactions
	involving modification of ligands: Insertion, Carbonyl insertion (Alkyl
Module-IV	migration), 1, 2 Insertions, Hydride elimination, abstractions. Organometallic
	Catalysis: examples of Catalysis (Catalytic Deuteration), Hydroformylation,
	Monsanto acetic acid process, Wacker (Smidt) process, Hydrogenation by
	Wilkinson's Catalyst, Olefin Metathesis. Heterogeneous catalyst: Ziegler-Natta
	Polymerization and water gas reaction.

- 1. Huheey J.E., Inorganic Chemistry, 4th Edn., 2008, Pearson.
- 2. Miessler G. L., Tarr D.A., Inorganic Chemistry, 3rd Edn., 2008, Pearson.
- 3. Cotton F. A., Wilkinson G., Murillo C. A., Bochmann M., Advanced Inorganic Chemistry, 6th Edn., 1999, Wiley.
- 4. Weller and Armstrong, Inorganic Chemistry, 6th Edn., 2015, Oxford.
- 5. Lee J. D., Concise Inorganic Chemistry, 5th Edn., 1999, Wiley,
- 6. Gupta B.D., Elias A.J., Organometallic Chemistry, 2nd Edn., 2013, University Press.
- Cotton F. A., Chemical Applications of Group Theory, 3rd Edn., 2008, John Wiley & Sons.
- 8. Atkins and Shriver, Inorganic Chemistry, 5th Edn., 2009.

Subject: Solid State Chemistry & Thermodynamics (Code-MSCYT-303)	Syllabus for M.Sc 3 rd Semester (II Year)		Tot (Total Course Credit: 3	
Mid-Term	Class Assessment	Final-Term	L	Т	Р
26 (Marks)	24 (Marks)	50 (Marks)	2	1	0
Course Instructor (s)	Prof. Kowsar Majid				

Course	The course has been designed to enable the students to learn the solid-state	
Objective	chemistry and thermodynamics.	
	Course Outcomes (COs)	
On successful	completion of the course, the student will be able to about:	
CO1	Solid-state chemistry	
CO2	Conductors and superconductors	
CO3	Advanced statistical thermodynamics	
CO4	Irreversible thermodynamics	
	Solid State Chemistry-I[10 L]	
	Point groups, Space groups, Lattice Planes and Miller indices, Bragg's equation,	
	Debye-Scherer method of X-ray structural analysis, Identification of cubic unit	
Modulo I	cells from systematic absences in diffraction pattern, Structure factor and its	
Mouule-1	relation to intensity and electron density. Crystal structure of Perovskite	
	(SrTiO3) and Rutile (TiO2). Thermodynamics of Schottky and Frenkel defect	
	formation. Theories of bonding in solids: Somerfield's model, Density of states	
	and its significance. Band theory of solids in light of Kroning-Penny model.	
	Solid State Chemistry-II[10 L]	
	Semiconductors: Intrinsic and extrinsic semiconductor (n-type and p-type),	
	Temperature dependence of charge carriers, p-n junction- devices based on p-n	
	junction (tunnel diode, injection laser). Magnetism in solids: Origin of	
Module-II	Magnetism, Diamagnetism, paramagnetism (classical and quantum mechanical	
	treatment), ferromagnetism, ferrimagnetism and anti-ferromagnetism in solids.	
	Super conductors: Characteristic properties- Zero resistance, Meissner effect,	
	Heat capacity, Thermal conductivity, Absorption of electromagnetic radiations	
	and Josephson effect. BCS theory of superconductivity, Applications.	
	Irreversible Thermodynamics [12 L]	
Module-III	Basic principles of non-equilibrium thermodynamics: Second law of	
	thermodynamics for open systems, law of conservation of mass, charge and	

	energy. Irreversible processes and uncompensated heat, degree of	
	advancement, reaction rate & affinity of a reaction. Relation of uncompensated	
	heat to other thermodynamic functions. Entropy production, entropy	
	production due to matter flow, heat flow, charge flow and chemical reactions;	
	entropy production and efficiency of galvanic cells.	
	Concept of forces and fluxes, Onsager's theory of irreversible processes,	
	phenomenological laws, their domain of validity. Principle of microscopic	
	reversibility and Onsager relations, Chemical reactions near equilibrium. Curie-	
	Prigogine principle. Transformation properties of forces and fluxes.	
	Statistical Thermodynamics [10 L]	
	Ensembles-canonical, grand canonical and micro canonical Combinatorial	
problems, Thermodynamics probability and most probable distrib Starlings approximation, distribution laws, the law of equipartition of ene		
	and applicability of various distribution laws. Molecular Partition Function:	
	Partition function, Expression for translational, rotational, vibrational and	
	electronic partition functions, Third law of thermodynamics and partition	
	function, Numerical problems.	

- 1. Azaroff, Introduction to Solids, 1993, Tata McGraw.
- 2. West A. R., Solid State Chemistry and its Applications, 1989, Wiley.
- 3. Ashcroft N. W., Mermin N. D., Solid State Physics, 2001, Saunders College.
- 4. Srivastava J.P., Elements of Solid-State Physics, 2003, Prentice Hall of India.
- 5. Atkins P. W., Physical Chemistry, 2010, Oxford

Subject: Advanced Instrumentation Techniques (Code-MSCYT-304)	Syllabus for M.Sc 3 rd Semester (II Year)		Tot C	Total Course Credit: 3	
Mid-Term	Class Assessment	Final-Term	L	Т	Р
26 (Marks)	24 (Marks)	50 (Marks)	2	1	0
Course Instructor (s)	Dr. Jignesh V. Rohit				

Course	The course has been designed to enable the students to learn the analysis of
Objective	experimental data and learn various analytical techniques which would be
Objective	applied in all areas of research and various industries.
	Course Outcomes (COs)
On successful	completion of the course, the student will be able to about:
CO1	Raman Spectroscopy and its applications in analysis of Inorganic, Organic and
	biological Species.
CO2	Mossbauer Spectroscopy and its use in chemical analysis.
CO3	X-ray methods like XRD, XRF, XPS/ESCA, AES methods.
CO4	Advanced electron microscopy techniques like SEM & TEM.
	Raman Spectroscopy[11 L]
	Theory (Excitation of Raman Spectra, Mechanisms of Raman and Rayleigh
	Scattering, Wave Model of Raman and Rayleigh Scattering, Intensity of Normal
	Raman Bands, Raman Depolarization Ratios), Instrumentation (Sources,
Module-I	Sample-Illumination System, Raman Spectrometers), Applications of Raman
	Spectroscopy (Raman Spectra of Inorganic, Organic and biological Species and
	Quantitative Applications), Other Types of Raman Spectroscopy (Resonance
	Raman Spectroscopy, Surface-Enhanced Raman Spectroscopy, Nonlinear Raman
	Spectroscopy), Problems.
	Mossbauer Spectroscopy [10 L]
	Principle of Mossbauer Spectroscopy (Nuclear γ -ray resonance, Hyperfine
Module-II	spectra, Modulation of energy, Isomeric shift, Quadrupole splitting, Magnetic
Module-11	splitting), Instrumentation (Source, sample compartment and detectors),
	Interpretation of Mossbauer spectra, Application of Mossbauer Spectroscopy in
	analysis of Inorganic and biological samples, Problems.
Module-III	X-ray Methods of Analysis [11 L]
Moute-III	Introduction to X-ray methods, generation of X-rays, X-ray Diffraction; principle,

	theory, instrumentation, chemical analysis with X-ray diffraction and		
	applications. X-ray Fluorescence; principle, instrumentation, chemical analysis		
	and applications. X-Ray photoelectron spectroscopy (XPS/ESCA); principle,		
	chemical shifts as a function of oxidation states, instrumentation, applications;		
	Auger electron spectroscopy (AES); principle, instrumentation-radiation source,		
	energy analyzer, detector, auxiliary system; applications.		
	Electron Microscopy[10 L]		
	Introduction to electron microscopy, classifications of electron microscopy,		
	scanning electron microscopy (SEM); fundamentals, significance of secondary electrons, backscattered electrons and X-ray photons, sample preparation		
Module-IV	instrumentation, applications. Transmission electron microscopy (TEM);		
	Introduction, basic theory, electron gun, electromagnetic lens, condenser lens,		
objective lens, projector lenses, imaging, operating parameters-magnifi			
	resolution, depth of field; sample preparation, specimen orientation,		
	comparative analysis of SEM and TEM, applications.		

- 1. Skoog D., Holler F., Crouch S., Principles of Instrumental Analysis, 7th Edition, 2017, Cengage Learning Publication.
- 2. Willard H.M., Merritt L.L., Dean J.A., Settle F.A., Instrumental Methods of Analysis, 7th Edition, 2020, CBS Publisher.
- 3. Khopkar S.M., Basic Concepts of Analytical Chemistry, 3rd Edition, 2020, New Age International Publisher.
- 4. Hollas J. M., Modern Spectroscopy, 4th Edition, 2013, Wiley.
- 5. Goldstein J., Newbury D.E., Joy D.C., Lyman C. E., Scanning Electron Microscopy and X-Ray Microanalysis, 3rd Edition, 2013, Springer.
- 6. Echlin P., Fiori C.E., Goldstein J., Joy D. C., Newbury D. E., Advanced Scanning Electron Microscopy and X-Ray Microanalysis, 2013, Springer.
- 7. Hamid A., A Beginners' Guide to Scanning Electron Microscopy, 2019, Springer.

Subject: Applied Organic Chemistry (Code-MSCYE-305)	Syllabus for M.Sc 3 rd Semester (II Year)		Total Course Credit: 2			
Mid-Term	Class Assessment	Final-Term	L	Т	Р	
26 (Marks)	24 (Marks)	50 (Marks)	2	0	0	
Course Instructor	Prof. Tabassum Ara					

Course	The course has been designed to enable the students to learn the
Objective	Chromatographic techniques, role of food additives, drugs and enzymes.
	Course Outcomes (COs)
On successful	l completion of the course, the student will be able to about:
C01	Chromatographic techniques.
CO2	Food additives.
CO3	Drugs in curing various diseases.
CO4	Enzymes and their activity.
	Chromatographic Techniques [7 L]
Madula I	Introduction, applications of chromatography, various types of chromatographic
Mouule-1	techniques. Thin layer chromatography, Paper chromatography, Column
	chromatography.
	Food Additives [7 L]
Module-II	Introduction, Various types of food additives and their role. Food preservatives,
	various nutritious additives. Sweetening agents: Natural and Artificial.
	Drugs [7 L]
Module-III	Introduction, chemotherapy, classification of drugs, Antipyretics, Analgesics,
Moutie III	Antibiotics, Diuretics, Disinfectants, Antiseptics, Antihistamines, Tranquilizers,
	Antiacids.
	Enzymes [7 L]
Module-IV	Introduction, Nomenclature and classification, Chemical nature and Properties
	of enzymes, Factors affecting enzyme activity.

- 1. R.F. Doerge, Wilson and Gisvold's Text Book of Organic Medicinal and Pharmaceutical Chemistry, J.Lippincott Co., Philadelphia.
- 2. Burger's Medicinal Chemistry and Drug Discovery, Vol. I. Principle and Practice, 5th,
- 3. Handbook of Food Preservation by M. Shafiur Rahman. Edition, John Wiley Sons, New York.

4. Chromatography: Concepts and Contrasts by James, M. Miller, Wiley Online Library First Edition 2009.

Subject: Nanotechnology (Code-MSCYE-306)	Syllabus for M.Sc 3 rd Semester (II Year)		Total Course Credit: 2		
Mid-Term	Class Assessment	Final-Term	L	Т	Р
26 (Marks)	24 (Marks)	50 (Marks)	2	0	0
Course Instructor	Prof. Hamida Chisti				

	To impart the basic knowledge on nanotechnology which includes the exotic			
Course	properties of materials at nanoscale, various techniques available for the			
Objective	processing and characterization of nanostructured materials and their			
	applications.			
	Course Outcomes (COs)			
On successful	completion of the course, the student will be able to about:			
CO1	Basic knowledge of nanotechnology.			
CO2	Synthesis and applications of metal oxide-based nanocomposites.			
CO3	Synthesis and applications of conducting polymer-based nanocomposites.			
CO4	Synthesis and applications of biopolymer-based nanocomposites.			
	Fundamentals of nanotechnology[7 L]			
	Fundamentals of nanotechnology, introduction to nano-scale, nanocomposites,			
	Advanced Inorganic materials, Nanotechnology & amp; its industrial application,			
Module-I	potential application of inorganic nanomaterials. General methods of			
	Preparation: Top-down approach and bottom-up approach for synthesis of			
	nanomaterial, Ball milling, Sol-gel method, Solution based method, Solvothermal			
	synthesis, and photochemical synthesis.			
	Metal-Oxide based nanocomposites: [7 L]			
	Metal-Oxide based nanocomposites: General introduction about metal oxide			
	nanocomposites, Types of metal oxide nanocomposites, Synthesis of metal oxide			
Modulo-II	nanocomposites (Top-down approach and bottom-up approach, Sol- gel			
Moute-11	method, hydrothermal method, Sonochemical method, Ball milling, etc.),			
	Applications of metal oxide nanocomposites [Sensing (Metal sensing, Gas			
	sensing), Photocatalysis (drug degradation, dye degradation), Mechanism of			
	Photocatalysis.			
	Conducting polymer-based nanocomposites: [7 L]			
Module-III	Conducting polymer-based nanocomposites: General introduction of conducting			
	polymer-based nanocomposites (Polypyrrole, polyaniline, Polythiophene, and			

	PEDOT-PSS) Types of conducting polymer-based nanocomposites, Synthesis of
	Conducting polymer-based nanocomposites (Precipitation method, Co-
	precipitation method, Sol-gel method, In-Suti chemical polymerization),
	Applications of conducting polymer-based nanocomposites [Sensers,
	Photocatalysis, electrochemical catalysis, energy storage, and antimicrobial
	activity.
	Biopolymer-based nanocomposites: [7 L]
	Biopolymer-based nanocomposites: General introduction of Biopolymer-based
	nanocomposites (Starch, Chitosan, Gelatin, Pectin, Alginate, and Cellulose),
Modulo IV	Types of biopolymer-based nanocomposites, Synthesis of biopolymer-based
Module-IV	nanocomposites (Precipitation method, Co-precipitation method, Sol-gel
	method, In-Situ chemical polymerization, and Top-down approach and bottom-
	up approach), Applications of conducting polymer-based nanocomposites
	Heavy metal adsorption, Drug delivery, Food packaging, antimicrobial activity.

- 1. Cao G., Nanostructures and Nanomaterials–Synthesis, Properties and
- 2. Applications, 2004, Imperial College Press, London.
- 3. Rao C. N. R., Muller A., Cheetham A. K., The Chemistry of Nanomaterials, Volume 1,
- 4. 2004, Wiley VCH Verlag GmbH & Co. KGaA, Weinheim.
- 5. Ozin G. A., Aresnault A. C., Cadematriri L. Nanochemistry: A chemical approach to nanomaterials, 2008, RSC Publishing.

Subject: Organic Flexible Electronics Materials (Code-MSCYE-307)	Syllabus for M.Sc (II Ye	3 rd Semester ar)	Tot (tal Co Credit:	urse 2
Mid-Term	Class Assessment	Final-Term	L	Т	Р
26 (Marks)	24 (Marks)	50 (Marks)	2	0	0
Course Instructor	Prof. Kowsar Majid				

Course	The course has been designed to enable the students to learn the organic
Objective	electronics, processing and their potential applications
	Course Outcomes (COs)
On successful	completion of the course, the student will be able to about:
C01	To understand the area of organic electronics
<u> </u>	Student may understand latest developments in the field of organic
02	semiconductor materials and devices
	Materials, Processing and Device Physics [14 L]
	p-Conjugated Polymers for OLEDs, Organic Vapor-Phase Deposition, Charge
	Transport and Injection in Amorphous Organic Semiconductors, Magnetic Field
Madula I	Effects in Organic Semiconducting Materials and Devices, Interface in Organic
Module-1	Semiconductor Devices: Dipole, Doping, Band Bending, and Growth, Interfaces
	in Organic Electronic Devices—New Insights to Traditional Concepts, The Role
	of Homolytic Reactions in the Intrinsic Degradation of OLEDs, Materials and
	Interface Engineering in Organic Light-Emitting Diodes.
	Organic Electronic Devices and Applications [14 L]
	Microcavity Effects in Organic Light-Emitting Devices, Vertical-Type Organic
	Transistors, Routes toward High-Efficiency Polymer Solar Cells, Mixed
	Molecular Heterojunction Photovoltaic Cells, Development of Polymer
Module-II	Semiconductors for Field-Effect Transistor Devices in Displays, OLED Materials
	and Device Architectures for Full-Color Displays and Solid-State
	Lighting, Organic Light-Emitting Diodes and Photodetectors for Optical
	Communication, Organic Light-Emitting Diodes in Chemical and Biological
	Sensors.

- 1. Organic Electronics Materials, Processing, Devices and Applications, Edited By Franky So, 2010, CRC Press
- 2. Organic Electronics: Foundations to Applications , by Stephen R. Forrest, OUP Oxford, ISBN-10: 0198529724, ISBN-13: 978-0198529729,2020
- 3. Organic Electronics 1: Materials and Physical Processes, Thien-Phap Nguyen, 2021, Print ISBN:9781786303219 |Online ISBN:9781119818946
- 4. Organic Flexible Electronics: Fundamentals, Devices, and Applications, 2020, **Editors:** Piero Cosseddu, Mario Caironi, Paperback ISBN: 9780128188903, 978-0-12-818890-3, eBook ISBN: 9780128188910

Subject: Polymer Chemistry (Code-MSCYE-308)	Syllabus for M.Sc 3 rd Semester (II Year)		Total Course Credit: 2		
Mid-Term	Class Assessment	Final-Term	L	Т	Р
26 (Marks)	24 (Marks)	50 (Marks)	2	0	0
Course Instructor	Dr. Mohammad Aslam				

Course	The course has been designed to enable the students to learn about the new	
Objective	field of materials like polymers and their role in daily life.	
	Course Outcomes (COs)	
On successful	completion of the course, the student will be able to about:	
CO1	Polymerization methods and average molecular weight of polymers.	
CO2	Kinetics of polymerization.	
CO3	Characterization techniques of polymers.	
CO4	Applications of polymers for commercial purposes.	
	Polymers and Polymerization [7 L]	
	Polymers and polymerization, classification of polymers based on; source,	
	chemical nature, thermal response, ultimate form and branched/network	
	structures, raw material for the synthesis of polymers, petroleum and	
Modulo-I	petrochemicals, methods of polymer synthesis- free radical, cationic, anionic,	
Module-1	coordination, condensation, copolymerization, stereoselective polymerization	
	and their mechanism. Molecular weights of polymers, number average, weight	
	average, Z- average, viscosity average, degree of polymerization, polydispersity	
	and molecular weight distribution in polymers, the practical significance of	
	molecular weight.	
	Kinetics of polymerization [7 L]	
	Kinetics of free radical chain polymerization, equation for kinetic chain length,	
	degree of polymerization, chain transfer reactions, the Mayo equation and	
Madada II	evaluation of chain transfer constant, ceiling temperature, cationic	
Module-II	polymerization, anionic polymerization, polycondensation, noncatalyzed	
	polycondensation, acid catalyzed polycondensation, molecular weight	
	distribution, ratio of weight average molecular weight to number average	
	molecular weight, extent of reaction and degree of polymerization.	
Modulo III	Characterization of polymers [7 L]	
Module-III	Preliminary tests, elemental analysis, solubility chart, specific end group	

	analysis (acid value, hydroxyl value, iodine value, epoxy value, SAP value, amine
	value), spectroscopic analysis (IR, NMR & ESR). Solubility chart for
	identification of polymers, specific chemical tests for various polymers and
	group analysis, thermal analysis (TGA, DTA, DSC) of polymers, microscopy (SEM
	& TEM).
	Specialty polymers[7 L]
	Polyimides and related specialty polymers, ionic polymers, inorganic polymers,
	liquid crystal polymers, main chain and side chain liquid crystalline polymers.
Madula IV	Conducting polymers, synthesis & applications of polyacetylenes, polyanilines,
Module-IV	polypyrroles & polythiophines. Photoresponsive and photorefractive polymers.
	Polymers in optical lithography, organic electronic materials, polymers for
	medical applications, biopolymers and biodegradable polymers, drug delivery-
	drug carriers, polymer-based nanoparticles.

- 5. F.W. Billmayer, Textbook of Polymer Science. 3rdEdn, Wiley. N.Y. 1991.
- 6. Joel R Fried, Polymer Science and Technology, Prentice Hall, 1999.
- 7. P. Ghosh, Polymer Science and Technology of Plastics and Rubbers, Tata Mc Hill, Prentice Hall, 2000.
- 8. George Odian, Principles of polymerization, 4th edition, John Wiley & Sons, Inc., Hoboken, New Jersey, 2004.
- 9. J.M.G Cowie. Polymers: Physics and Chemistry of Modern Materials. Blackie. London, 1992.
- 10. R. J. Young, Principles of Polymer Science, 3 rdEdn. Chapman and Hall. N.Y. 1991.
- 11. F. Ullrich, Industrial Polymers, Kluwer, N.Y. 1993.

1_

DEPARTMENT OF CHEMISTRY NATIONAL INSTITUTE OF TECHNOLOGY SRINAGAR

Subject: Analytical Chemistry Lab (Code-MSCYL-309)	Syllabus for M.Sc 3 rd Semester (II Year)		Total Course Credit: 1.5		
Evolution Cohomo	Continuous Assessment	End-Term	L	Т	Р
Evaluation Scheme	60 (Marks)	40 (Marks)	0	0	3
Course Instructor (s)	Dr. Mohammad Aslam				

- -

	To develop the experimental skills by providing hands on experience of various
Course	sophisticated analytical techniques used in Chemistry and to make the student
Objective	competent to design, perform and analyse the experiments by using these
	techniques.
	Course Outcomes (COs)
On successfu	l completion of the course, the student will be able to about:
CO1	Thermograms using TGA/DTG method and solid-liquid extraction using Soxhlet
COI	apparatus.
CO2	Analytical techniques like HPLC, FTIR.
CO3	Titrations using potentiometry, conductometry and pH-metry.
CO4	Chromatographic separation to identify the mixture's components.
S. No.	Details of the Experiments
	Study the thermal decomposition of calcium oxalate monohydrate/magnesium
Exp.1	oxalate dihydrate using TGA/DTG.
Exp.2	Extraction of oils from ground nuts using Soxhlet unit.
Exp.3	Determination of iodine value of an oil sample using Wijs method.
Exp.4	Separation of drug (paracetamol) components of by HPLC technique.
Exp.5	Quantitative analysis of APC tablet (antibiotic) by FTIR spectroscopy.
	Determination of dissociation constant of an amino acid and the isoelectric point
Exp.6	of the acid.
Evn 7	Determination of ferrous ammonium sulphate potentiometrically with standard
Exp.7	ceric sulphate solution.
Fyn 8	Determination of strength of strong and weak acids in a given mixture
стрю	conductometrically.
Exp.9	Spectrophotometric determination (in ppm) of Fe (II) or Fe (III) using 1,10

	Phenanthroline (or thiocyanate) as colorimetric reagent.			
Exp.10	Separation of mixture of amino acids using thin layer chromatography (TLC).			

- 1. Wilson J. M., Newcombe R. J., Denaro A. R., Experiments in Physical Chemistry, 2013, Pergamon Press.
- 2. Svehla, Sivasankar, Vogel's Qualitative Inorganic Analysis, 2012, Pearson Education India.
- 3. Khosla B.D., Garg V.C., Gulati A., Senior Practical Physical Chemistry, Publisher-R. Chand and Co., Delhi.)
- 4. Vishwanathan B., Raghavan P.S., Practical Physical Chemistry, 2012, Viva Books Press.

Subject: Computer Methods in Chemistry Lab (Code-MSCYL-310)	Syllabus for M.Sc 3 rd Semester (II Year)			Total Course Credit: 1.5		
Evaluation Schomo	Continuous Assessment	End-Term	L	Т	Р	
Evaluation Scheme	60 (Marks)	40 (Marks)	0	0	3	
Course Instructor (s)	Dr. Jignesh V. Rohit					

Course	The programs objective map to knowledge of software to address needs in					
Objective	e chemistry and related areas.					
Course Outcomes (COs)						
On successfu	On successful completion of the course, the student will be able to about:					
CO1	MS Office in formula creation, calculation of correlation coefficient, proposal					
	writing and presentation.					
CO2	Orgin software in graph plotting and getting value of correlation coefficient.					
CO3	ChemDraw software in drawing of chemical structures and estimating structural					
0.05	prosperities.					
CO4	CO4 Mathtype software in writing of statistical and mathematical equations.					
S. No.	Details of the Experiments					
Exp.1	To understand functions and create formulas using Microsoft Excel worksheet.					
Even 2	To learn the process of calculating the value of correlation coefficient usin					
Exp.2	Microsoft Excel Worksheet.					
Evn 3	To lean research proposal writing and preparation of research presentation					
	using MS Word/MS Power Point.					
Fyn 4	To draw the UV/FTIR spectrum and HPLC/Gas Chromatogram using Origin					
	software.					
Fyn 5	To lean process of preparing linear fittings of graphs and getting value of					
Пуріо	correlation coefficient using Origin software.					
Exp.6	To understand functions ChemDraw software and lean to draw the structures					
2	of simple aliphatic and aromatic molecules.					
Exp.7	Lean to draw the structures of complex aliphatic and aromatic molecules					
	using ChemDraw software.					
Exp.8	To learn the process of determining molecular formula, molecular weight and					
	elemental percentage of chemical structures using ChemDraw software.					
Exp.9	To understand functions of Mathtype software and lean to write simple					

		equations.							
	Exp.10	To learn to	write	complex	statistical	and	mathematical	equations	using
		Mathtype software.							

Recommended Software:

- 1. MS Office Software, Latest version.
- 2. Origin Software, Latest version.
- 3. ChemDraw Software, Latest version.
- 4. Mathtype Software, Latest version.