SCHEME OF COURSES & SYLLABUS 3**-8**SEMESTER

B. Tech. 2019 Batch Onward

DEPARTMENT OF CHEMICAL ENGINEERING

NATIONAL INSTITUTE OF TECHNOLOGY SRINAGAR, HAZRATBAL

JAMMU AND KASHMIR – 190006 (INDIA)

VISION OF THE DEPARTMENT

To be one of the leading chemical engineering departments in the Country, providing teaching, research and training to the students along with high moral values to solve the problems of chemical and allied industries and to meet the aspirations of the society.

MISSION OF THE DEPARTMENT

- M1. To create and sustain strong foundation of chemical engineering education, research and innovation.
- M2. To produce well qualified, innovative chemical engineers with entrepreneurial skills & leadership qualities to face and solve the problems of the industries, and the society at large.
- M3. To make professional leaders, academicians and engineers with highest moral values and ethics.

PROGRAM EDUCATIONALOBJECTIVES

- PEO1: Providing broad-based engineering education on the solid foundation of basic sciences, engineering sciences, humanities & social sciences and management through choice based credit systems.
- PEO2: Enable the students to become future leaders in engineering practices for the overall betterment of society, and instil in them a work culture based on foundations of ethics, scientific temperament, and team work.
- PEO3: Equip the students with knowledge, understanding and applications of chemical engineering tools that enable them to pursue innovative research.
- PEO4: Attain excellence in engineering and design through education in the principles and practices of chemical engineering.

Consistency of PEOs with Mission of the Department

Mission— PEOs	M1	M2	М3
PEO1	3	2	3
PEO2	2	2	3
PEO3	3	2	2
PEO4	3	2	2

PROGRAM OUTCOMES (POs)

Engineering Graduates will be able to:

- **1.** Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- **2. Problem analysis**: Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- **3. Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- **4. Conduct investigations of complex problems**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- **5. Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- **6.** The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- **7. Environment and sustainability**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- **8.** Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- **9. Individual and team work**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- 10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- 11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **12. Life-long learning**: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAM SPECIFIC OUTCOMES (PSOs)

Chemical Engineering Graduates will be able to:

- **PSO 1.** Apply the principles and practices of Chemical Engineering discipline along with the basic sciences and humanities to solve the complex engineering problems concerning the issues of environment, safety, economics, culture and society etc.
- **PSO 2.** Acquire and apply the new knowledge with professional responsibility and ethics towards the advancement of academic and research pursuits in chemical and allied disciplines in the societal contexts.
- **PSO 3.** Design, develop and modify the chemical processes and to analyze these by applying the physicochemical and biological techniques.

CURRICULAR COMPONENTS

(B.Tech Chemical Engineering 1st Semester to 8th Semester)

Cou	irse Component	Curriculum Content (% of total number of credits of the program)	Total number of contact hours	Total Number of credits
1	Mathematics	10	20	20
2	Basic Science	6.5	15	13
3	Basic Eng. Course	11	26	22
4	Computing	2.5	7	5
5	Humanities and Social Science	6	13	12
6	Professional Core	51	111	102
7	Electives (Department and open)	6	12	12
8	Projects/Training/Seminar	7	28	14
	Total	100	232	200

Scheme of Courses for B. Tech. Chemical Engineering (3rd to 8th Semester) [2019 Batch onwards]

<u> </u>		[2019 Batch onwards]				
		3 rd Semester				
S. No.	Course No.	Subjects	L	T	P	Credits
1.	CET-201	Introduction to Chemical Engineering	3	1	0	4
2.	CET-202	Material and Energy Balance	3	1	0	4
3.	CET-203	Process Fluid Mechanics	3	1	0	4
4.	CET-204	Thermodynamics and Chemical Kinetics	3	1	0	4
5.	ECT-205	Basic Electronics Engineering	2	1	0	3
6.	HST-201	Ethics & Self Awareness	2	0	0	2
7	MAT-201	Chemical Engineering Mathematics-I	3	1	0	4
,		TOTAL = 19 + 6 + 0 = 25	19	6	0	25
	1	4 th Semester	17			
S. No.	Course No.	Subjects	L	T	P	Credits
1.	CET-250	Chemical Engineering Thermodynamics	2	1	0	3
2.		Heat Transfer	3	1		4
	CET-251				0	
3.	CET-252	Mechanical Operations	3	1	0	4
4.	CET-253	Material Science & Technology	3	1	0	4
5.	CET-254	Process Instrumentation	3	0	0	3
6.	MAT-250	Chemical Engineering Mathematics –II	3	1	0	4
7.	CEL-255	Fluid Mechanics & Mechanical Operations Lab.	0	0	4	2
8.	ECL-256	Basic Electronics Engineering Lab.	0	0	2	1
		TOTAL = 17 + 5 + 6 = 28	17	5	6	25
		5 th Semester				
S. No.	Course No.	Subjects	L	T	P	Credits
1.	CET-305	Process Equipment Design- I	3	1	0	4
2.	CET-306	Chemical Reaction Engineering	3	2	0	5
3.	CET-307	Mass Transfer-I	3	1	0	4
4.	CET-308	Chemical Technology – I	3	0	0	3
5.	HST-309	Basic Management Principles	3	0	0	3
6.	MAT-310	Numerical Methods	3	1	0	4
7.	CEL-311	Heat Transfer Lab		0	2	1
8.	CEL-312	Computer Simulation Lab	0	0	2	1
0.	CEE 312	TOTAL = 18 +5 + 4 = 27	18	5	4	25
		6 th Semester	10		•	23
C M.	C N.		т	T		C 1'4
S. No.	Course No.	Subjects	L	<u>T</u>	<u>P</u>	Credits
1.	CET-355	Process Equipment Design -II	3	1	0	4
2.	CET-356	Mass Transfer – II	3	1	0	4
3.	CET-357	Chemical Technology – II	3	0	0	3
4.	CET-358	Energy Technology	3	1	0	4
5.	CET-359	Chemical Process Safety	3	0	0	3
6.	CET-360	Transport Phenomena	3	1	0	4
7.	CEL-361	Energy Technology Lab	0	0	2	1
8.	CEL-362	Thermodynamics & Reaction Engineering Lab	0	0	2	1
9.	CEI-363	Industrial Training & Presentation	0	0	2	1
		TOTAL = 18 + 4 + 6 = 28	18	4	6	25
		7 th Semester				
S. No.	Course No.	Subjects	L	T	P	Credits
1.	CEP-413	Pre-project work	0	0	4	2
2.	CES-414	Seminar Seminar	0	0	2	1
3.	CET-415	Process Dynamics & Control	3	1	0	4
4.	CET-415 CET-416	Process Economics & Plant Design	3	1	0	4
5.	CET-416 CET-417	Biochemical Engineering	3	1	0	4
6.			0	0	2	
	CEL-418	Process Dynamics & Control Lab				1
7.	CET 020 24	Mass Transfer Lab	0	0	4	2
8.	CET-020-24	Elective – I	3	1	0	4
9.	CET-025-29	Elective – II	3	0	0	3
		TOTAL = 15 + 4 + 12 = 31	15	4	12	25

		8 th Semester				
S. No.	Course No.	Subjects	L	T	P	Credits
1.	CEP-464	Project Work	0	0	16	8
2.	CET-465	Bioresource Technology	3	1	0	4
3.	CEL-466	Biochemical Engineering Lab	0	0	2	1
4.	CET-467	Modeling & Simulation of Chemical Process	3	0	0	3
		Systems				
5.	CET-468	Industrial Pollution Abatement	3	0	0	3
7.	CET-069-72	Elective – III	3	0	0	3
8.	CET-073-76	Elective – IV	3	0	0	3
		TOTAL = 15 + 1 + 18 = 34	15	1	18	25

.	0.4					
		e following electives		æ	ъ	G 1'
S. No.			L	T	P	Credit
1.	CET-020	Polymer Science and Engineering	3	1	0	4
2.	CET-021	Computational Fluid Dynamics	3	1	0	4
3.	CET-022	Advanced Separation Processes	3	1	0	4
4.	MAT-023	Operations Research	3	1	0	4
5.	CET-024	Process Heat Integration	3	1	0	4
E-II: A	ny one of th	ne following electives				
S. No.	E-II	Elective courses	L	T	P	Credit
1.	CET-025	Cement Technology	3	0	0	3
2.	HST-026	Managerial Economics for Engineers	3	0	0	3
3.	CET-027	Multi-component Distillation	3	0	0	3
4.	CET-028	Optimization Techniques in Chemical	3	0	0	3
		Engineering				
5.	CET-029	Heterogeneous Catalysis & Catalytic Processes	3	0	0	3
E-III: A	Any one of t	he following online electives				
S. No.	Ĕ-III	Elective courses	L	T	P	Credit
1.	CET-069	Petroleum Refining/Online course (SWAYAM	3	0	0	3
		Etc.)				
2.	CET-070	Clean Technology in Process Industries/	3	0	0	3
		Online course SWAYAM Etc.)				
3.	CET-071	Online course SWAYAM Etc	3	0	0	3
4.	CET-072	Online course SWAYAM Etc	3	0	0	3
E-IV: A	Any one of t	he following online electives				
	v					
S. No.	E-IV	Elective Courses	L	T	P	Credit
1.	CET-073	Food Technology/ Online course SWAYAM Etc	3	0	0	3
2.	CET-074	Instrumental Methods of Analysis/ Online	3	0	0	3
		course SWAYAM Etc				
3.	CET-075	Nano science and Technology/	3	0	0	3
		Online course SWAYAM Etc				

4.

CET-076

CE	Chemical Engineering
MT	Mathematics Department subject
HS	Humanities and Social Sciences Department subject
EC	Electronics and Communication Engineering Department subject
T	Theory
L	Lab. course
P	Project/Dissertation
S	Seminar
I	Industrial Training & Presentation

First Numeral Year of course, Except for Elective courses assigned as "0". 2nd& 3rd Num. Unique Course Number

Online course SWAYAM Etc

^{*}Online courses SWAYAM Etc. will be floated before the start of semester to be managed by a faculty mentor.

3rd Semester

Introduction to Chemical Engineering (CET-201)

Subject: Introduction to	Year & Semester: B. Tech Chemical Engineering 2 nd Year & 3 rd Semester		Total Course Credit: 4		
Chemical Engineering			L	T	P
(CET-201)			3	1	0
FL4 D-L	Mid-Term	Class Assessment	Final-Term		
Evaluation Policy	(30 Marks)	(10 Marks)	(6	60 Marks)

Course Objective: To acquaint the students with the fundamentals of Chemical Engineering principles, their application and to build their broader perspective in a wholesome manner.

Course outcomes (COs): Upon successful completion of the course, student should be able to:

- CO1. Introduction to Chemical Engineering: Origin, Growth, and Relation to other sciences
- CO2. Knowledge of Unit Operations and Unit Processes and its application to Chemical Process Industries
- CO3. Gain an insight into involvement of Chemical Engineering in areas of Energy, Environment, materials, health, bioengineering and safetyetc,
- CO4. Implementation of Chemical Engineering Basics to simple systems
- CO5. Role of computer softwares, modeling, simulation etc. in chemical engineering education.

	Chamical Fundamental Chamical Colonia
	Chemical Engineering and Chemical technology.
	Chemical engineering: origin, growth and role.
Unit I	Chemical Process Industry: Definition, origin, growth and the present scenario.
	Overview of chemical engineering through discussion and engineering analysis
	of physical and chemical processes. Concepts of unit processes and unit
	operations.
	Process flow sheeting and symbols. Process calculations. Basic concepts of
Unit II	material and energy balances, energy and mass transport, and kinetics of
	chemical reactions.
	Introduction of following fields and Role of Chemical Engineers in these (case
	studies if any);
	Biochemical engineering and Biotechnology, Catalysis, Computational fluid
	dynamics, Energy and Environment, Petroleum engineering, Electrochemistry,
Unit III	Pharmaceutical engineering, Safety engineering, Membrane processes, Textile
	engineering, Ceramics, Chemical weapons, Cost estimation, Fischer Tropsch
	synthesis, Food engineering, Fuel cell, Microfluidics, Nanotechnology, Nuclear
	processing, Pharmaceutical engineering, Polymers, Paper engineering, Safety
	engineering.
	Dimensional analysis.Different system of units. Basic and derived units,
Unit IV	dimensional and empirical equation. Buckingham Pi Theorem. Different ways of
	expressing units of quantities and physical constants. Concepts of scale-up,
	modelling and simulation.
Unit V	Computers in chemical engineering. Introduction, use and utility of various
Unit v	Chemical Engineering Software's.

	1. Anderson, L.B., Wenzel, L.A., "Introduction to Chemical Engineering",				
	McGraw-Hill Book Company, Inc., New York (1961).				
	2. Ghosal, S.K., Sanyal, S.K., Datta, S., "Introduction to Chemical				
Text Books	Engineering", Tata McGraw-Hill Publishing Company Ltd., New Delhi				
	(1997).				
	3. Pushpavanam, S., "Introduction to Chemical Engineering", PHI Learning				
	Pvt. Ltd. (2012).				
	1. Rao, M.G., Sittig, M., "Dryden's Outlines of Chemical Technology", East-				
	West Press (1997).				
Reference	2. Perry, R.H., Green, D.W., "Perry's Chemical Engineers' Handbook",				
Books	Books McGraw-Hill Book Company (2008).				
	3. Pushpavanam, S., "Introduction to Chemical Engineering", PHI Learning				
	Pvt. Ltd. (2012).				

Material and Energy Balance (CET-202)

	Subject: Material and	Year & Semester: B. Tech Chemical Engineering 2 nd Year & 3 rd Semester		Total C	redit: 4	
	Energy Balance			L	T	P
	(CET-202)			3	1	0
ſ	Evaluation Policy	Mid-Term	Class Assessment	Final-Term		
		(30 Marks)	(10 Marks)	(60 Marks)

Course Objective: To formulate and solve Material and Energy balances for Chemical process systems.

Course outcomes (COs): At the end of the course, student will be able to:

- CO1. Understand the basic concepts involved in material and energy balances of chemical processes.
- CO2. Understand the ideal and real behavior of gases, vapors and liquids.
- CO3. Perform material balances on chemical processes and non conventional separation processes without and with reactions.
- CO4. Perform energy balances on chemical processes and non conventional separation processes without and with reactions.

Unit-I	Mole concept and mole fraction, weight fraction and volume fraction, concentration of liquid solutions, molarity, molality, normality, ppm, density and specific gravity, composition relationships, stoichiometric principles. Ideal and real gas laws, critical properties, properties of mixtures and solutions, and phase equilibria.						
Unit-II	Mass Balance: Concepts of limiting and excess reactants, tie element, recycle, purging, bypass etc., in batch, stage-wise and continuous operations in systems with and without chemical reactions, and in unit operations						
Unit-III	Mass balance of some prominent Unit Operations; Mass balance calculations of <i>single and multistage</i> unit operations like; Evaporation, Distillation, Crystallization etc.						
Unit-IV	Energy Balance: Concepts, calculation of enthalpy changes for systems with and without reactions. Energy balance, heat capacity, estimation of heat capacities, calculation of enthalpy changes (without phase change), enthalpy change for phase transitions, general energy balance, thermochemistry, Hess's law of Summation- heat of formation, reaction, combustion, solution and mixing, theoretical flame temperature and effects of pressure and temperature on them.						
Unit-V	Material and energy balance for nuclear, electrochemical, photochemical, biochemical and non-conventional separation processes.						

	1. Himmelblau, D.M., "Basic Principles and Calculations in Chemical
	Engineering", 8 th Edn.,Prentice-Hall of India Ltd. (2012).
	2. Felder, R.M., Rousseau, R.W., "Elementary Principles of Chemical
Text Books	Processes" Wiley, 3 rd Edn., 2000.
1 CAL DUUKS	3. Hougen, D.A., Watson, K.M., Ragatz, R.A., "Chemical Process Principles,
	Part-I", 2 nd Edn., John Wiley & Sons (1995).
	4. Bhatt, B.I., Vora, S.M., "Stoichiometry", 5 th Edn., Tata McGraw-Hill
	(2010).
	1. Narayanan, K. V., Lakshmikutty, B., "Stoichiometry and Process
	Calculations", Prentice Hall of India (2006).
	2. Venkataramani, V., Anantharaman, N., Begum, K.M.M.S., "Process
Reference	Calculations", PHI Learning Pvt. Ltd. 2 nd Edition.
Books	3. Gavhane, K. A., "Introduction to Process Calculations Stoichiometry",
	NiraliPrakashan, 2012.
	4. Williams, E.T., Johnson, R.C., "Stoichiometry for Chemical Engineers",
	McGraw-Hill Book Company Ltd. (1958).

Process Fluid Mechanics (CET-203)

	Subject: Process Fluid	Year & Semester: B. Tech		Total Course Credit: 4		
	Mechanics	Chemical Engineering 2 nd Year & 3 rd Semester		L	T	P
	(CET-203)			3	1	0
	Evaluation Policy	Mid-Term	Class Assessment	Final-Term		n
		(30 Marks)	(10 Marks)	(0	60 Marks)

Course Objective: To understand the fundamental aspects & basic principles of fluid mechanics and its application to chemical process industries.

Course outcomes (COs):

- CO1. Understand the fundamentals & basics concepts of fluid mechanics & able to describe fluid pressure and its measurement.
- CO2. Analyze fluid flow problems with the application of conservation laws & ability to evaluate energy losses and pressure drop in fluid flow system.
- CO3. Able to describe function of flow measuring devices and apply Bernoulli equation to determine the performance of flow measuring devices.
- CO4. Determine and analyze the performance aspects &characteristics of fluid machinery.

	Introduction: Introduction to fluids and the concept of viscosity, Newtonian and non-Newtonian fluids.
Unit-I	Fluid Statistics: Fluid forces and pressure measurement.
	Kinematics: Eulerian and Lagrangian description of fluid motion, concept of local
	and convective accelerations, steady and unsteady flows.
	Integral analysis: Control volume analysis for mass, momentum and energy.
	Differential analysis: Differential equations of mass and momentum for
Unit-II	incompressible flows: inviscid - Euler equation and viscous flows - Navier-Stokes
	equations, concept of fluid rotation, vorticity, stream function, Exact solutions of
	Navier-Stokes equation for Couette flow and Poiseuille flow.
	Invicid flows: Bernoulli's equation - assumptions and applications, potential function.
Unit-III	Dimensional analysis and similitude.
	Internal flows: Fully developed pipe flow, empirical relations for laminar and
	turbulent flows: friction factor and Darcy-Weisbach relation.
	Boundary layer theory: Concept and assumptions, qualitative idea of boundary layer
Unit-IV	and separation, boundary layer equations, Blasius solution for laminar boundary
	layer, momentum-integral equation of boundary layer.
	Flow measurements: Basic ideas of flow measurement using venturimeter, pitot-static
Unit-V	tube and orifice plate.
Cint-v	Pumps, blowers and compressors. Characteristics and applications of pumps, blowers
	and compressors.

	1	
	1.	Shames, J.H., "Mechanics of Fluid", McGraw-Hill (1992).
	2.	Darby, R., "Chemical Engineering Fluid Mechanics", Marcel Dekker
		(1996).
Text &	3.	Wilkes, J.O., "Fluid Mechanics for Chemical Engineers", Prentice-Hall
Reference	International Series (1998).	
Books	4.	Streeter, V.L., Wylie E.B., Bedford, K.W. "Fluid Mechanics" McGraw-
		Hill Book Company, New York (1998).
	5.	Mc Cabe, W.L., Smith, J.C., Harriott, P., "Unit Operation of Chemical
		Engineering", McGraw-Hill (2004).

Thermodynamics & Chemical Kinetics (CET-204)

	Subject: Thermodynamics	Year & Semester: B. Tech Chemical Engineering 2 nd Year & 3 rd Semester		Total Course Credit: 4		
	& Chemical Kinetics			L	T	P
	(CET-204)			3	1	0
Ī	Evaluation Policy	Mid-Term	Class Assessment	Final-Term		1
		(30 Marks)	(10 Marks)	(0	60 Marks)

Course Objective: To understand basic concepts of thermodynamics and chemical kinetics and their applications in solving engineering problems.

Course outcomes (COs):

- CO1. Understanding and application of laws of thermodynamics.
- CO2. Ability of application of thermodynamics to phase equilibrium and reaction equilibrium.
- CO3. Basic Idea of Reactors.
- CO4. Basic insight into the interpretation of kinetic data and reactor design.

	Introduction:(8 Hours)
	Thermodynamic system, surroundings, state, process, properties, equilibrium,
Unit I	
	-
	· , ,
	1 9, 1
	heat, internal energy, enthalpy, and specific heat of ideal gases. Application of
Unit II	first law to non-flow isochoric, isobaric, isothermal, and adiabatic and polytropic
Onit II	processes. Conservation of mass for a control volume, mass and volume flow
	rates, mass balance for steady flow processes, flow work, steady flow energy
	, and the second
	<u> </u>
Unit III	Thermodynamic system, surroundings, state, process, properties, equilibrium, heat and work. Properties of Pure Simple Compressible Substance: P-V-T surface, P-V, T-V and T-P diagrams. Equations of state for ideal and real gases. Virial equation of state, van der Waals and Redlich-Kwong equations of state; Use of Thermodynamic tables. First Law of Thermodynamics:(8 Hours) Energy balance for closed systems. Various forms of energy balance. Specific heat, internal energy, enthalpy, and specific heat of ideal gases. Application of first law to non-flow isochoric, isobaric, isothermal, and adiabatic and polytropic processes. Conservation of mass for a control volume, mass and volume flow rates, mass balance for steady flow processes, flow work, steady flow energy equation. Application to various practical systems viz. nozzles, diffusers, etc. Transient Analysis. Second Law of Thermodynamics:(8 Hours) Second law, reversible and irreversible processes, Clausius and Kelvin Planck statements. Carnot cycle, Clausius inequality, entropy as a property, principle of increase of entropy. Calculation of entropy change. Thermodynamic Cycles: Otto, Diesel, Rankine cycles and their applications. Rate Expression and Reaction Mechanism:(12 Hours) Use of pseudo steady state approximation to get rate expression from mechanism, temperature-dependence, of reaction rate-collision.
	increase of entropy. Calculation of entropy change. Thermodynamic Cycles: Otto,
	• 11
	• • • • • • • • • • • • • • • • • • • •
Unit IV	mechanism, temperature-dependence of reaction rate-collision theory,
	1
	reactions, Integral and differential methods of analysis of data of uni, bi and tri-

	molecular irreversible reactions. Reversible reactions, homogeneously catalysed					
	auto-catalysed, series and parallel reactions. Estimation of rate constants and					
	temperature-dependence.					
	Solid-Catalysed Fluid Reactions:(8 Hours)					
Characterization of catalyst, Physical a	Characterization of catalyst, Physical and chemical adsorption, various reaction					
Unit V	steps, Langmuir-Hinshelwood kinetics. Kinetics of Biochemical Reactions:					
	Microbial and enzymatic reactions. Substrate and product inhibition.					

	1. Narayanan, K.V., "Chemical Engineering Thermodynamics", Prentice Hall
	(2007).
	2. Smith, J.M., Van Ness, H.C., Abbott, M.M., "Introduction to Chemical
Text Books	Engineering Thermodynamics", 7 th Edn. McGraw-Hill (2005).
TOAT BOOKS	3. Fogler, H.S., "Elements of Chemical Reaction Eng.", Prentice Hall of India (2005).
	4. Levenspiel, O., "Chemical Reaction Engineering", John Wiley & Sons
	(1998).
	1. Koretsky, M.D., "Engineering and Chemical Thermodynamics", John
	Wiley (2004).
	2. Kyle, B.G., "Chemical and Process Thermodynamics", 3 rd Edn, Prentice
	Hall (1999).
Reference	3. Sandler, S.I., "Chemical, Biochemical and Engineering Thermodynamics",
Books	4th Edn, John Wiley (2006).
	4. Borgnakke, C., Sonntag R.E., "Fundamentals of Thermodynamics", John
	Wiley & Sons (2009).
	5. Çengel, Y.A., Boles, M.A., "Thermodynamics: An Engineering Approach",
	6 th Edn., McGraw-Hill (2008).

Basic Electronics Engineering (ECT-205)

Subject: Basic Electronics	Year & Semester: B. Tech		Total Course Credit: 3		
Engineering	Chemical Engineering 2 nd Year & 3 rd Semester		L	T	P
(ECT-205)			2	1	0
Evaluation Policy	Mid-Term	Class Assessment	F	inal-Tern	n
Evaluation Policy	(30 Marks)	(10 Marks)	(6	60 Marks)

Course Objectives: Familiarize with the basic semiconductor devices and to know about the working and performance of semiconductor devices like diodes, BJTs and FETs. To understand different applications of Electronic circuits and instrumentation.

Course outcomes (COs):

- CO1. Familiarization with basic semiconductors
- CO2. Understanding the behavior of different types of diodes, transistors at circuit level and behavior of operational amplifiers, & its applications
- CO3. Analyze and study the measurement and Instrumentation techniques and devices
- CO4. Understanding and applications of Digital Logic gates and blocks

Details of the Syllabus: (Total Contact Hours: 45)

TT 24 T	IntroductiontoSemiconductors: Intrinsicandextrinsicsemiconductorstransportmechanis			
Unit I	mofcharge carriers, electric properties, Temperaturedependence			
	P-N junction diode: Current components in p-n junction, Characteristics-piece			
Unit II	wise linear approximation, and diodecircuit's half wave, full wave rectifiers, Photodiodes.			
	BJT:Operationandcharacteristics: CE,CBandCCconfigurationinput,			
	outputcharacteristicsBiasingandBiasstability,Low frequency,h-			
Unit	parametermodel, Analysis and Design of transistor amplifier circuits using h-parameters.			
III	Multistage amplifiers, Transistor as a switch. Introduction to Feedback and Sinusoidal			
	Oscillators			
	Operational Amplifier: Operational amplifiers stages, Differential amplifier, CMRR,			
Unit	Cascade amplifier, Ideal and practical operational amplifier characteristics and properties			
IV	OP amp applications, inverting and non inverting amplifiers, Difference amplifier,			
	summer differentiator and integrator, rectifiers etc. Instrumentation Amplifier			
	Measurement and Instrumentation: Sensors and Actuators; Measurement of physical			
TT *4 \$7	parameters like displacement, pressure, force, velocity, humidity, and temperature.			
Unit V	LVDT, Strain Gauge, Pyrometer, Thermistor, etc. Digital Multimeter. Data acquisition			
	system and processing.			
Unit	Digital Logic: Introduction to Boolean theorems and codes, code conversion; Logic			
VI	gates, Combinatorial and Sequential blocks			

1.	Fundamentals of Microelectronics	BehzadRazavi		
2.	Analysis and Design of Analog Integrated Circuits	Gray, Hurst, Lewis, Meyar		
3.	Electronic Devices and Circuits	Millman, Halkias, and SatyabrataJit		
4.	ElectronicDevices&Circuits	Allan Mottershed		
5.	Digital System Design An Integrated Approach	Uyemura		
6.	Digital Logic &ComputerDesign	M Morris Mano		
7.	Measurement and Instrumentation	Cooper		

Ethics and Self-Awareness (HST-201)

Subject: Ethics and	Year & Semester: B. Tech Chemical Engineering		Total Course Credit: 2		
Self-Awareness			L	T	P
(HST-201)	2 nd Year	& 3 rd Semester	2	0	0
Evaluation Dalian	Mid-Term	Class Assessment	Final-Term		n
Evaluation Policy	(30 Marks)	(10 Marks)	((60 Marks)

Course Objective: To explain human behavior in situational, social and cultural context. Define culture, ethics, morality and values along withtraining the students tothink critically and evaluate theories, concepts and perspectives related to psychology and human behavior as well as current societal advances related to career.

Course outcomes (COs): Upon successful completion of the course, student should be able to:

- CO1. Study human experience and behavior situation in social and cultural context
- CO2. Promote the appreciation of students' own culture, ethics and values as well as the culture, ethics and values of others
- CO3. Empower students to think critically and evaluate theories, concepts and perspectives related to psychology, human mind and human behavioras well as current societal advances related to career
- CO4. Develop an understanding of the importance of self-awareness, self-reflection and self-regulation as well as gain practical knowledge and experience

Unit I	Introduction to Ethics; Definition of ethics, approaches to ethics: psychological, philosophical, social; view of Kohelberg: Morality and Ideology, culture and morality, morality in everyday context. Ethical concerns: work ethics and work values, Business ethics, human values in organizations
Unit II	Self-Awareness Self-concept: Johari window; self: Character strengths and virtues, emotional intelligence, social intelligence, positive cognitive states and process: self efficacy; transactional analysis

	1. Hall, Calvin S., Lindzey, Dardner., & Cambell, John B. "Theories of
	Personality". USA: Hamilton Printing Company.
T4 D1-	2. Manuel E.G. Velasquez, "Business Ethics - Concepts & Cases", 6 th Edn.,
Text Books	Prentice Hall of India.
	3. David. J.Fritzche, "Business Ethics". McGraw-Hill/Irwin
	4. William H. Shaw, "Business Ethics", Thompson,
	1. Carr, Alan. "Positive Psychology: The Science of happiness and human
	strengths". NewYork, Brunner-Routledge
	2. Leary, Mark R. "The curse of self-awareness, egotism and the quality of
	human life". NewYork, Oxford University Press.
Reference	3. Louis P. Pojman. "The moral life: An introductory reader in ethics and
Books	literature". NewYork, Oxford University Press.
	4. Corey, G. Schneider Corey, M&Callan, P. "Issues and ethics in the helping
	professions". CA: Brooks/Col
	5. Snyder, C.R. Lopez, Shane, J., &Pedrotti, J.T. "Positive Psychology
	(2 nd Edn). New Delhi: Sage

Chemical Engineering Mathematics-I (MAT-201)

Subject: Chemical	Year & Semester: B. Tech Chemical Engineering 2 nd Year & 3 rd Semester		Total C	ourse Cr	edit: 4
Engineering Mathematics-I			L	T	P
(MAT-201)			3	1	0
Evaluation Daliay	Mid-Term	Class Assessment	F	inal-Tern	1
Evaluation Policy	(30 Marks)	(10 Marks)	(6	60 Marks)

Course outcomes (COs): At the end of the course, a student should be able to:

- CO1. Solve problems related to Differentiation of complex functions, Analytic functions, harmonic functions and conformal mapping.
- CO2. Solve problems related to Integration of complex functions.
- CO3. Expand Complex functions in terms of Taylor series, Laurant series and classify singularities of a complex function and calculation of residues.
- CO4. Apply the concepts of Complex Analysis in Boundary value problems and potential theory.
- CO5. Solve problems related to Legendre and Bessel functions.

	Analytic Functions (10 hours)
	Function of a Complex variable, Limit, Continuity and Differentiablity of complex
	function. Cauchy-Riemann Equations, Polar Coordinates, Analytic function,
Unit-I	Harmonic functions and Properties of Analytic functions, Construction of Analytic
	function whose real or imaginary part is given, Elementary function, Reflection
	Principle, Conformal Mapping, Angle of Rotation, Mapping by Elementary functions.
	Bilinear Transformation.
	Complex Integration (10 Hours)
	Derivatives of functions w(t), Definite Integrals of functions w(t), Contours and
Unit-II	Contour Integrals, ML Theorem, Cauchy Integral Theorem, Antiderivatives and
	Definite Integrals, Cauchy Integral Formula, Cauchy Integral formula for
	Derivatives, Evaluation of Improper Definite Integrals by Contour Integration,
	Liouville's Theorem and its consequences.
	Taylor and Laurant Series- Residue Theorem and Applications (7 Hours)
Unit-III	Taylor Series, Laurant Series, Classification of Singularities, Residues, Cauchy's
	Residue Theorem and its Applications, Zeros of Analytic functions, Rouche's
	Theorem and its consequences, Gauss Lucas Theorem.
	Boundary Value Problems and Potential Theory (6 Hours)
Unit-IV	Laplace's Equation and Conformal Mappings, Standard Solution of Laplace
Unit-1 v	equation, Steady -State Temperature Distribution, Steady Two Dimensional Fluid
	Flow.
	Special Functions (10 Hours)
Unit-V	Legendre's functions, Rodrigue's formula, generating functions for Legendre's
Unit- V	Polynomials and recurrence formulae. Bessel's functions, Recurrence formulae and
	Bessel's functions of integral order.

Text Books	 Brown, J. W., Churchill, R. V., Complex Variables and Applications, 8thEdn., 2009, Mc-Graw- Hill International Edition. Jain, R.K., Iyengar, S.R.K., Advanced Engineering Mathematics, 3rdEdn., Narosa Pub. House, 2008
Reference	1. Alan J., Complex Analysis and Applications, 2 nd Edn.,2005, CRC Press.
Books	2. Needham, T., Visual Complex Analysis, Oxford University Press.

4th Semester

Chemical Engineering Thermodynamics (CET-250)

Subject: Chemical	Year & Semester: B. Tech Chemical Engineering 2 nd Year & 4 th Semester		Total Course Credit:		
Engineering			L	T	P
Thermodynamics (CET-250)			3	1	0
Evaluation Policy	Mid-Term (30 Marks)	Class Assessment (10 Marks)	Final-Term (60 Marks)		

Course Objective: To understand the theory and applications of thermodynamic properties, equations of state, methods used to describe and predict phase equilibria.

Course outcomes (COs):

- CO1. Basic understanding of the thermodynamic properties of fluid, mixture and solutions.
- CO2. Apply thermodynamic principles to understand fugacity, partial molar properties, chemical potential, and activity coefficients for non-ideal fluid systems.
- CO3. Investigate binary phase equilibria; perform vapour-liquid equilibrium (VLE) calculations.
- CO4. Apply thermodynamic principles to reaction equilibrium between phases and reactions.

Unit I	Thermodynamic Properties of Homogeneous Fluids: (10 Hours) Fundamental property relations, Maxwell's relations, Residual properties and their estimation, two phase systems, thermodynamic diagrams and tables, generalized property correlation for gases.				
Unit II	Thermodynamic Properties of Mixtures or Solutions: (8 Hours) Property relationships for systems of variable composition; chemical potential, partial molar properties, fugacity and fugacity coefficients – pure species and species in a mixture, fugacity in ideal solutions, activity coefficients, excess properties.				
Unit III	Applications of Solution Thermodynamics: (8 Hours) VLE-qualitative behavior, Duhem's theorem, simple models for VLE (Raoult's law, modified Raoult's law, etc.). Liquid properties from VLE. Activity coefficients from experimental data – Margules, Van-Laar, and Wilson equations. Property changes of mixing, heat effects in mixing processes.				
Unit IV	Phase Equilibria: (8 Hours) Importance of phase equilibria in process industries, equilibrium and stability, vapour-liquid equilibria (VLE) for miscible, partially miscible and immiscible systems, their phase diagrams, azeotropes. VLE calculations at low and high pressures, analysis of multi- component systems.				

	Chemical Reaction Equilibria: (10 Hor	urs)
Unit V	Reaction coordinate, application of equilibrium criteria to chemical reaction standard Gibbs energy change and the equilibrium constant, effect of temperation equilibrium constant, evaluation of equilibrium constant and compositions Calculation of equilibrium compositions for single reactions; Phase rule Duhem's theorem for reacting systems. Thermodynamic Analysis of Process Work and free energy, availability, analysis of mixing, separation processes, exchange, lost work calculations.	ons, ture tion. and sses:

	1. Narayanan, K.V., "Chemical Engineering Thermodynamics", Prentice Hall
Text Books	(2007).
1 ext books	2. Smith, J.M., Van Ness, H.C., Abbott, M.M., "Introduction to Chemical
	Engineering Thermodynamics", 7 th Edn. McGraw-Hill (2005).
	1. Koretsky, M.D., "Engineering and Chemical Thermodynamics", John
	Wiley (2004).
Reference	2. Kyle, B.G., "Chemical and Process Thermodynamics", 3 rd Edn, Prentice
Books	Hall (1999).
	3. Sandler, S.I., "Chemical, Biochemical and Engineering Thermodynamics",
	4 th Edn, John Wiley (2006).

Heat Transfer (CET-251)

Subject: Heat Transfer	Year & Semester: B. Tech Chemical Engineering 2 nd Year & 4 th Semester		Total Course Credit:		
(CET-251)			L	T	P
			3	1	0
Evaluation Policy	Mid-Term	Class Assessment	F	inal-Tern	1
Evaluation Policy	(30 Marks)	(10 Marks)	(6	60 Marks)

Course Objective: To understand the fundamentals & basic principles of heat transfer mechanisms in solids and fluids and their applications in various heat transfer equipment in process industries.

Course outcomes (COs): At the end of the course, student will be able to:

- CO1. Identify, formulate, analyze & solve problems involving steady state heat conduction in simple geometries..
- CO2. Understand the fundamentals and basic principles of convection heat transfer and evaluate heat transfer coefficients for natural and forced convection.
- CO3. Calculate radiation heat transfer between black body surfaces & grey body surfaces.
- CO4. Able to perform the thermal analysis and sizing of heat exchangers & evaporators.

Unit-I	Introduction: Modes of heat transfer. Thermal conductivity of material. Effect of temperature on thermal conductivity of different solids, liquids and gases. Derivation of generalized heat conduction equation in Cartesian, cylindrical and spherical coordinates and its reduction to specific cases, general laws of heat transfer.					
Unit-II	Conduction: Fourier's law, steady state conduction through flat wall, multi-layer wall, cylinders and hollow spheres. Lagging of pipes and optimum lagging thickness. Heat transfer from extended surface: Types of fin, heat flow through rectangular fin, infinitely long fin, fin insulated at the tip and fin losing heat at the tip, efficiency and effectiveness of fin.					
Unit-III	Convection: Natural and forced convection, Newton's law of cooling, dimensional analysis applied to forced and free convection, dimensionless numbers and their physical significance, empirical correlations for free and forced convection, continuity, momentum and energy equations, thermal and hydrodynamic boundary layer.					
Unit-IV	Heat transfer with phase change: Boiling of liquids, Pool boiling curve, different types of pool boiling, condensation of vapor. Film wise & drop wise condensation. Radiation: Emissivity, absorptivity, black body and grey body radiation, view factors, radiation between various types of surfaces.					
Unit-V	Heat exchanger: Classification, heat exchanger analysis, LMTD for parallel and counter flow exchanger, condenser and evaporator, overall heat transfer coefficient, fouling factor, correction factors for multi pass arrangement, effectiveness and number of transfer unit for parallel and counter flow heat exchanger, introduction of heat pipe and compact heat exchanger.					

	1.	McCabe, W.L., Smith, J.C., "Unit Operation of Chemical Engineering",	
		7 th Edn.,	
	2.	Holman, J.P., "Heat Transfer", 10th Edn., McGraw-Hill (2009)	
Text Books	3.	Bergman, T.L., Lavine, A.S., Incropera, F.P., DeWitt, D.P., "Introduction	
&		to Heat Transfer", 6 th Edn., Wiley (2011).	
Reference	4.	Kreith, F., Manglik, R.M., Bohn, M., "Principles of Heat Transfer", 7th	
Books		Edn., Cengage Learning (2010).	
	5.	Hewitt, G.F., Shires, G.L., Bott, T.R., "Process Heat Transfer", Begell	
	House (1995).		
	6.	Kern, D.Q., "Process Heat Transfer", McGraw-Hill (2001).	

Mechanical Operations (CET-252)

	Subject: Mechanical	Year & Semester: B. Tech		ter: B. Tech Total Course Credit		
	Operations		l Engineering	L	T	P
	(CET-252)	2 nd Year & 4 th Semester		3	1	0
ſ	Evaluation Policy	Mid-Term	Class Assessment	F	inal-Tern	1
		(30 Marks)	(10 Marks)	(0	60 Marks)

Course description:

Understand properties and characterization of particulate solids and mechanical solids separation methods such as screening, filtration, sedimentation, transportation of solids, agitation etc and associated equipments used for achieving these methods.

Course Objectives:

- 1. To impart the basic concepts of mechanical operations
- 2. To develop an understanding of size analysis, size reduction, and solid handling
- 3. To understand mechanical separation methods such as filtration, sedimentation, transportation of solids etc and associated equipment used for achieving these methods

Course outcomes (COs): Upon successful completion of the course, students will be able to:

- CO1. Understand the characterization, classification, conveying and storage of solids
- CO2. Calculate the power requirements and crushing efficiencies of size reduction equipment using laws of communition and understand the working of different size reduction equipment
- CO3. Analyze the screening results to estimate the screen effectiveness and acquire knowledge of screening mechanism and separation of solids from solids and gases
- CO4. Apply the knowledge of filtration theory to estimate the filtration time, specific cake and medium resistance of filtration processes and understand the settling characteristics
- CO5. Acquire the knowledge of agitation and different types of agitated vessels

Unit-I	Introduction: Properties of particulate solids, characterization of solid particles and mixed particle size. Storage and transportation of bulk solids (types of conveyers,
	their selection), Pneumatic and hydraulic conveying of solids, general characteristics
	and flow relations, mechanical conveyers.
	Crushing and Grinding: Theory of Crushing. Laws of crushing-Rittingers" law,
	Kick"s law, Classification of crushing and grinding machinery, Coarse Crushers (jaw
Unit-II	crusher, gyratory crusher), intermediate crushers (roll, disc or cone crusher, edge
	runners, squired cage disintegrator, hammer mill), fine grinders-burhstones, roller
	mills, ball and tube mills.
Unit-III	Solid-Solid and Gas-Solid Separation: Principle of screening, screen analysis, types

	of screening equipment (grizzlies, trommels, shaking and vibrating screens),						
	effectiveness of a screen, air separating method (cyclone separator, bag filters,						
	electrostatic precipitator, scrubbers).						
	Solid-Liquid Separation: Settling: Free and hindered settling, classification of						
Unit-IV	classifiers (simple and mechanical), introduction to the design of continuous						
	thickeners. Filtration: Classification of filters, effect of pressure on filtration, filter						
	aids, constant pressure and constant rate filtration theory, membrane filtration.						
	Agitation and Mixing: Theory of mixing, power consumption of mixer impellers,						
Unit-V	mixing liquids with liquids, mixing gas with liquid, mixing of viscous masses,						
	mixing of solids with solids mixing of solid with liquid.						

	1. McCabe, W.I., Smith, J.C., "Unit Operations in Chemical Engineering",					
Text Books	7 th Edn.,McGraw-Hill (2011).					
1 ext books	2. Swain, A.K., Patra, H., Roy, G.K., "Mechanical Operations" 1st					
	Edn.,McGraw-Hill (2010).					
	1. Badger, L.W., Banchero, T.J., "Introduction to Chemical Engineering", 3 rd					
	Edn., McGraw-Hill (1997).					
	2. Coulson, J.M., Richardson, J.F., "Chem. Engineering, 2 nd Vol.",					
Reference	Butterworth-Heinemann.					
Books	3. Foust, A. S., Wenzel, L. A., Clump, C. W., Maus, L., Andersen, L. B.,					
"Principles of Unit Operations", 2 nd Ed., Wiley-India (2008).						
	4. Perry, R.H., Green, D.W., "Perry's Chemical Engineers' Handbook", 7 th					
Edn.", McGraw-Hill Book Company (2008).						

Material Science and Technology (CET-253)

Subject: Material Science	Year & Semester: B. Tech Chemical Engineering 2 nd Year & 4 th Semester		Total Course Credit: 4		
and Technology			L	T	P
(CET-253)			3	1	0
Evaluation Policy	Mid-Term	Class Assessment	F	inal-Tern	1
Evaluation Policy	(30 Marks)	(10 Marks)	(6	60 Marks)

Course Objective: This course is aimed at providing students the information regarding availability of various types and classes of materials involved in engineering practices. This course will help the students in selection of suitable materials in construction of process equipment in particular.

Course outcomes (COs): Upon successful completion of the course, student should be able to:

- CO1. Analyze the micro structure of crystalline materials like lattice systems, unit cells and theoretical density
- CO2. Clear the concept of mechanical behavior of materials through calculations and appropriate equations along with their failure mechanics including corrosion.
- CO3. Understand the concept of phase diagrams and their construction, usage and applications.
- CO4. Understand and analyze the heat treatment processes and their types involving solid state diffusion processes

Unit-I	Introduction: Properties of materials of importance to chemical equipment. Materials of construction for chemical industries (metallic and non-metallic). Principles of usage of materials. FCC, BCC, HCP crystal planes. Microscopic and macroscopic structure of metallic crystals. Imperfection in crystals: Point imperfection, line imperfection and surface imperfection. Single phase metals properties of single phase metals. Plastic deformation, re-crystallization. Plastic deformation of metal crystals, properties of plastically deformed metals, mechanism of slip.					
Unit-II	Failure of Metals: Creep, mechanized creep, ductile fracture, cleavage fracture, fracture in glass and theory of fracture, fatigue and mechanism of fatigue.					
Unit-III	Iron-Carbon Alloys: Definition of alloys, Substitution and interstitial solid solutions, eutectic and					
Unit-IV	Inorganic Materials: Ceramic, example of ceramic phases. Structure of silicates. Dielectric ceramic semiconductors. Mechanical behavior of ceramic materials. Introduction to					

	Composite Materials
	Corrosion:
	Corrosion by solution, electrochemical oxidation. Electrode potential, galvanic
	couples. Types of galvanic cells. Corrosion prevention. Protective surfaces,
	avoidance of galvanic couples, use of galvanic protection. Use of organic, inorganic
	and metallic linings.
	Polymers:
	Structure, deformation, plastic deformation.
Unit-V	Electrical conductivity:
	Definition, insulators and semi-conductors, intrinsic and extrinsic semiconductors.
	Magnetic behavior of metals. Introduction to ferromagnetism.

Text Books	1. William D. Callister, Jr. " Material Science and Engineering, An introduction" 8 th Edn., (2010), John Wiley and Sons Inc.			
Text Books	2. Raghavan, V., " Materials Science and Engineering- A First Course", 5 th Edn., Prentice-Hall India (2009).			
	. Van Vlack, L.H., "Elements of Material Science and Engineering", 6 th			
	Edn., Pearson Education (1989).			
Reference	2. Fisher, T.," Material Science for Engineering students", Academic Press,			
Books	Elsevier-Edition (2009).			
	3. D. R. Askaland, P.P Fulay, "Essentials of Material Science &			
	Engineering" 2 nd Edn., Cengage Learning (2009).			

Process Instrumentation (CET-254)

Subject: Process	Year & Semester: B. Tech Chemical Engineering 2 nd Year & 4 th Semester		Total C	Course Ci	redit: 3
Instrumentation			L	T	P
(CET-254)			3	0	0
Evaluation Policy	Mid-Term	Class Assessment	F	inal-Tern	1
Evaluation Foncy	(30 Marks)	(10 Marks)	(60 Marks))

Course Objective: This course enables the students to know about the process principles and make the students knowledgeable in various types of measuring instruments used in chemical process industries.

Course outcomes (COs): At the end of the course, student will be able to:

CO1.	Understand basic concept of instrumentation, principles and applications
CO2.	Understand the measurement techniques for Temperature
CO3.	Understand the measurement techniques for Pressure
CO4.	Understand the measurement techniques for Flow and Level

Details of the Syllabus:

	Introduction: Measuring instruments and their function, elements of measurement,				
Unit-I	important characteristics of industrial measurement. Classification of Instruments:				
	Recording and measuring types.				
	Temperature measurement: Classification of thermometers, and pyrometers,				
Unit-II	response of thermometers, protecting wells. Fluid filled expansion thermometers.				
	Thermocouples: Resistance thermometers. Radiation and optical pyrometers.				
	Pressure and vacuum measurement: Classification. Manometers- Inverted well				
Unit-III	pressure gauges. Bourdon tube pressure gauges, diagram of pressure gauges. Special				
Unit-111	measuring devices: Pressure and vacuum, McLeod gauge. Thermal conductivity and				
	ionization gauges.				
	Flow and Liquid Level Measurement: Head and area flow meters-flow measuring				
Unit-IV	devices, Visual indicators float motivation, liquid level instruments. Pressure				
	differential type level gauge, Electrical contact type liquid level indicators.				

	1.	Dunn, W.C., "Fundamentals of Industrial Instrumentation and Process Control",					
		Tata McGraw-Hill (2009).					
Text Books	2.	kra B. C., Chaudhry K. K., "Instrumentation, Measurement and Analysis" Tata					
1 ext books		McGraw-Hill (2004).					
	3.	Andrew, W. G., "Applied Instrumentation in the Process Industries, Vol. I.", Gulf					
		Publishing Company (1993).					
Dofovonos	4.	Liptek, B.G., "Instrument Engineers' Handbook: Process Control and					
Reference		Optimization, Volume II", Taylor and Francis, CRC press (2006).					
Books	5.	Johnson, C., "Process Control Instrumentation Technology", Prentice Hall (2005).					

Chemical Engineering Mathematics-II (MAT-250)

Subject: Chemical	Year & Semester: B. Tech Chemical Engineering 2 nd Year & 4 th Semester		Total Course Credit: 4		
Engineering Mathematics-II			L	T	P
(MAT-250)			3	1	0
Evaluation Policy	Mid-Term	Class Assessment	F	inal-Tern	1
Evaluation Policy	(30 Marks)	(10 Marks)	(60 Marks))

Course outcomes (COs): At the end of the course, a student should be able to:

- CO1. Evaluate Laplace and Inverse Laplace transforms of various functions and related problems.
- CO2. Evaluate Fourier and Inverse Fourier transforms of various functions and related problems.
- CO3. Apply the methods of Laplace and Fourier transforms in solving ODE, PDE and Integral equations.
- CO4. Solve the problems related to random variables, Probability density function, Mathematical expectation, Moments, Moment generating function, Inequalities of Markov and Chebyshev and their applications.
- CO5. Solve the problems related to Binomial, Poisson and normal Distributions, Beta and gamma Distribution, t-distribution, F-Distribution, Chi-square Distribution and their applications.

	Laplace Transforms: (15 Hours)
	Laplace transform, Condition for the existence of Laplace transform, Laplace
	transform of some elementary functions, Properties of Laplace transform,
	Differentiation and Integration of Laplace transform. Laplace transforms of periodic
Unit-I	functions and other special functions, Unit Impulse function, Dirac-delta function and
	its Laplace transform, Heaviside's expansion theorem, Inverse Laplace transform,
	Initial and Final value theorems, Convolution theorem and properties of Convolution,
	Evaluation of definite integrals by Laplace transforms, Use of Laplace transforms in
	the solution of linear differential equation.
	Fourier Transforms: (12 Hours)
	Definition of Fourier transform, Fourier Integral Theorem, Properties of Fourier
Unit-II	transform, Fourier sine and cosine, Convolution Theorem, Parseval's Identity for
Cint-11	Fourier transform, Solution of Integral equations, Evaluation of definite integrals
	using Fourier transform, Applications of Fourier transforms to Ordinary and Partial
	differential equations.
	Probability: (15 Hours)
	Point function and Set function, Probability Set function, Random variable,
	Probability density function, Mode and median of distribution of a random variable,
Unit-III	Probability distribution function and its properties, Mathematical expectation, Laws
Unit-111	of expectation, Mean, Variance, Moments, Moment generating function, Inequalities
	of Markov and Chebyshev and their applications. Binomial, Poisson and normal
	Distributions, Beta and gamma Distribution, t-distribution, F-Distribution, Chi-square
	Distribution and their applications.

	Debnath, L., Bhatta, D., Integral Transforms and th	eir Applications, 2 nd
	Edn., CRC press, 2007.	
Text Books	Murray, R. S., Schaum's Outlines Laplace Transforms	, Tata Mc-Graw Hill
Text books	Edition, 2005.	
	Robert V. H., Joseph W. M., Allen T. C., Introduct	ion to Mathematical
	Statistics, 2 nd Edn., LPE Pearson Prentice hall, 2007.	
	Jain, R. K., Iyengar, S. R. K., Advanced Engineeri	ing Mathematics, 3 rd
Reference Edn., Narosa Pub. House, 2008.		
Books	Rohatgi, V.K. Ehsanes Saleh, A. K. Md., An Introd	uction to Probability
	and Mathematical Statistics, 2 nd Edn., John Wiley and	l sons, 2008.

Fluid Mechanics & Mechanical Operations Lab. (CEL-255)

Subject: Fluid Mechanics &	Year & Semester: B.Tech	Total C	ourse Cr	edit: 2
Mechanical Operations Lab.	Chemical Engineering	L	T	P
(CEL-255)	2 nd Year & 4 th Semester	0	0	4
Evaluation Policy	Mid-Term/Class Assessment	F	inal-Tern	1
Evaluation Policy	(40 Marks)	(60 Marks))

Course Objective: To understand basic concepts of thermodynamics and chemical kinetics and their applications in solving engineering problems.

Course outcomes (COs):

- CO1. Make velocity measurements using flow meters and viscosity measurements by Stokes Apparatus
- CO2. Understand the laminar and turbulent flow behaviour, verify Bernoulli's principle and pipe fittings
- CO3. Understand the classification, conveying and communition of solids
- CO4. Understand the theories of sedimentation and to study the settling characteristics of batch settling

List of Experiments and Equipments

S.No.	Name of the Experiment	Name of the Equipment
1	Measurement of liquid viscosity by Stokes Method	Stokes Apparatus
2	Reynolds Experiment to demonstrate laminar and turbulent	Reynolds Apparatus
	flow	
3	Verification of Bernoulli's Principle	Bernoulli's Apparatus
4	Flow through Orificemeter	Orifice meter
5	Flow through Venturimeter	Venturi meter
6	Flow through Rotameter	Rotameter
7	Determine the Efficiency of a Ball Mill	Ball Mill
8	Determine the Efficiency of a Vibrating Screen	Vibrating Screen
9	Find out the discharge at different angles of elevation of	Screw Conveyor
	Screw conveyor	
10	Study the settling Characteristics of Slurry	Sedimentation Apparatus
11	Demonstration of Trommel	Trommel Apparatus
12	Determine the Capacity of Belt Conveyor	Belt Conveyor
13	Pipe Fittings	

- 1. McCabe W. L., Jullian Smith C. and Peter Harriott *Unit operations of Chemical Engineering*, 7th Edn., McGraw-Hill international edition, 2005.
- 2. Coulson J.M and Richardson. J.F, *Chemical Engineering Volume I and II*, 5th Edn., Elsevier India, 2006.

Basic Electronics Engineering Laboratory (ECL-256)

Subject: Basic Electronics	Year & Semester: B. Tech	Total C	Course Ci	edit: 1
Engineering Laboratory	Chemical Engineering	L	T	P
(ECL-256)	2 nd Year & 4 th Semester	0	0	2
Evaluation Policy	Mid-Term/Class Assessment	Final-Term		ı

Course Objectives: To acquire knowledge and become familiar with the different characterization techniques to analyze diode circuits, BJT circuits, operational amplifiers, Digital Logic Gates, and Instrumentation systems.

Details of the Syllabus: (Total Contact Hours: 12X2)

S. No.	Particulars				
1	Study of CRO - Measurement of Voltage frequency and Phase of a given waveform				
2	To obtain diode characteristics. Half wave and a full wave rectifier and to study their performance. Clipping and Clamping circuits				
3	To obtain transistor characteristics in the following configurations. a. Common base b. Common emitter				
4	To assemble a CE amplifier and observe its performance				
5	To assemble a differential amplifier and obtain its CMRR.				
6	To study different applications of OP AMPS. a. OP-AMP as an inverting amplifier. b. OP AMP as a non inverting amplifier c. OP AMP as an integrator d. OP AMP as a differentiator				
7	To measure the following parameters of a typical OP-AMP. a. I/P Impedance b. O/P Impedance c. Slew rate d. CMRR				
8	To verify the truth table of following logic gates: a. AND OR and NOT b. NAND, NOR, XOR and XNOR c. To realize any one of above gate using discrete active and passive components.				
9	To implement XOR and XNOR using universal logic gates.				
10	To study a Linear Variable Differential Transformer (LVDT) and use it in a simple experimental set up to measure a small displacement.				
11	To study measurement of displacement using strain gauge.				

5th Semester

Process Equipment Design-I (CET-305)

Course Objective:

Subject: Process Equipment	bject: Process Equipment Year & Semester: B.Tech. Chemical		Total Course Credit: 4		
Design-I	Engineering 3 rd year & 5 th Semester		L	T	P
(CET-305)			3	1	0
Evaluation Policy	Mid-Term	Class Assessment	F	Final-Term	ı
Evaluation 1 oney	(30 Marks)	(10 Marks)	(60 Marks)

The objective of the course is to provide basic knowledge of design parameters and their applications in the design of the equipments such as pressure vessels, storage tanks and tall towers used in the process industries along with the flanges and supports.

Course Outcomes (COs)

CO1.	Getting basic idea about the mechanics of materials.
CO2.	Understanding of mechanical design of storage tank, pressure vessel and tall tower.
CO3.	Acquiring knowledge of flanges and supports with respect to design and applications.

Mechanics of Materials: Stress, strain, biaxial stress, stress-strain relationship for elastic bodies, theories of failure, thermal stresses, membrane stresses in shells of revolution, thin
and thick cylinder.
Pressure Vessel: Selection of type of vessels, material of construction selection and design
considerations. Introduction of codes for pressure vessel design, classification of pressure
vessels as per codes. Design of cylindrical and spherical shells under internal and external
pressure; Pipe thickness calculation under internal and external pressure; Selection and
design of closures and heads, design of jacketed portion of vessels. Compensation of
openings. Design of high pressure monoblock and multilayer vessels. Inspection and testing
of pressure vessels
Flanges: Selection of gaskets, selection of standard flanges, optimum selection of bolts for
flanges, design of flanges.
Tall Tower Design: Design of shell, skirt, bearing-plate and anchor bolts for tall tower used
at high wind and seismic conditions.
Supports: Design of lug and leg supports. Design of saddle supports including bearing plates
and anchor bolts.
Storage Tanks: Introduction to Indian standards codes, filling and breathing losses;
classification of storage tanks; optimum length to diameter ratio, design of liquid and gas
storage tanks with and without floating roof

	1.	Brownell, L. E., Young, H. E., "Process Equipment Design", John Wiley
		(2004). 4. 6.
	2.	Bhattacharya, B. C., "Introduction of Chemical Equipment Design", CBS
Text Books		Publisher (2003).
Text Books	3.	I.S.:2825-1969, "Code for Unfired Pressure Vessels", (1969).
	4.	I.S.:803-1974, "Code of Practice for Design, Fabrication and Erection of
		Vertical Mild Steel Cylindrical Welded Oil Storage Tanks", (1984).
		, , ,
	1.	Moss, D. R., "Pressure Vessel Design Manual", 3rd Edn., Gulf (2004).
Reference		
Books	2.	Megyesy, E. F., "Pressure Vessel Handbook", 12th Edn., Pressure Vessel
		Publishing (2001

Chemical Reaction Engineering (CET-306)

Subject: Chemical Reaction	Year & Semester: B.Tech Chemical		Total Course Credit: 5		
Engineering (CET-306)	Engineering		L	T	P
	3 nd Year & 5 th Semester		3	2	0
Evaluation Policy	Mid-Term (30 Marks)	Continuous Assessment (10 Marks)	Final-Term (60 Marks)		

Course Objectives

The aim of the course is to impart basic knowledge of ideal reactor design for single and multiple reactions, the non-ideal flow, non-isothermal operations and stability of reactors, and understanding about the solid catalyzed and non-catalytic systems.

Course outcomes (COs): Upon successful completion of the course, students will be able to:

CO1	Explain the different types of reactors, their behaviour and performance for single reaction.
CO2	Design of batch, plug-flow and mixed flow reactors for multiple reactions
CO3	Analyze and size the reactors while accounting the non-isothermal conditions and non-ideal flow
	patterns.
CO4	Design reactors for the homogenous and heterogeneous catalyzed reactions, and understand their
	effect on performance equations of catalytic reactors.

Unit-I	Introduction to Reactor Design: Classification of rector types, material and energy balance
	for an element of volume of the reactor, basic performance equation, symbols and
	relationship between concentration and conversion.
	Ideal Reactors: Design equations for ideal reactors-batch, CSTR and plug Flow
Unit-II	Design for Single Reaction : Design equation for single reaction systems – batch reactor,
	CSTR, PFR and recycle reactor, auto catalytic reactions, reactor choice for single reaction -
	size comparison of single reactors and multiple-reactor systems.
Unit-III	Design for Multiple Reactions: Parallel and series reactions, quantitative treatment of
	product distribution and of reactor size for different types of ideal reactors, selectivity and
	yield factors, potpourri of multiple reactions, reactor choice for multiple reactions, Denbigh
	reactions.
Unit-IV	Non-isothermal Operation and Stability of Reactors: Non-isothermal design of ideal
	reactors, hot spot in tubular reactor, auto-thermal process, steady state multiplicity optimal
	temperature progression for first order reversible reaction.
Unit-V	Non-ideal Flow: Residence time distribution (RTD) theory, role of RTD in determining
	reactor behavior, age distribution (E) of fluid, experimental methods for finding E,
	relationship between E and F curve, models for non-ideal flow – single parameter and multi
	parameter models (axial dispersion, tanks in series), performance estimation of reactor using
	reactor models.
Unit-VI	Solid-Catalyzed and Non-catalytic Reactions: Catalytic reactions - homogeneous and
	heterogeneous, steps in solid catalyzed reaction, rate limiting steps, effect of external
	resistance and diffusion on reaction, Thiele modulus and effectiveness factor, performance
	equations for catalytic reactors (packed bed, fluidized bed), basic equations for trickle bed
	and moving bed reactors, fluid-particle reactions-shrinking core model.

	1.	Levenspiel, O., "Chemical Reaction Engineering", 3 rd Edn., John Wiley & Sons,
Text Books		New York (1998).
Text Dooks	2.	Fogler, H.S., "Elements of Chemical Reaction Engineering", 4th Edn., Prentice-
		Hall of India Pvt. Ltd. (1995).
	1.	Smith, J.M., "Chemical Engineering Kinetics", 2 nd Edn., McGraw-Hill Book
		Company, New York (1981).
Reference 2. Doraiswamy, L.K., Uner, D., "Chemical Reaction Engineering:		Doraiswamy, L.K., Uner, D., "Chemical Reaction Engineering: Beyond the
Books		Fundamentals", CRC Press (2013)
	3.	Froment, G.F., Bischoff, K.B., De Wilde, J.D., "Chemical Reactor Analysis and
		Design", 3 rd Edn., John Wiley & Sons, Inc. (2011).

Mass Transfer-I(CET-307)

Subject: Mass Transfer-I	B. Tech Che	Total Course Credit: 4			
(CET-307)	5 th Semester		L	T	P
	3		1	0	
Evaluation Policy	Mid-Term (30 Marks)	Class Assessment (10 Marks)	_	Final-Term 60 Marks)	

Course Objective:

The main purpose of the course is to provide fundamental understanding of basic principles of mass transfer in gases and in liquids and their applications in various mass transfer systems used in process and allied industries.

Course Outcomes (COs):

CO1	Fundamental understanding of mass transfer operations.
CO2	Acquiring knowledge of inter phase mass transfer, and their coefficients.
CO3	Exhibiting basic understanding and analysis of gas absorption, humidification, drying and
	crystallization.
CO4	Understanding and analysis of the equipments used for the mass transfer operations.

Details of the Syllabus

Details of	the Synabus
Unit-I	Principles of Mass Transfer, Steady and Unsteady States Molecular diffusion in fluids, diffusivities of fluids, applications of molecular diffusion- analogies and mass transfer coefficients in laminar flow, concepts of effective diffusivity.Eddy diffusion, mass transfer in turbulent flow, models of mass transfer operations.
Unit-II	Interphase Mass Transfer Interphase mass transfer-diffusion between phases, two phases mass transfer coefficients, individual and overall coefficients, stage wise process. Concurrent and counter current processes.
Unit-III	Gas Absorption Equilibrium relationships. Material balances for co-current and counter current multistage equipment. Dilute system. HETP, HTU and NTU individual and overalloefficients. Equipment: General characteristics of tray towers, efficiencies, wetted wall towers, packedtowers, characteristics of packed towers, mass transfer coefficients in packed towers.
Unit-IV	Humidification General theory, psychometric chart, fundamental concepts in humidification and dehumidification. Cooling towers and related equipment. Crystallization Principles, yield calculation, heat effects and equipment.
Unit-V	Drying Equilibria, drying rate curve definitions. Batch and continues drying. Mechanism of drying. Calculation of batch and continuous drying.

	1.	McCabe, W.L., Smith, J.C., "Unit Operation of Chemical Engineering",7 th Edn., McGraw-Hill (2011).
	2.	Treybal, R.E., "Mass Transfer Operations" 3rd Edn., McGraw-Hill Book
Text Books &		Company (1980).
Reference	3.	Basmadjian, D., "Mass Transfer and Separation Processes: Principles and
Books		Applications", CRC Press (2007).
DUUKS	4.	Foust, A. S., Wenzel, L. A., Clump, C. W., Maus, L., Andersen, L. B., "Principles
		of Unit Operations", 2 nd Ed., Wiley-India (2008).
	5.	Seader J DErnest J. Henley, D. Keith Roper, Separation Process Principles, with
		application using process simulators. 4rth edition John Wiley.

Chemical Technology-I(CET-308)

Subject:Chemical Technology-I	Year & Semester: B.Tech. Chemical		Total Course Credit: 3		
(CET-308)	Engineering 3rd year &5 th Semester		L	T	P
			3	0	0
Evaluation Policy	Mid-Term	Class Assessment	Final-Term		1
Evaluation Folicy	(30 Marks)	(10 Marks)	(60 Marks)

Course Objective

To study process technology, availability of raw materials, production trends, preparation of flow sheets, engineering and environmental problems of various chemical industries and manufacturing technologies.

Course Outcomes (COs)

CO1	Understanding of processes used by chemical process industries for production of various chemical products.
CO2	Application of process flow diagram for the chemical process industries.
CO3	Ability to deal with apparatus, unit operations, and chemical economics.
CO4	To enable chemical Engineering solutions to meet the needs of process industry while
	conserving environment.

Details of the Syllabus

Unit-I	Technology of Water: Classification of water, industrial and municipal purposes, methods
	for obtaining fresh water from sea water.
	Basic Chemical Industries: Common salt, its uses, economics and manufacture. Soda ash, its
Unit-II	uses, raw materials, manufacture by Solvay process and its modification. Caustic soda-
	chlorine types of cells, raw materials, reactions, uses and manufacture.
	Bleaching Powder and Hypochlorites: The methods of production. Sulphuric acid: Raw
Unit-III	materials, method of manufacture by contact process. Synthetic ammonia: Uses, reactions,
	manufacturing process, concentration of nitric acid.
	Nitrogenous Fertilizers: Ammonium sulphate, ammonium nitrate and urea, their methods of
Unit-IV	production. Phosphate Industries: Phosphorous, uses and manufacture; phosphoric acid, uses
UIIIt-I V	and types of manufacturing procedures; phosphate fertilizers, raw materials and uses.
	Manufacture of super-phosphates, granular super phosphate and triple super-phosphate
	Cement: History, various types of cements, raw materials, manufacture of Portland cement.
	Glass: history, uses and composition of glass; different types of glasses, unit operation and
T1 *4 T7	processes in the glass manufacture. Ceramics: Uses, basic raw materials, unit processes in
Unit-V	ceramic industry. Porcelain: Manufacturing procedure. Enamels: Raw metals, preparation of
	metal paint, application of enamel and firing.

	1.	Rao, M.G., Sittig, M., "Dryden's Outlines of Chemical Technology for the 21 st Century", East-West Press, New Delhi (2002).
Text Books 2. Austin, G.T., "Shreve's Chemical Production Book Company (1984).		Austin, G.T., "Shreve's Chemical Process Industries", 5 th Edn., McGraw Hill Book Company (1984).
	3.	Kent, J.A., "Riegel's Handbook of Industrial Chemistry," CBS Publishers (1997).
	1.	Mall I. D., "Petrochemical Process Technology", Macmillan India Ltd., New
Reference		Delhi (2007).
Books	2.	Moulijn, J. K., Makkee, M., Van Diepen, A., "Chemical Process Technology", Wiley (2001).

Basic Management Principles (HST-309)

Subject: Basic Management	Year & Semes	ter: B.Tech Chemical	Total Course Credit: 3		edit: 3
Principles	Engineering		L	Т	P
(HST-309)	3 rd Year & 5 th Semester		3	0	0
Evaluation Policy	Mid-Term	Class Assessment	Final-Term		1
Evaluation Foncy	(30 Marks)	(10 Marks)	(60 Marks))

Course Objective

The main objective of the course is to make the students aware of the fundamental understanding of the management principles which could be useful for them in the process, bioprocess industries or in any organization with respect to management.

Course Outcomes (COs): At the end of the course, student will be able to:

CO1	Acquiring basic knowledge of management and function of the managers.		
CO2	Exhibiting understanding about planning, organizing, decision making and objectives.		
CO3	Fundamental knowledge with respect to delegation and decentralization of authority.		
CO4	Enabling with the importance of human resource development, motivation,		
	communication skill and management information systems.		

Details of the Syllabus

	Management: It's nature, purpose and definition, management as a pre-requisite for any
Unit-I	organization, aims of management, management-art of science.
	Functions of Managers: Planning, organizing, actuating and controlling.
	Planning: Nature and purpose of planning, types of plans, steps in planning/planning
Unit-II	process.
Cint-11	Objectives: The nature and importance of objectives, types of objectives, primary,
	secondary, individual and personal objectives. Guidelines for setting objectives.
	Decision Making: Importance and limitations of rational decision making, types of
	decisions, programmed and non-programmed decisions, process of decision making under
Unit-III	certainty.
	Organizing: Nature and process of organizing, steps in organizing/process of organizing,
	formal and informal organization, span of control, and factors determining effective span.
	Decentralization of Authority: The nature of decentralization, degrees of decentralization,
Unit-IV	decentralization, philosophy and policy.
	Delegation of Authority: Meaning of authority/delegation, steps in the process of
	delegation, factors determining the degree of delegation, art of delegation.
	Line/Staff Organization: Line organization, staff organization, line and staff organization,
Unit-V	functional and committee organization, the nature of line and staff relationship.
	Actuating: Nature and purpose of actuating, steps in actuating/actuating process.
	Human Resource Management: Importance of human resource planning, recruitment,
	selection, training and development, performance appraisal, compensation, packages,
Unit-VI	promotions, transfers, demotion and separation etc.
	Leadership: Meaning and importance leadership qualities, effective and ineffective
	leaders, leadership styles.
Unit-VII	Motivation: Need, want and satisfaction chain. Need hierarchy. Improving employee
Omt-VII	motivation.

Communication: Meaning and importance of effective communication, com					
	process, formal and informal communication.				
	Controlling: Nature and purpose of controlling, steps in controlling/process of controlling,				
	types of controls, requirement of effective controls.				
	Management Information System (MIS): Definition, elements and importance of MIS,				
Unit-VIII	manager, management and information, changing MIS environment, managing and				
	controlling the MIS function. New Trends in Management.				

	1.	George, R., Terry, Irwin, "Principles of Management", (1974).
	2.	Tara Chand, "Industrial Organization and Management", Nem Chand & Brothers, (1973).
Text Books& Reference Books	3. Shukla, M.C., "Business Organization Management 3rd Edition", Chand(1967).	
DOOKS	4.	Dean, J. "Management Economics" Prentice-Hall of India Pvt. Ltd., New Delhi (1976).
	5.	"Principles of Management (Ascent Series)" Tata McGraw-Hill (2004).

Numerical Methods (MAT-310)

Subject: Numerical Methods	Year & Semester: B.Tech Chemical		Total Course Credit: 4		
(MAT-310)	Engineering		L	Т	P
	3 rd Year & 5 th Semester		4	0	0
Evaluation Policy	Mid-Term	Class Assessment	F	inal-Term	1
Evaluation Foncy	(30 Marks) (10 Marks)		(60 Marks)		

Course Objective: The objective is to make the students aware of the numerical methods for the solution of scienceand engineering related problems which cannot be solved analytically.

Course outcomes (COs)

CO1	Acquire fundamental understanding with respect to error estimation and solving
	algebraic and transcendental equations, and ordinary differential equations with the help
	of numerical techniques.
CO2	Exhibiting knowledge for solution of simultaneous linear algebraic equations.
CO3	Fundamental knowledge for construction of interpolating polynomial and finding
	intermediate values.
CO4	Applying the knowledge of numerical methods for solution of chemical engineering
	based problems

Details of the Syllabus

2 0000128 01 0	ne Synabus
	Errors in Numerical Calculations
Unit-I	Floating- point form of numbers, Round-off, Algorithm, Stability, Programming errors,
Cint-1	Errors of Numerical Results, Error propagation, Basic error principle, Loss of significant
	digits.
	Numerical Solution of Algebraic and Transcendental Equations
Unit-II	Bolzano's bisection method, iteration method, Regula-Falsi method, Newton-Raphson
	method, Numerical Solution for system of equations.
	Solution of Simultaneous Linear Algebraic Equations
Unit-III	Gauss elimination method, Gauss-Jordan method, Computation of Inverse by Gauss's
	Method, LU decomposition, Gauss-Siedel iteration method, Jacobi method, The Eigen
	value problem.
	Finite Differences and Interpolation
	interpolation Forward, Backward and Shift operators, Central differences, their relations.
Unit-IV	Existence, Uniqueness of interpolating polynomial, error of interpolation - unequally
Cint-1 v	spaced data; Lagrange's formula, Newton's divided difference formula. Equally spaced
	data: finite difference operators and their properties, , Newton's forward and backward
	interpolation formulae, Gauss's forward and backward.
	Numerical Differentiation and Integration
Unit-V	Numerical differentiation using difference techniques, Trapezoidal, Simpson's 1/3 and
Cint- v	Simpson's 3/8 rule, Truncation error, Romberg's method.
Unit-VI	Numerical Solution of Ordinary Differential Equations
Omt- v1	Picard's method, Taylor series method, Euler and modified Euler method, Runge-Kutta

	method of 4th order, Predictor-Corrector methods (Adam's-Moulton method & Milne's method.				
	Application of Numerical Methods in Chemical Engineering				
Unit-VII	Numerical treatment of chemical reaction kinetics, Transport processes, Numerical				
	methods for solving problems arising in heat and mass transfer.				

	1.	Numerical Methods for Scientists and Engineering M.K. Jain, S. R. Lyengar R.K. Jain, Wiley Eastern Ltd New age international publishers, 7 th Edition, 2019, ISBN: 9789387477254, 9387477258					
Text Books	2.	Introductory methods in Numerical Analysis, S.S. Sastry, 5 th Edition, Prentice Hall India learning Pvt Ltd, ISBN: 9788120345928, 9788120345928.					
	3.	Elementary Numerical Analysis, <u>Kendall E. Atkinson</u> , Han , 3 rd Edition, 2006, Wiley India Pvt Ltd, ISBN-13: 978-9754142747					
Reference Books S. D. Conte and C. de Boor, Elementary Numerical algorithmic approach, McGraw-Hill, 1980, ISBN-13: 978-007 Mathematical Numerical Analysis J.B. Scarborough, Oxfor Publishers, 6th Edition, 2020, ISBN: 9788120417595, 9788120 Numerical Methods for Mathematics, Sciences and Engg. J. Publishers: Prentice hall college division, 2nd Edition,		S. D. Conte and C. de Boor, Elementary Numerical Analysis An algorithmic approach, McGraw-Hill, 1980, ISBN-13 : 978-0070124479. Mathematical Numerical Analysis J.B. Scarborough, Oxford and IBH Publishers, 6 th Edition, 2020, ISBN: 9788120417595, 9788120417595 Numerical Methods for Mathematics, Sciences and Engg. J. H. Mathews, Publishers: Prentice hall college division, 2 nd Edition, 1992, ISBN: 9789387477254, 9387477258.					

Heat Transfer Lab (CEL-311)

Subject: Heat Transfer Lab.	Year & Semester: B.Tech Chemical	Total Course Credit: 1		
(CEL-311)	Engineering	L	T	P
	3 rd Year & 5 th Semester	0	0	2
Evaluation Policy*	Total Marks			
Evaluation 1 oney	(100)			

^{*}Based on written examination and viva-voce. External examiner from the department to be nominated by H.O.D.

Course Objective: Purpose of the course is to provide basic understanding of various modes of heat transfer operations, the equipments used for, and their applications.

Course outcomes (COs)

CO1	Acquiring knowledge about estimation and measurement of physical parameters, such as thermal conductivity, heat transfer coefficients and emissivity in various heat transfer systems.
CO2	Generation and analysis of the data with respect to the physical parameters and their applications in design.

List of Experiments

S.No	Experiment
1.	Study of heat transfer by natural convection.
2.	Study of heat transfer by forced convection.
3.	Study of heat transfer in filmwise and dropwise condensation.
4.	Study of heat transfer through a multiple composite wall.
5.	Emissivity measurement of a gray body.
6.	Study of finned tube heat exchanger.
7.	Study of shell and tube heat exchanger.

2000	110 11000111111111111111111111111111111
1.	McCabe, W.L., Smith, J.C., "Unit Operation of Chemical Engineering", 7 th Edn., McGraw-
	Hill (2011).
2.	Holman, J.P., "Heat Transfer", 10 th Edn., McGraw-Hill (2009)
3.	Bergman, T.L., Lavine, A.S., Incropera, F.P., DeWitt, D.P., "Introduction to Heat
	Transfer", 6 th Edn., Wiley (2011).
4.	Kreith, F., Manglik, R.M., Bohn, M., "Principles of Heat Transfer", 7 th Edn., Cengage
	Learning (2010).
5.	Hewitt, G.F., Shires, G.L., Bott, T.R., "Process Heat Transfer", Begell House (1995).

Computer Simulation Lab (CEL-312)

Subject: Computer Simulation	Year & Semester: B.Tech Chemical	Total Course Credit: 1		
Lab	Engineering 3 rd Year & 5 th Semester	L	T	P
(Code: CEL312)		0	0	2
Evaluation Policy*	Total (100 Marks)			

^{*}Based on written examination and viva-voce. External examiner from the department to be nominated by H.O.D.

Course Objective: The objective of the laboratory is to encourage the students to use **Software's pertaining to Chemical Engineering stream.**

Course outcomes (COs): At the end of the course, student will be able to:

CO1.	Understand the basics of some software/s.	
CO2.	Iodel development of the chemical engineering process systems.	
CO3.	Perform the simulation of individual equipments.	
CO4.	Simulation of Flow Sheets	

Details of the Syllabus

A basic background in Numerical Methods and Chemical Engineering is expected, though all the key concepts required for the lab will be reviewed during the course of the semester. Basics of software, key computational techniques relevant to software and use them for simulation and analysis, Simulation of individual equipments and Simulation of flow sheets, Simulation of case studies related to chemical engineering applications.

1.	Nayef Ghasem, "Modeling and Simulation of Chemical Process Systems", CRC Press,
	Taylor & Francis Group (2019).
2.	Amiya K Jana, "Chemical Process Modelling and Computer Simulation", 2 nd Edition, PHI
	Learning Private Limited, (2011).
3.	http://courses.washington.edu/overney/ChemE435.html.

6th Semester

Process Equipment Design-II (CET-355)

Subject: Process Equipment	Year & Semester: B.Tech. Chemical		Total Course Credit: 4		
Design-II	Engineering		L	T	P
(CET-355)	3rd year &6 th Semester		3	1	0
Evaluation Policy	Mid-Term	Class Assessment	F	inal-Term	1
Evaluation 1 oney	(30 Marks)	(10 Marks)	(60 Marks))

Course Objective

The main purpose of the course is to enable the students to acquire fundamental knowledge with respect to the design and selection of process equipments.

Course Outcomes (COs)

CO1	Acquire basic understanding about the process equipments based on heat and mass			
	transfer operations.			
CO2	Exhibit knowledge with respect to design of Process equipments.			
CO3	Selection of equipments for various applications.			

Details of the Syllabus

Unit-I	Shell-Tube Heat Exchangers: Basic design procedure of heat transfer equipment, overall heat transfer coefficient and fouling factors, shell & tube heat exchangers – construction details, selection algorithm, design codes, mean temperature difference, general design considerations, tube-side heat transfer coefficient and pressure drop, shell-side heat transfer coefficient and pressure drop, various design methods, CAD of shell & tube heat exchangers, mechanical and fabricational aspects. Drawing of heat exchangers.			
Unit-II	Condensers: Design of condensers for single vapors, heat transfer coefficient correlations for condensation inside and outside of tubes of the vertical and horizontal condensers, design of desuperheater-cum-condenser and condenser-cum-sub-cooler, condensation of mixtures, pressure drop in condensers.			
Unit-III	Reboilers, Vaporizers and Evaporators: Pool boiling, convective boiling, selection of reboilers, & vaporizers, design of reboilers, vaporizers and evaporators, drawing of evaporators			
Unit-IV	Distillation Column: Basic design consideration of distillation column, degree of freedom analysis, various design methods of distillation column, general design consideration of multicomponent distillation, plate efficiency, tray hydraulics of sieve and valve – trays. Drawing of distillation column			
Unit-V	Packed Columns: Type of packing, packed bed height, column diameter, column internals, design methods, Design of liquid-liquid extraction equipment.			
Unit-VI	Miscellaneous Equipment: Design of Crystalizers, Agitated vessels and selection of agitators, design of gas-liquid separators and mixing equipment.			

	1.	Brownell, L. E., Young, H. E., "Process Equipment Design", John Wiley (2004). 4. 6.
Text Books	2.	Bhattacharya, B. C., "Introduction of Chemical Equipment Design", CBS Publisher (2003).
	3.	I.S.:2825-1969, "Code for Unfired Pressure Vessels", (1969).
	4.	I.S.:803-1974, "Code of Practice for Design, Fabrication and Erection of Vertical Mild Steel Cylindrical Welded Oil Storage Tanks", (1984).
Reference	1.	Moss, D. R., "Pressure Vessel Design Manual", 3rd Edn., Gulf (2004).
Books	2.	Megyesy, E. F., "Pressure Vessel Handbook", 12th Edn., Pressure Vessel Publishing (2001

Mass Transfer-II (CET-356)

Subject: Mass Transfer-II	Year & Semester: B.Tech Chemical		Total Course Credit: 4		
(CET-356)		gineering	L	Т	P
	3rd Yea	r & 6 th Semester	3	1	0
Evaluation Policy	Mid-Term	Class Assessment	F	inal-Term	1
Evaluation Folicy	(30 Marks)	(10 Marks)	(60 Marks))

Course Objective

The aim of the course is toenable the students to understand the fundamentals of mass transfer operations, such as distillation, extraction, adsorption and leaching along with their commercial significance and applications.

Course Outcomes (COs)

CO1	Exhibit knowledge about various types and aspects of distillation operations which are
	commercially important.
CO2	Acquiring basic understanding with respect to extraction, adsorption and leaching
	operations and their applications.

Details of the Syllabus

	the Synabus			
Unit-I	ratio. Reboilers. Total and partial condensers. Tray efficiencies. Azeotropic, extractive and steam distillations.			
Unit-II	Extraction: Ternary liquid equilibria, calculation of single stage, multistage cocurrent and multistage counter current operations.			
Unit-III	Adsorption: Adsorption equilibria, calculations for vapour, gas and liquid adsorptions. Adsorption operations such as single stage, multi stage, cocurrent and multistage counter current operations. Equipments.			
Unit-IV	Leaching: Principles. Equilibria, Calculations of single stage and multistage leaching processes equipment.			

	1.	Treybal, R.E., "Mass Transfer Operations" 3rd Edn., McGraw-Hill
		Book Company (1980).
Text Books	2.	McCabe, W.L., Smith, J.C., Harriott, P., "Unit Operations of Chemical
&		Engineering",
Reference		7thEdn., McGraw-Hill Book Company (2011).
Books	3.	Basmadjian, D., "Mass Transfer and Separation Processes: Principles
		and Applications", CRC Press (2007).
	4.	Foust, A. S., Wenzel, L. A., Clump, C. W., Maus, L., Andersen, L. B.,
		"Principles of Unit Operations", 2nd Edn., Wiley-India (2008).

Chemical Technology-II (CET-357)

Chemical Technology-II	Year & Semes	Total Course Credit: 3			
(CET-357)	Engineering 3rd	year & 6 th Semester	L	T	P
			3	0	0
Evaluation Policy	Mid-Term (30 Marks)	Class Assessment (10 Marks)	Final-Term (60 Marks)		

Course Objective

To study process technology, availability of raw materials, production trends, preparation of flow sheets, engineering and environmental problems of various chemical industries.

Course Outcomes (COs)

CO1	Understanding of processes used by chemical process industries for production of		
	various products.		
CO2	Application of process flow diagram by the chemical process industries.		
CO3	Ability to deal with apparatus, unit operations, and chemical economics.		
CO4	To enable chemical Engineering solutions to meet the needs of process industry while		
	conserving environment.		

Details of the Syllabus

2 0000125 01	ine Synabus
Unit-I	Coal and Coal Tars: Cola chemicals, law temperature and high temperature carbonization,
	chemicals from coal tar.
	Sugar and Starch: Manufacture of raw sugar crystals from sugar cane, refining operations,
	manufacture of starch from various materials, starch derivatives, manufacture of glucose.
Unit-II	Leather and Gelatin: Preparation of hides, vegetable and chrome tanning, finishing
	operations, manufacture of gelatin from its raw materials, uses. Glues and adhesives-types
	and their manufacture.
Unit-III	Pulp & Paper: Sulphite and Kraft processes for manufacture of paper.
	Oils, fats, soaps and detergents: Classification of vegetable oils and fats, production of
Unit-IV	edible oil and fats, purification, hydrogenation of oils, classification of cleaning
	compounds and their uses, methods for the production of soaps and detergents.
	Man Made Fibres: Classification, cellulosic products. Viscose Rayons, their uses and
	manufacture. Polyamides-66-nylon, chemical process and method of production. Polyester
	(Dacron miller), its manufacturing process. Synthetic Plastics: Methods of polymerization,
Unit-V	phenol formaldehyde, urea formaldehyde, polyethylene and polyvinylchloride their uses and
	methods of production. Natural and Synthetic Rubbers: Natural rubber and its processing.
	Butadiene-styrene polymer, its methods of production. Polychloroprene and its
	manufacture.
17	Dyestuffs: A general study of dye stuffs with reference to their classification based on
Unit-VI	chemical structure & on its application, azo and vat dyes.
11 *4 X/11	Petroleum and Petrochemicals: Occurrence, refinery, practice, chemical refining, ethylene,
Unit-VII	acetylene, synthesis gas, butadiene, their uses and methods of production.

Doub Recommended						
	1.	Rao, M.G., Sittig, M., "Dryden's Outlines of Chemical Technology- for the 21stCentury.East-West Press (1997).				
Text Books	2.	Austin, G.T., "Shreve's Chemical Process Industries", McGraw-Hill Book Company (1984).				
	3.	Kent, J.A., "Riegel's Handbook of Industrial Chemistry," CBS Publishers (1997).				

	1.	Pandey, A., "Concise Encyclopaedia of Bioresource Technology", CRC Press (2004).
Reference	2.	Mall I. D., "Petrochemical Process Technology", Macmillan India Ltd.,
Books		New Delhi (2007).
	3.	Moulijn, J. K., Makkee, M., Van Diepen, A., "Chemical Process
		Technology", Wiley (2001).

Energy Technology (CET-358)

Subject: Energy Technology	Year & Seme	Total (Course Cr	edit: 4	
(CET-358)	Engineering	L	T	P	
		3	1	0	
Evaluation Policy	Mid-Term	Class Assessment	F	inal-Term	1
Evaluation Foney	(30 Marks)	(10 Marks)	(60 Marks))

Course Objective:

The aim of this course is to provide the fundamental knowledge regarding the utilization and characteristics of various energy resources available (natural or transformed) which usually pertain to Chemical Engineering field.

Course Outcomes (COs):

CO1	Exposure to different types of energy resources available.
CO2	Acquire knowledge of different types of nonconventional sources of energy.
CO3	Learn the fuel and flue gas calculations.
CO4	Exposure to design of combustion equipment and energy audit.

Details of the Syllabus:

	the Syllabast				
Unit-I	Survey of different sources of energy and their utilization. Natural fuels-coal, petroleum, processed fuels, coke, water gas, producer gas, refinery gas-LPG,				
Unit-II	Non-conventional sources of energy: Introduction to geothermal energy, wind energy, solar energy, nuclear energy, Biogas/Gobar Gas. Harnessing of energy from biomass and its transformed forms.				
Unit-III	Combustion calculation of coal and petroleum fractions.				
Unit-IV	Design of burner, stackers and furnaces. Recovery of waste heat from chemical and metallurgical processes, selection of suitable energy sources.				
Unit-V	Energy audit and management- Role of Energy Managers in Industries – Energy monitoring, auditing & targeting – Economics of various Energy Conservation schemes.				

	1.	Sarkar, S. "Fuel and Combustion" (2000).
Text Books	2.	Griswold, J., "Fuels, Combustion and Furnaces"
TCAL DOORS	3.	Larry C Whitetal, "Industrial Energy Management & Utilization".
	4.	Himus, G.W., "The Elements of Fuel Technology"
	1.	Duffia, Beckman "Solar Energy-Thermal Processes".
Defenerse	2.	Beredict, M., Pigford, T.M., "Nuclear Chemical Engineering".
Reference Books	3.	KhadiGrammodyog Commission Report on "Gobar Gas Plant".
DOOKS	4.	S. Van Loo, "Handbook of Biomass Combustion and Co-Firing", Twente
		University Press, 2002.

Chemical Process Safety (CET-359)

Subject: Chemical Process	Year & Semester	Total Course Credit: 3			
Safety (CET-359)	Engi	L	Т	P	
	3 nd Year &	3	0	0	
Evaluation Policy	Mid-Term (30 Marks)	Continuous Assessment (10 Marks)	Final-Term (60 Marks)		

Course Objectives

The objective is to impart knowledge about the importance of safety and evaluate suitable strategies for risk mitigation with the help of basic understanding of physical, chemical and physico-chemical transformations of the materials in process industries with respect to safety.

Course Outcomes (COs): Upon successful completion of the course, students must be able to:

CO1	Exhibit understanding about anticipation, recognition, investigation and evaluation of
	thehazardous conditions and practices which affect the masses, their properties and the
	environment.
CO2	Develop and evaluate appropriate strategies designed to mitigate risk by understanding the
	importance of plant safety and safety regulations, different types of plant hazards and their
	measurement, control, principles and procedures of safety audit.
CO3	Appreciate the importance of physical, chemical and physico-chemical transformations of the
	material in process industries with respect to safety.
CO4	Analyze the hazards and assess therisk and undertake appropriate preventive steps to address the
	need of safety.

Details of the Syllabus

	the Symbols
Unit-I	Introduction: Introduction, safety program, engineering ethics, concept of loss prevention, acceptable risks, accident and loss statistics, nature of accident process, inherent safety, accident investigations-case histories.
Unit-II	Toxicology:UN and other classification of chemicals, toxicants entry route, acute and chronic exposure effects, Dose versus response, models for dose and response curves, TLV and PEL. Industrial Hygiene: Identification, Material safety data sheets, Industrial hygiene evaluation and control
Unit-III	Basics of Fires and Explosion: Fire triangle, definitions, flammability characteristics of liquid and vapours, LOC and inerting, types of explosions, Designs for fire prevention.
Unit-IV	Hazard Identification: Work permit systems, color coding of chemical pipe lines, HAZCHEM Code, Hazard survey, checklist, HAZOP, safety reviews, what if analysis
Unit-V	Risk Assessment: Probability theory, event tree, fault tree, QRA and LOPA, Dow's fire and explosion index, Mond's index, Dow's Chemical release model.

Text Book	1.	Crowl, D.A., Louvar, J.F., "Chemical Process Safety: Fundamentals with Applications", Prentice Hall (2011).
	1.	Coulson, Richardson & Sinnott R.K., "Chemical Engineering Volume-6, An Introduction to Chemical Engineering Design", Elsevier Butterworth Heinemann (2005).
Reference	2.	Dow Chemical Company, Dow's Chemical Exposure Index Guide (1993).
Books	3.	Lees, F. P., "Loss Prevention in Process Industries", Butterworth, London (1996).
	4.	Wells, G. L., "Safety in Process Plant Design", George Godwin Ltd., New York (1980).

Transport Phenomena (CET-360)

Subject: Transport	Year & Semester: B. Tech Chemical		Total Course Credit: 4		
Phenomena	Engineering		L	Т	P
(CET-360)	3 rd Year & 6 th Semester		3	1	0
Evaluation Policy	Mid-Term	Class Assessment	Final-Term		1
Evaluation Folicy	(30 Marks) (10 Marks)		(60 Marks)		

Course Objective:

The aim of this course is to provide the basic understanding of various Transport Processes, Momentum, Mass and Heat.

Course Outcomes (COs):

CO1	To understand Newton's Law of Viscosity (Molecular Momentum) and use vectors /tensors
	for analysis of same.
CO2	To study the Momentum Transport.
CO3	To study the Energy Transport.
CO4	To study the Mass Transport.

Details of the Syllabus:

Details of	the Synabus:	
Unit-I	Introduction of Transport phenomena. Newton's Law of Viscosity (Molecular Momentum) Transport) Momentum Flux. Generalization of Newton's Law of Viscosity. Vector and Tensor calculations.	
Unit-II	Shell Momentum Balances and Velocity Distributions in Laminar Flow The Equations of Change for Isothermal Systems The Equation of Continuity Normal Stresses at Solid Surfaces for Incompressible Newtonian Fluids The Equation of Motion The Bernoulli Equation for the Steady sate case Use of the Equations of Change to Solve Flow of Various typical cases.	
Unit-III	Shell Energy Balances and Temperature Distributions. Heat Conduction in various typical cases like a Nuclear Heat Source, Viscous Heat Source Chemical Heat source and through Composite Walls etc.	
Unit-IV	Mass Transport Diffusivity and the Mechanisms of Mass Transport Molecular Mass Transport Temperature and Pressure Dependence of Diffusivities Mass and Molar Transport by Convection Mass and Molar Fluxes Concentration Distributions in Solids and Laminar Flow Shell Mass Balances of some selected cases.	

Text Books	1.	Bi Bird, R.B., Stewart, W.D., Lightfoot, E.W., "Transport Phenomena", 2nd Edn., JohnWiley & Sons (2002).
Reference	1.	Deen, W. M., "Analysis of Transport Phenomena", Oxford University Press (1998).
Books	2.	Brodkey R. S. and Hershey H. C., "Basic Concepts of Transport Phenomena", Vol. 1 and 2, Brodkey Publishing (2001).

Energy Technology Lab. (CEL-361)

Subject: Energy TechnologyLab.	Year & Semester: B.Tech. Chemical	Total Course Credit: 1		
(CEL-361)	Engineering	L	T	P
	3 rd year &6 th Semester	0	0	2
Evaluation Policy*	Total Marks	1		
Evaluation 1 oney	(100)			

^{*}Based on written examination and viva-voce. External examiner from the department to be nominated by H.O.D.

Objective:

The aim of this laboratory is to perform various experiments pertaining to solid and liquid fuels and their characteristics.

Outcomes (COs):

CO1	Exposure to different types of energy resources.
CO2	Analyze the Proximate analyses parameters of fuels.
CO3	Characterize the various liquid and solid fuels.

Details of the Experiments:

	1: To determine the Proximate analysis Parameters of coal and other solid fuels.
	2. Determination of calorific value of solid fuels.
Experiments	3. Test for cloud and pour point of petroleum products.
Experiments	4. Determination of flash point, fire point and specific gravity of petroleum products.
	5. To find the Smoke point of a liquid fuel.
	6. To study the briquetting/pelletization of biomass.

	1.	Sarkar, S. "Fuel and Combustion" (2000).
Text Books	2.	Griswold, J., "Fuels, Combustion and Furnaces"
		S. Van Loo, " <i>Handbook of Biomass Combustion and Co-Firing</i> ", Twente University Press, 2002.
		University Press, 2002.

Thermodynamics and Reaction Engineering Lab (CEL-362)

Subject: Thermodynamics	Year & Semester: B.Tech Chemical	Total Course Credit: 1		
and Reaction Eng. Lab.	Engineering	L	Т	P
(CEL-362)	3 rd Year & 6 th Semester	0	0	2
Evaluation Policy*	Total Marks			
Evaluation Folicy	(100)			

^{*}Based on written examination and viva-voce. External examiner from the department to be nominated by H.O.D.

Course Objective

To provide experience on analysis of reaction engineering

Course Outcomes (COs): At the end of the laboratory course, student will be able to:

CO1	The students could independently calculate the reaction kinetics of various reactors
	used for manufacturing of chemicals in industries.
CO2	Characterize laboratory reactors through residence time distributions.

List of Experiments

Experiment No. 1: Standardization of the given solution of NaOH.

Aim: To determine the normality of NaOH solution

Experiment No. 2: Plug flow reactor

Aim: To determine the second order reaction rate constant for saponification reaction between NaOH and ethyl acetate in a plug flow reactor

Experiment No. 3: RTD study in CSTR

Aim: (a) To plot the RTD curve for a CSTR using a pulse input as a tracer

(b) To determine the dispersion number

Experiment No. 4: Isothermal batch reactor

Aim: To determine the pseudo first order reaction rate constant for the saponification reaction between NaOH and CH₃COOC₂H₅ in a constant volume adiabatic batch reactor

Experiment No. 5: Adiabatic batch reactor

Aim: To determine the pseudo first order reaction rate constant for the saponification reaction between NaOH and CH₃COOC₂H₅ in a constant volume adiabatic batch reactor

Experiment No. 6: Continuous Stirred Tank Reactor (CSTR)

Aim: To study of a non-catalytic homogeneous second order liquid phase reaction in a CSTR under ambient conditions.

Experiment No. 7: RTD study in Packed Bed Reactor (PBR)

Aim: (a) To plot the RTD curve for a PBR, using a pulse input as a tracer

(b) To determine the dispersion number

	1.	Levenspiel, O., "Chemical Reaction Engineering", 3 rdEdn., John Wiley & Amp;Sons, New York (1998).
Text Books	2.	Fogler, H.S., "Elements of Chemical Reaction Engineering", 4 thEdn. Prentice-Hall of India Pvt. Ltd. (1995).
	3.	Smith, J.M., "Chemical Engineering Kinetics", 2 ndEdn., McGraw-HillBook Company, New York (1981).

Industrial Training & Presentation (Code: CEI-363)

Subject: Industrial Training	Year & Semester: B.Tech Chemical	Total (Course Cr	edit: 2
& Presentation	Engineering 3 rd Year & 6 th Semester	L	T	P
(Code: CEI-363)		0	0	4
Evaluation Policy*	Total Marks (100 Marks)			

^{*}Based on presentations by each of the student before a panel of examiners nominated by H.O.D with due weightage to report submitted.

Course Objective:

To gain practical experience in Industry or research organization.

Course Outcomes (COs): At the end of the course, student will be able to:

CO1	Correlate class room learning to real industrial applications.
CO2	Development of written and oral communication skills.
CO3	Ability to be a multi-skilled engineer with good practical knowledge.
CO4	Development of management, leadership and entrepreneurship skill.

7th Semester

Pre-Project work (CEP-413)

Subject: Pre-Project work	Year & Semester: B.Tech. Chemical Total Course Credit: 2			: 2
(CEP-413)	Engineering	L	T	P
	4 th Year &7 th Semester	0	0	4
Evaluation Policy*	Total Marks	3		
Evaluation Folicy	(100)			

^{*}Based on presentations by each of the student before a panel of examiners nominated by H.O.D with due weightage to Supervisor evaluation and final report submitted.

Course Objective

This course enables the students to get first-hand experience acquainting with principles and applications of chemical engineering by analysing as well as solving problems concerning industries, research etc.

Course outcomes (COs):

CO1	Acquaint students with research methodology.
CO2	Enable students to correlate class mode learning to real industrial as well as research
	applications
CO3	Understand the literature and previous studies concerning the problem
CO4	Learn technical report writing and enhance the communications skills.

Note: This is prerequisite for completion of the seventh semester along with other subjects. There is no course content fixed. Collection of information, survey of literature and procurement of materials including chemicals are in scope. Objective of the pre-project work is decided, how the project work would be carried out in the eighth semester, same is finalized at this stage. The same project may be continued for the eighth semester. This includes report writing for pre-project work, presentation of the work done followed by viva-voce examination by the examiner (preferably external).

Seminar (CES-414)

Subject: Seminar	Year & Semester: B. Tech. Chemical	Total Course Credit: 1		edit: 1
(CES-414)	Engineering 4 th year & 7 th Semester	L	T	P
		0	0	2
Evaluation Policy*	Total Marks			
Evaluation Folicy	(100)			

^{*}Based on presentations by each of the student before a panel of examiners nominated by H.O.D with due weightage to report submitted.

Course Objective

To nurture skills in writing and communication of technical papers amongst the students so as to become effective engineering professionals.

Course Outcomes (COs)

CO1	Carry out up to date and effective literature study upon a selected topic.
CO2	Report writing and submission under the guidance of a faculty member of the
	Department.
CO3	Enhancement in communication skills through seminar presentation.

Details of the Syllabus

Each student in batch will be assigned a topic pertaining to Chemical Engineering field. He /she will carry out up-to-date literature survey regarding the topic under guidance of a faculty member. Evaluation will be carried out towards end of semester by a committee of faculty members nominated by the HOD. The evaluation will be based on

- i) Report writing (format and originality)
- ii) Presentation skill
- iii) Understanding and solution of problem/topic assigned.

Process Dynamics & Control (CET-415)

Subject: Process Dynamics &	Year & Semester: B. Tech Chemical		Total Course Credit: 4		
Control	Engineering		L	T	P
(CET-415)	4 th Year & 7 th Semester		3	1	0
Evaluation Policy	Mid-Term	Class Assessment	Final-Term		1
Evaluation Folicy	(30 Marks)	(10 Marks)	(60 Marks))

Course Objective:

The aim of this course is to provide the basic understanding of process control;its elements, various order processes and their behaviour towards different inputs/disturbances.

Course Outcomes (COs):

CO1	To understand and introduce the control problem.
CO2	To study the dynamics of a First order system.
CO3	To study the dynamics of a Second order system.
CO4	To study the dynamics of various controllers.

Details of the Syllabus:

Unit-I	Introductory concepts of process control. The chemical process industrial perspective of a typical process control problem, variables of a process. Use of Laplace transformation in control systems.
Unit-II	Feed forward, feedback systems, block diagrams. Linear open loop system transfer function. Derivation of Transfer function and study of transient response of a <i>First Order</i> system towards different inputs.
Unit-III	Study of 1^{st} order systems in series. Transfer function and Study of transient response and of 2^{nd} ordersystem. Study of parameters of 2^{nd} order under damped response.
Unit-IV	Components of control system. Negative versus positive feedback. Study and behavior of different controllers like Proportional controller, PD Controller, PID Controller.
Unit-V	Derivation of Closed loop transfer functions for physical systems. Transient response of simple control systems for Servo and Regulatory case. Stability criterion, Routh test.

Text Books 1. Coughanowr, D.R., LeBlanc, S., "Process System Analysis and Coughanowr, McGraw-Hill (2017).		Coughanowr, D.R., LeBlanc, S., "Process System Analysis and Control", 3rd Edn., McGraw-Hill (2017).
Text Books	2.	Stephanopoulos G. "Chemical Process Control – An Introduction to Theory and Practice", Prentice-Hall of India (2015)
Reference Books	1.	Carlos A. Smith, Armando B. Corripio "Principles and Practices of Automatic Process Control (latest edition).

Process Economics & Plant Design (CET-416)

Subject: Process Economics &	Year & Semester: B. Tech Chemical		Total Course Credit: 4		
Plant Design	Engineering		L	T	P
(CET-416)	4 th Year & 7 th Semester		3	1	0
Evaluation Policy	Mid-Term	Class Assessment	Final-Term		1
Evaluation Folicy	(30 Marks)	(10 Marks)	(60 Marks)	

Course Objective

The objective of the course is to provide basic concepts in engineering economics, plant design, safety features and its importance for chemical engineering.

Course Outcomes (COs): At the end of the course, student will be able to:

CO1	Understand the role of economics in process plant design.
CO2	Exhibit knowledge in design optimization, depreciation and cost estimation.
CO3	Understand the application of various project management techniques.
CO4	Know about the replacement and maintenance analysis.

Details of the Syllabus:

	Time Value of Money: Interest; Compounding and Discounting Factors; Loan Payments;
	Cash Flow Pattern: Discrete Cash Flow, Continuous Cash Flow. Methods for Calculating
Unit-I	Profitability : Methods that do not consider the time value of money; Methods that consider
	the time value of money; Alternative Investments by Different Profitability Methods; Effect
	of Inflation on Profitability Analysis; Methods of Profitability Evaluation for Replacements.
	Depreciation : Straight Line, Declining Balance, Double Declining Balance, sum-of-the
	years-digit, Sinking Fund. Analysis of Cost Estimates: Factors Affecting Investment and
Unit-II	Production Costs; Capital Investment; Types of Capital Cost Estimates; Methods for
	Estimating Capital Investment; Estimation of Revenue; Estimation of Total Product Cost;
	Gross Profit; Net Profit and Cash Flow; Contingencies.
	Optimum Design and Design Strategy: Procedure with one, two and more variables;
Unit-III	Optimum Production Rates in Plant Operation; Case Studies; Linear Programming: Simplex
UIIII-III	Algorithm, Dynamic Programming for Optimization; Application of Lagrange Multipliers;
	Method of Steepest Ascent or Descent.
	Plant Location and Layout: Factors for Selection of Plant Location; Site Selection and
	Preparation; Plant Layout and Installation.
Unit-IV	Scale-Up: Pilot Plants and Models; Principle of Similarity; Dimensional Analysis; Empirical
	and Semi-empirical Model Building; Regime Concept: Static Regime, Dynamic Regime;
	Similarity Criteria and Scale Equations for Important Equipments.

1.	Peters, M. S., Timmerhaus, K. D. and West, R. E., "Plant Design and Economics for Chemical
	Engineers", McGraw Hill, (2002).
2.	Towler, G., Sinnott, R. K., "Chemical Engineering Design: Principles, Practice and
	Economics of Plant and Process Design", Butterworth-Heinemann, (2012).
3.	Couper, J. R., "Process Engineering Economics (Chemical Industries)", CRC Press, (2003).
4.	Zlokarnik, M., "Scale-up in Chemical Engineering", Wiley-VCH, (2006).
5.	Silla H., "Chemical Process Engineering: Design and Economics", Marcel Dekker (2003).

Biochemical Engineering (CET-417)

Subject: Biochemical Engineering	Year & Seme	Total Course Credit: 4			
(CET-417)	Engineering	4 th year & 7 th Semester	L	T	P
			3	1	0
Evaluation Policy	Mid-Term	Class Assessment	Final-Term		ı
Evaluation Folicy	(30 Marks)	(10 Marks)		(60 Marks))

Course Objective: The objective of the course is to provide basic understanding of biochemistry and microbiology, and their applications to analysis and design of the biological systems with the help of chemical engineering principles.

Course Outcomes (COs)

CO1.	Fundamental understanding of the subject based on various conversion routes.
CO2.	Acquire basic knowledge of microbiology and biochemistry.
CO3.	Exhibit knowledge for analysis of the bioprocess and the unit operations used.
CO4.	Able to analyze the data and their application for bioprocess development.

Details of the Syllabus

	VII SJIMSUS		
Unit-I	Evolution of modern biochemical processes. Role of biochemical engineer in the development of modern fermentation processes. Status of biochem. eng. in the fermentation industry.		
Unit-II	Types of Microorganism: Bacteria fungi viruses algae protozoa. Cell types and structure		
Unit-III	Chemicals of Life: Carbohydrates, fats, proteins, RNA and DNA (structure, uses and functions). Understanding Enzymes: Naming and classification, specificity of enzyme action, active cites, factors affecting enzyme-catalyzed reactions. Kinetics of enzyme-catalysed reactions (Michaelis-Menten equation and Lineweaver Burk Plot).		
Unit-IV	Sterilization. Aerobic and anaerobic fermentation. Requirement for growth and media formation. Growth cycle phases for batch cultivation. Parameters of growth and analysis of growth data. Growth kinetics. Aeration and agitation. Scale-up. Bio-reactors. Bio-separation processes.		

	1.	Shijie, L., "Bioprocess Engineering-Kinetics, Sustainability and Reactor		
		Design", 2nd Edn., Elsevier (2017).		
	2.	Shuler, M., Kargi, F., "Bioprocess Engineering, Basic Concept", 2nd Edn.,		
Text Books		Prentice Hall of India Pvt. Ltd. (2004).		
1 CAL DUUKS	3.	Bailey, J. E., Ollis, D. F., "Biochemical Engg. Fundamentals", 2nd Edn.,		
		McGraw-Hill Book Company, New York (1985).		
	4.	Paul A. Belter, E.L. Cussler, Wei-Shou Hu, "Bio separations, Downstream		
		Processing for Biotechnology", 2nd Edn., Wiley-India (1988).		
	1.	Pelczar, M.J., Chan, E.C.S., Krieg, N.R., "Microbiology", 5th Edn.		
		McGraw-Hill Book Company (1986).		
	2.	Fairley, J.L., Kilgour, G. L., "Essentials of Biological Chemistry", 2nd		
		Edn., Van Nestrond Reinhold Publishing Corporation (1966).		
Reference	3.	Palmer, T., "Understanding Enzymes". Ellis Horwood Limited, Halsted		
Books		Press, a division of John Wiley & Sons (1985).		
	4.	Pirt, S.J., "Principles of Microbe and Cell Cultivation", 1stEdn., Blackwell		
		Scientific Publications, 1975		
	5.	McCabe, W., Smith, J. and Harriott, P., "Unit Operations of Chemical		
		Engineering", 7 th Edn.McGraw-Hill (2017).		

Process Dynamics & Control Lab (CEL-418)

Subject: Process Dynamics &	Year & Semester: B. Tech Chemical	Total Course Credit: 1		
Control Laboratory	Engineering	L	T	P
(CEL-418)	4 th Year & 7 th Semester	0	0	2
	Total Marks			
Evaluation Policy*	* (100)			

^{*}Based on written examination and viva-voce. External examiner from the department to be nominated by H.O.D.

Objective

The purpose of the course is to impart practical understanding about the dynamic behaviour of the control systems and evaluate the responses with respect to the first and higher order systems.

Outcomes (COs): At the end of the laboratory course, student will be able to:

CO1	Estimate the dynamic behavior of the control systems
CO2	Understand the controllability, speed of response of the control systems.
CO3	Tuning of a PID control via manual and automatic tuning.
CO4	Choose PID modes that effect controllability, speed of response the control systems.

List of Experiments:

1. Temperature Measurement

- a) Study the different types of temperature sensor for characteristics and time constants.
- b) Study the Seebeck effect

2. Temperature control Trainer

- a) Study of on-off controller
- b) Study of open loop response
- c) Study of proportional controller
- d) Study of proportional integral controller

3. Level control Trainer

- a) Study of on-off controller
- b) Study of open loop response
- c) Study of proportional controller
- d) Study of proportional integral controller

4. Multi process Control Trainer

a) To study the multi process control trainer for various control experiments simultaneous on a single setup.

5. Pressure control Trainer

- a) Study of on-off controller
- b) Study of open loop response
- c) Study of proportional integral controller
- d) Study of proportional integral controller

6. Two tank interacting liquid level system

e) To study the operation of the interacting system and find its Transfer Function

7. Two tank non interacting liquid level system

To study the operation of the non-interacting system and find its Transfer Function

8. First order and second order system

- a) Study of step response of thermometer
- b) Study of step response of mercury manometer

Mass Transfer Lab (CEL-419)

Subject: Mass Transfer Lab	r Lab Year & Semester: B. Tech Chemical		Total Course Credit: 2		
(CEL-419)	Engineering	L	T	P	
	4 th year 7 th Semester	0	0	4	
Evaluation Policy*	Total Marks				
L variation 1 oney	(100)				

^{*}Based on written examination and viva-voce. External examiner from the department to be nominated by H.O.D.

Course Objective

The purpose of the course is to impart fundamental understanding with respect to the experimental determination of physical parameters, such as diffusivity, heat and mass transfer coefficients, and their significance in mass transfer operations, and in chemical reactions.

Course outcomes (COs): At the end of the course, student will be able to:

CO1	Acquire knowledge of basic techniques for determining gas and liquid diffusivities.
CO2	Exhibit fundamental understanding with respect to the experimental determination of
	heat and mass transfer coefficients using wetted wall column and cooling tower,
	respectively.
CO3.	Plot drying rate cure using wet solid.
CO4.	Determine gas absorption characteristics using packed tower.

Details of the Experiments:

1			
Expt-I	To determine the mass transfer coefficient in wetted wall column		
Expt-II	To determine effectiveness/efficiency and heat and mass transfer coefficient of cooling tower		
Expt-III	To determine the diffusion coefficient of organic vapor in air		
Expt-IV	To produce drying rate curve for wet solid being dried with air of fixed temperature an humidity		
Expt-V	To determine diffusivity of ionic salt in water at different temperature		
Expt-VI	To study absorption with chemical reaction in packed bed		

1.	Treybal, R.E., "Mass Transfer Operations" 3rd Edn., McGraw-Hill Book Company
	(1980).
2.	McCabe, W.L., Smith, J.C., Harriott, P., "Unit Operations of Chemical Engineering", 7
	thEdn., McGraw-Hill Book Company (2011).
3.	Basmadjian, D., "Mass Transfer and Separation Processes: Principles and Applications",
	CRC Press (2007).
4.	Foust, A. S., Wenzel, L. A., Clump, C. W., Maus, L., Andersen, L. B., "Principles of Unit
	Operations", 2nd Edn., Wiley-India (2008).

Elective-I: Polymer Science and Engineering (CET-020)

Subject: Polymer Science and	Year & Semester: B. Tech. Chemical		Total Course Credit: 4		
Engineering	Engineering		L	T	P
(CET-020) 4 th Year &7 th Semester		&7 th Semester	3	1	0
Evaluation Policy	Mid-Term	Class Assessment	Final-Term		l
Evaluation Folicy	(30 Marks) (10 Marks)		(60 Marks)		

Course Objective

To impart knowledge about polymers, polymerization reactions and their kinetics, polymerization processes, and the mathematical understanding with respect to the rheological behavior of polymers.

Course outcomes (COs): At the end of the course, student will be able to:

CO1	Acquire knowledge about polymerization reaction and its kinetics.
CO2	Exhibit understanding with respect to estimation of molecular weight.
CO3	Get knowledge of processes about polymerization.
CO4	Conceive understanding of mathematical expressions reflecting rheological behavior of
	polymers.

Details of the Syllabus

Details of	the Synabus			
	Chemistry of Polymerisation Reaction: Functionality, polymerization reactions,			
Unit-I	polycondensation, addition free radical and chain polymerization, copolymerization, block			
	and graft polymerizations, stereo specific polymerization			
Unit-II	Polymerisation Kinetics: Kinetics of radial, chain and ionic polymerization and co-			
UIII-II	polymerisation systems.			
Unit-III	Molecular Weight Estimation: Average molecular weight, number average and weight			
UIIII-III	average, theoretical distributions, methods for the estimation of molecular weight.			
	Polymerisation Processes: Bulk, solution, emulsion and suspension polymerization.			
Unit-IV	Thermoplastic composites, fibre reinforcement fillers, surface treatment, reinforced			
	thermoset composites-resins, fibers additives, fabrication methods.			
Unit-V	Rheology: Simple rheological equations, simple linear viscoelastic models-Maxwell, Voigt,			
Unit-v	materials response time, temperature dependence of viscosity.			

1.	Kumar, A., Gupta, R., "Fundamentals of Polymer Engineering", CRC (2003).
2.	Fried, J., "Fundamentals of Polymer Science", Prentice Hall (2004).
3.	Williams, D.J., "Polymer Science & Engg." Prentice Hall (1971).
4.	Billmayer, Jr., W., "Textbook of Polymer Science" Wiley Tappers (1984).
5.	Rodriguez, F., "Principles of Polymer Systems", 5 th Edn., CRC Press (2003).

Elective-I: Computational Fluid Dynamics (CET-021)

Subject: Computational Fluid	Year & Semester: B. Tech Chemical		Total Course Credit: 4		
Dynamics	Engineering		L	T	P
(CET-021)	4 th Year & 7 th Semester		3	1	0
Evaluation Policy	Mid-Term	Class Assessment	F	inal-Term	1
Evaluation Folicy	(30 Marks) (10 Marks)		(60 Marks)		

Course Objective: To learn the fundamental concepts of computational fluid dynamics along with basic numerical techniques and discretization techniques using Finite difference method.

Course outcomes (COs):

Course	outcomes (Cos).		
CO1.	Fundamental understanding and interpretation of governing equations involved in heat		
	and fluid flow problems		
CO2.	Understanding of basic numerical technique's involved		
CO3.	Understanding of Grid formation		
CO4.	Understanding discretization technique's using FDM		

Details of the Syllabus

	the Symbols			
Unit-I	Basic Concepts of Fluid Flow : Philosophy of computational fluid dynamics (CFD), review of equations governing fluid flow and heat transfer, simplified flow models such as			
	incompressible, inviscid, potential and creeping flow.			
Unit-II	Overview of numerical methods: understanding of numerical methods involved like Gauss-			
Unit-11	Seidel, Rungekutta and Crank Nicolson method.			
IInit III	Grid Generation: Structured and unstructured grids, choice of suitable grid, grid			
Unit-III	transformation of equations, Grid Independence test.			
	Finite Difference Method (FDM): Discretization of ODE and PDE, approximation for first,			
Unit-IV	second and mixed derivatives, implementation of boundary conditions, discretization errors,			
	applications to the engineering problems.			

List of Books:

	1. Ghosh, P.S., "Computer Simulation of Flow and Heat Transfer", Tata McGraw-Hill (1998).
Text and Reference Books	 Patankar, S.V., "Numerical Heat Transfer and Fluid Flow", Taylor and Francis (2004). Fletcher, C.A.J., "Computational Techniques for Fluid Dynamics, Vol. 1: Fundamental and General Techniques", Springer-Verlag
BOOKS	 (1998). 4. Fletcher, C.A.J., "Computational Techniques for Fluid Dynamics, Vol. 2: Specific Techniques for Different Flow Categories", Springer-Verlag (1998). 5. Anderson, J.D., "Computational Fluid Dynamics", McGraw Hill (1995).

Elective-I: Advanced Separation Processes (CET-022)

Subject: Advanced Separation	Year & Semester: B. Tech Chemical		Total Course Credit: 4		
Processes	Engineering		L	Т	P
(CET-022)	4 th Year & 7 th Semester		3	1	0
Evaluation Policy	Mid-Term	l-Term Class Assessment		Final-Term	
Evaluation Folicy	(30 Marks)	(10 Marks)	(60 Marks))

Course Objective:

The aim of this course is to study the basic concepts of some separation processes usually not covered in other core subjects.

Course Outcomes (COs):

CO1	Introduce various traditional separation processes emphasizing the drying and		
	crystallization processes.		
CO2	To study the adsorption separation process.		
CO3	To study the membrane separation processes.		
CO4	To study the Ionic separations and some novel separation processes.		

Details of the Syllabus:

Unit-I	Introduction: Review of conventional separation processes based on size and surface properties. (Theory and equipment used). Classification of Dryers, Dryer Selection and Design. Crystallization: Solid-Liquid Phase Equilibrium, Nucleation and Crystal Growth.				
Unit-II	Separations by adsorption techniques Separation by adsorbents and foam separation. Hydro-cyclones, platecolumns, electro static precipitators.				
Unit-III	Membrane separations: Types of membranes. Fundamentals of Dialysis, microfiltration, ultrafiltration, nanofiltration& reverse osmosis.				
Unit-IV	Ionic separations: Electrophoresis, Dielectrophoresis, Electrodialysis.				
Unit-V	Introduction to other novel techniques: Pervaporation, crystallization, Supercritical extraction, Flash Vaporization etc.				

Text Books	1.	R. E. Treybal, Mass Transfer Operations, 3rd Ed., McGraw Hill, 1983
	2.	Ernest J. Henley, J. D. Seader Separation Process Principles, 2 nd Edition" (2010)
Text Books	3	Baker, R.W., <i>Membrane technology and applications</i> , 2nd ed., John Wiley 2004

Elective-I: Operations Research (MAT-023)

Subject: Operations Research	Year & Semester: B. Tech. Chemical		Total Course Credit: 4		
(MAT-023)	Engineering		L	Т	P
	4 th year 7 th Sem.		3	1	0
Evaluation Policy	Mid-Term	Class Assessment	F	inal-Term	1
Evaluation Folicy	(30 Marks)	(10 Marks)	(60 Marks))

Course Objective

This course enables the students to understand mathematical models used in Operations Research and to apply these techniques constructively to make effective business decisions.

Course Outcomes (COs): At the end of the course, student will be able to:

CO1	Identify, formulate, and solve the practical Engineering design problems by applying
	the optimization techniques.
CO2	Determine the schedule for transporting goods from source to destination in a way that
	minimizes the shipping cost.
CO3	Figure out the optimal value of the objective function besides presenting an organized
	strategy for evaluating a feasible region's vertices.
CO4	Determine performance of queuing situation for deciding an appropriate level of service
	for the facility.
	Utilize concepts of game theory to tackle safety management in multi-plant Chemical
	Industrial settings.

Details of the Syllabus:

	Introduction to Operations Research
Unit-I	Concepts and utility of OR in Chemical Engineering, Formulation of Linear Programming
	Problems, General Statement of LPP, Assumptions Underlying LP, Solution of Linear
	Programming Problems: Graphic Method. Some Special Cases of Graphic Method, Convex
	Set: Extreme points of Convex Set, Convex hull.
	Transportation Problem- Models & Solutions
	Mathematical Model of Transportation Problem, Methods of finding Initial basic feasible
Unit-II	solution by NWC Rule, LCM, VAM, Test for optimality by Stepping Stone and MODI
Unit-11	method, Balanced and Unbalanced Transportation Problems, Degeneracy.
	Assignment Model: Mathematical Model of Assignment Problem, The Hungarian Method,
	Simplex Explanation of the Hungarian Method.
	Simplex Techniques: LP Model in Equation Form, Transition From Graphical To Algebraic
Unit-III	Solution, Simplex Algorithm, Artificial starting solution: Big M-Method, Two-phase
Unit-III	Method, Special cases in Simplex Method: Degeneracy, Alternative Optima, Unbounded
	solution, infeasible solution.
	Engineering Applications:
	Queuing Theory: General Structure of Queuing System, Operating Characteristics of
TI *4 TX7	Queuing System, Queuing Models, Role of Poisson and Exponential Distributions, Pure
Unit-IV	Birth and Death Models, Generalized Poisson Queuing Model, Specialized Poisson Queues:
	Single, Multiple and Machine Serving Models.
	Game Theory: Introduction to Game theory, Two-person, zero-sum games.Dominance.

List of Books:

1. Linear Programming by G. Hadlay, Addison Wasley.			
	2. Operations Research – An Introductory by Hamidi A. Taha,		
Recommended	Macmillan.		

Books: 3. Operations Research – Methods and problems by M. Sasien Yaspam and L. Friedman, John Wily and Sons Inc. London.				
References:	 Linear Programming by S.I. Gass, Mc-Graw Hill. Introduction to Operations Research. John Wiley and Sons, New York. Operations Research: An Introduction. Prentice Hall of India Private Limited, New Delhi Wagner. 			

Elective-I: Process Heat Integration (CET-024)

Subject: Process Heat	Year & Semester: B. Tech		Total Course Credit: 4		
Integration	Chemical Engineering		L	Т	P
(CET-024)	4 th Year & 7 th Semester		3	1	0
Evaluation Policy	Mid-Term (30 Marks)	Class Assessment (10 Marks)	Final-Term (60 Marks)		

Course Objective: Optimizing industrial processes by identifying the heat recovery potential and the optimal integration of energy conversion systems.

Course Outcomes (COs): At the end of the course, student will be able to:

CO1.	Ability to understand the fundamentals of process integration
CO2.	Ability to determine the minimum heating and cooling requirements
CO3.	Ability to design minimum energy heat exchanger networks
	Ability to understand the composite and grand composite curves

Details of the Syllabus:

2000225 02	the bynabus.
Unit-I	Process Integration and its Building Blocks: Definition of Process Integration (PI), School of thoughts, Areas of application and Techniques available for PI, Onion diagram.
Unit-II	Pinch Technology – An Overview: Introduction, Basic concept, How it is different than
UIIIt-II	energy auditing, Role of thermodynamic laws, Problem addressed by Pinch technology.
	Pinch Technology: Data extraction, Targeting, Designing, Optimization-Supertargteing.
Unit-III	Grid diagram, Composite curve, Problem table algorithm, Grand composite curve.
Cint-111	Targeting of Heat Exchanger Network (HEN): Energy targeting, Area targeting, Number
	of units targeting, Shell targeting, cost targeting.
	Designing of HEN: Pinch design methods, Heuristic rules, Stream splitting, Design of
Unit-IV	maximum energy recovery (MER), Design of multiple utilities and pinches, Design for
	threshold problem, Loops and Paths.
	Heat Integration of Equipments: Heat engine, Heat pump, Distillation column, Reactor,
Unit-V	Evaporator, Drier, Refrigeration systems.
	Heat and Power Integration: Co-generation, Steam turbine, Gas turbine.

	1.	Kemp I. C., "Pinch Analysis and Process Integration: A user Guide on
		Process Integration for the Efficient Use of Energy", Butterworth-Heinemann.
		(2007)
Text and	2.	Smith R, "Chemical Process Design and Integration", 2nd Ed., Wiley.
Reference		(2005)
Books	3.	Shenoy U. V., "Heat Exchanger Network Synthesis", Gulf Publishing
		Company. (1995)
	4.	Halwagi, M. M., "Process Integration", 7th Ed., Academic Press. (2006)

Elective-II: Cement Technology(CET-025)

Subject: Cement Technology	Year & Semester: B. Tech. Chemical		Total Course Credit: 3		
(CET-025)	Engineering		L	T	P
	4 th Year & 7 th Semester		3	0	0
Evaluation Policy	Mid-Term	Class Assessment	F	inal-Term	1
Evaluation Folicy	(30 Marks)	(10 Marks)	(60 Marks))

Course Objective: To learn the fundamental concepts of the behavioral aspects of various materials in cement making and special concretes.

Course Outcomes (COs):

CO1	Describe the materials used to make cement and technology involved in manufacturing
	the cement
CO2	Identify, describe and carry out tests relevant to the use of cement and concrete on site
CO3	Explain how good cement is produced

Details of the Syllabus:

	v	
Unit-I	Introduction to Cement and cement manufacturing process: Cement and its importance in construction, History of cement and Cement manufacturing process, flow sheet & material composition of cement, various unit operation of cement manufacture, the present status and future of cement industry in India.	
Unit-II	Types of Cement and their brief description and application. Calcareous Raw Materials: Source of Lime, Limestone, Chalk, Marl, Industrial waste, geological distribution of limestone deposits in India, Argillaceous Raw Materials: Source of Silica, Alumina, Iron Oxide, Shale and effect of coal ash and additives use as corrective materials, Fly ash, Slag, lime sludge as cement raw materials. Reactivity of Raw materials, Proportioning of Raw materials and preparation of kiln feed.	
Unit-III	Pyroprocessing and clinker formation. Characterization of Portland Cement Clinker., Mineralizer, Role of additive in clinker formation, various mineralizer and fluxes, their role in manufacture of clinker. Properties of Cement Paste.	
Unit-IV Cement milling, Finess of cement, Setting times, workability, Compressive strange hydration.		
Unit-V	Environmental impact of Cement manufacture. Air and Water emissions,	

	1.	Properties of concrete / A.M.Neville / Pearson 5th edition.
Text Books	2.	Concrete Technology,(4th edition) by Gambhir, M.L., Tata McGraw-Hill, New Delhi, 2009.
TCAT BOOKS	3.	Rao, M.G., Sittig, M., "Dryden's Outlines of Chemical Technology- for the 21st Century. East-West Press (1997).

Elective-II: Managerial Economics for Engineers (HST-026)

Subject: Managerial	Year & Semes	Total Course Credit: 3			
Economics for Engineers	Engineering		L	T	P
(HST-026)	(HST-026) 4 th Yea		3	0	0
Evaluation Policy	Mid-Term	Class Assessment	F	inal-Term	1
Evaluation Folicy	(30 Marks)	(10 Marks)	(60 Marks))

Course Objective

The objective is to familiarize the students with the basic understanding of managerial economics essential for engineers.

Course Outcomes (COs): At the end of the course, students will be able to:

CO1	Exhibit fundamental understanding about business economics.
CO2	Acquire knowledge of demand and supply.
CO3	Get basic concept with respect to production and cost.
CO4	Understand the market structure and monopoly.

Details of the Syllabus

	Paul, Koushil:"Managerial Economics", Cengage Learning, New Delhi,
	Vanita Agarwal: "Managerial Economics", Pearson, New Delhi, 2013.
Text Books	Dominick Salvatore: "Managerial Economics", Oxford University Press, New
	Delhi,2010.
	H.L. Ahuja: "Managerial Economics", S. Chand & Company Ltd, New Delhi-55.
	1. Managerial Economics, Geetika, Piyali Ghosh, Purba Roy Choudhury
Reference	2. Principle of Microeconomics, Gregory Mankiw, Cenagage Learning
Books	Publications
	Economics, Samuleson and Nordhaus, TMH Publishers Ltd. New Delhi

Elective-II: Multi-component Distillation (CET-027)

Subject: Multi-component	Year & Semester: B. Tech Chemical		Total Course Credit: 3		
Distillation	Engineering		L	Т	P
(CET-027)	(CET-027) 4 th Year & 7 th Semester		3	0	0
Evaluation Policy	Mid-Term	Class Assessment	F	inal-Term	
Evaluation Folicy	(30 Marks)	(10 Marks)	(60 Marks)	

Course Objective: The objective of the course is to understand the principles and operation of various distillation processes for Multi-component distillation systems.

Course outcomes (COs): At the end of the course, student will be able to:

CO1: VLE calculations like determination bubble point and dew point for multi-component
systems using K-values and relative volatility.
CO2: They learn about various types of MCD column.
CO3: Students able to design multi-component distillation unit.

Details of the Syllabus:

	2 ctails of the Syllabast					
	Unit-I Basic concepts of phase equilibria. Distribution co-efficient. Ideal and non-ideal system Design variables.					
-	Unit-II	Equilibrium flash separation. Binary distillation, x-y diagrams. Enthalpy concentration diagrams. Design calculations.				
	Unit-III	Multi-component distillation. Design calculations. Theoretical analysis. Azeotropic and extractive distillation. Distillation equipment. Plate and packed towers. Design procedures.				

List of Books:

	1. Holland, C. D., "Fundamentals of Multi-component Distillation",
	McGraw-Hill (1981).
Recommended Books:	2.
	Sherwood, T.K., Pigford, R.L., Wilkes, C.R., "MassTransfer", McGraw-
	Hill (1975).
	3. Buford D. Smith, B.D., Brinkley, W. K., " General Short- cut
	Equation for Equilibrium stage Processes", AIChE Journal: <u>6</u>
	<u>(3)</u> ,446–450 (1960).
	1. Sawistowski, H., Smith, W. "Mass Transfer Process
	calculations", Eng. News: 41, 68 (1963).
References:	2. Treybal, R. E., "Mass-Transfer Operations", 3 rd Edn., McGraw-Hill
	(1981).

Elective-II: Optimization Techniques in Chemical Engineering (CET-028)

Subject: Optimization	Subject: OptimizationYear & Semester: B. Tech ChemicalTechniques in ChemicalEngineeringEngineering(CET-028)4th Year & 7th Semester		Total Course Credit: 3		
Techniques in Chemical			L	T	P
Engineering(CET-028)			3	0	0
Evaluation Policy	Mid-Term	Class Assessment	F	inal-Term	
Evaluation Folicy	(30 Marks)	(10 Marks)	(60 Marks)	

Course Objective: The objective of the course is to understand the detailed theory and application of optimization in chemical engineering and related fields.

Course outcomes (COs): At the end of the course, student will be able to:

CO1	understand the objective functions and conditions for optimization					
CO2	Application of optimization to different chemical engineering problems, problem					
	formulation procedures for optimization					
CO3	Use of various methods for both constrained and unconstrained optimization problems.					

Details of the Syllabus:

	2 00012 01 010 25 1100 000				
Unit-I	nit I	Basic concepts of systems analysis and optimization, classical optimization techniques, linear			
	1111-1	programming, two phase simple method and duality in linear programming,			
Unit-II	.:4 TT	Transportation models, assignment models, non-linear programming, method of Lagrange			
	111-11	multipliers, Wolf's method for solving N.L.P.P,			
		Formulation of optimization problems in Chemical and allied Engineering. Introduction to			
Unit-I	it-III	dynamic programming, application to chemical engineering.			

List of Books:

	1. Rangaiah, G.P., "Multi-Objective Optimization: Techniques and		
	Applications in Chemical", World Scientific Publishing Company		
Recommended Books:	Pvt. Ltd. (2009).		
	2. Deb, K., "Optimization for Engineering Design: Algorithms and		
	Examples", 2 nd Edn.,PHI (2012).		
	3. Rao., S.S., " Engineering Optimization: Theory and Practice",		
	John Wiley & Sons Inc. (2009).		
	1. Vlide, I., "Optimum Seeking Methods", Prentice-Hall Inc. (1964).		
	2. Gass, S.I., "Linear Programming: Methods and Applications",		
References:	McGraw-Hill (2003).		
	3. Bazaraa, M. S., ,Sherali, H. D., Shetty, C.M., "Non-Linear		
	Programming: Theory and Algorithms", John Wiley & Sons (2013).		

Elective-II: Heterogeneous Catalysis and Catalytic Processes (CET-029)

Subject: Heterogeneous	Year & Semest	Total Course Credit: 4			
Catalysis and Catalytic	Engineering		L	T	P
Processes	4 th Year & 7 th Semester		3	1	0
(CET-029)					
Evaluation Policy	Mid-Term Class Assessment		Final-Term		
Evaluation Folicy	(30 Marks)	(10 Marks)	(60 Marks))

Course Objective

To gain the knowledge of catalyst characteristics, mechanism of catalytic reactions, and design of catalytic reactors.

•

Course outcomes (COs): At the end of the course, student will be able to:

	,
CO1	Develop various catalytic reaction mechanisms.
CO2	Characterize a catalyst.
CO3	Assess the effects of external heat and mass transfer effects in heterogeneous catalysis.
CO4	Calculate the effectiveness of a porous catalyst.
CO5	Design different types of reactors for catalytic reactions.

Details of the Syllabus

UNIT-01	Catalysis: Homogeneous and heterogeneous catalysts, classification of catalytic
	reactions and catalysts, commercial chemical catalysts, steps in catalytic reactions.
UNIT-02	Preparation and Properties of Catalysts: Methods of catalyst preparation, physical
	properties of catalyst – surface area, pore volume, pore size distribution, solid density,
	particle density, bulk density, void volume, catalyst promoters and inhibitors, catalyst
	accelerators and poisons.
UNIT-03	Adsorption and Catalytic Reactions: Adsorption isotherms, surface reaction, single
	site and dual site mechanism, desorption, catalyst deactivation, pore structure and
	surface area estimation and their significance.
UNIT-04	External Transport Processes: Fluid particle mass and heat transfer, Mass transfer-
	limited reactions in packed beds, Non-isothermal behavior of packed-bed reactors,
	Staged packed bed reactors for approaching optimum temperature progression, Stable
	operating conditions in reactors and hot spot formation, Effect of external transport
	processes on selectivity under non-isothermal conditions.
UNIT-05	Diffusion and Reaction in Porous Catalysts: Intra-pellet mass transfer and diffusion
	in cylindrical and spherical porous catalyst particles, Thiele modulus, Diffusion
	controlled and surface reaction controlled kinetics, Effectiveness factor for catalysts,
	Effects of heat transfer - temperature gradients across fluid-solid film and across
	catalyst pellet, Fluidized bed reactors, Three phase reactors – slurry and trickle bed
	reactors.
UNIT-06	Generalized Design: Design of catalytic reactors under adiabatic and non-adiabatic
	conditions, Design of industrial fixed-bed, fluidized-bed and slurry reactors.

1.	Smith, J.M., "Chemical Engineering Kinetics", McGraw-Hill (1981).			
2.	Fogler, H.S., "Elements of Chemical Reaction Engineering", Prentice-Hall India (2009).			
3.	Denbigh, K.G., and Turner, J.C.R., "Chemical Reactor Theory: An Introduction",			
	Cambridge University Press (1984).			
4.	Carberry, J.J., "Chemical and Catalytic Reaction Engineering", McGraw-Hill, (2001).			
5.	Levenspiel, O., "Chemical Reaction Engineering", John Wiley (2006).			

8th Semester

Project Work (CEP-464)

Subject: Project	Year & Semester: B. Tech Chemical	Total Course Credit: 8		edit: 8
(CEP-464)	Engineering	L	T	P
	4 th Year & 8 th Semester	0	0	16
Evaluation Policy*	Total Marks			
Evaluation 1 oney	(100)			

^{*}Based on presentations by each of the student before a panel of examiners nominated by H.O.D with due weightage to Supervisor evaluation and final report submitted.

Course Objective

This course enables the students to get first-hand experience acquainting with principles and applications of chemical engineering by analyzing as well as solving problems concerning industries, research etc.

Course outcomes (COs): At the end of the course, student will be able to:

CO1	Acquaint students with research methodology.
CO2	Enable students to correlate class mode learning to real industrial as well as research
	applications
CO3	Understand the literature and previous studies concerning the problem
CO4	Facilitate the learning of proper report writing and comprehensive communications
	skills.

Note: There is no course content fixed. Based on collection of information, survey of literature and procurement of materials including chemicals during the pre-project work, the final semester project work is carried out in the eighth semester and is finalized by the end of the semester. The final evaluation is based on quality of report, presentation and viva voice examination by the examiner (preferably external).

Bioresource Technology (CET-465)

Subject: Bioresource Technology	Year & Semester: B. Tech. Chemical Engineering 4 th year &8 th Semester		Total Course Credit: 4		
(CET-465)			L	T	P
			3	1	0
Evaluation Policy	Mid-Term (30 Marks)	Class Assessment (10 Marks)	Final-Term (60 Marks)		

Course Objective:

The aim of this course is to provide fundamental knowledge for bioenergy generation and product formation with the help of various conversion processes adequate to diverse bioresource characteristics.

Course Outcomes (COs):

CO1	Fundamental understanding of the bioresources and its applications for attainment of social
	objectives (energy, environment, product, sustainability).
CO2	Acquire knowledge with respect to the properties of the bioresources and the conversion
	technologies.
CO3	Exhibiting knowledge of the systems used for bioresource technology.
CO4	Understanding about analysis of data and their applications in design of the systems and
	development of the bioprocess.

Details of the Syllabus:

	uic Synabasi
Unit-I	Bioresources- natural and anthropogenic; importance of bio-resources and their utilization. Natural bio-resources: agricultural, forestry and aquatic biomass. Biomass availability, production and food security, non- edible biomass characteristics. Anthropogenic bio-resources: Organic wastes-domestic and industrial; characteristics of municipal sewage / sludge and industrial sludges.
Unit-II	Conversion processes: biochemical, thermo-chemical and physico-chemical conversion processes. Biochemical processes: Microbial anaerobic and aerobic processes, enzymatic processes; fermentation for alcohols and acids; penicillin and other therapeutic products. Production of single cell protein (SCP); bio-pulping, biogasification. Thermo-chemical processes: pyrolysis (coke and pyro-oils), oxidation-combustion, gasification (downdraft, updraft and fixed bed gasification, fluidized bed and entrained bed gasification). Various methods of manufacture of activated carbons
Unit-III	Physico-chemical processes: Pretreatment, steam/acid/alkali hydrolysis, effect of temperature onhydrolysis.
Unit-IV	Special topics: biofuels, biomaterials, specialty chemicals (gylcol, acetic acid and down stream chemicals), anhydrous alcohols-ethanol and butanol; biodiesel, bio-aviation turbine fuel (BATF).

	1.	Shuler, M., Kargi, F., "Bioprocess Engineering, Basic Concep", 2 nd Edn., Prentice Hall of India Pvt. Ltd. (2004).
Text Books	2.	Chakraverty, A., "Biotechnology and other Alternative Technologies", Oxford and IBH Publishing Co. Pvt. Ltd. (1995).
	3.	Rao, M.G., Sittig, M., "Dryden's Outlines of Chemical Technology- for the 21stCentury. East-West Press (1997).
	4.	Austin, G.T., "Shreve's Chemical Process Industries", McGraw-Hill Book Company (1984).
Defenence	1.	Pandey, A., "Concise Encyclopaedia of Bioresource Technology", CRC Press (2004).
Reference Books	2.	Glaucia, M.S. et al. (eds), "Bioenergy &Sustainability: Bridging the Gaps", SCOPE 72, Universidade de São Paulo, Brazil (2015).
	3.	Eckert &Trihn (eds), "Biotechnology for Biofuel Production and Optimization",

	Elsevier (2016).
4.	Cock, "Encyclopedia of Life Support Systems (EOLSS)", UNESCO, (2011)
5.	S. Van Loo, "Handbook of Biomass Combustionand Co-Firing" ,Twente University Press, 2002.
6.	Wang, W.C. et al., "Review of Biojet FuelConversion Technologies", National Renewable Energy Laboratory (USDE), Technical Report, 2016.

Biochemical Engineering Lab (CEL-466)

Subject: Biochemical	Year & Semester: B. Tech. Chemical	Total Course Credit: 1		
Engineering Lab.	Engineering	L	T	P
(CEL-466)	4 th year &8 th Semester	0	0	2
Evaluation Policy*	Total Marks			
Evaluation Folicy	(100)			

Course Objective:

The purpose is to impart fundamental knowledge with respect to the equipments and techniques essential for carrying out fermentation for generation and analysis of the data and finally development of the bioprocess.

Course Outcomes (COs):

CO1	Acquire basic knowledge of various equipments used in biochemical engineering lab.
CO2	Fundamental understanding of techniques with respect to sterilization, preparation of
	solid and liquid media, culture growth and preservation.
CO3	Basic understanding of estimation techniques for biomass, substrate and product.
CO4	Generation and analysis of data for design and development of bioprocess.

Details of the Syllabus:

Unit-I	Study of various equipments used in biochemical engineering lab.		
Unit-II	Study of sterilization. Preparation of culture media, agar slants and agar plates, growth and preservation of microbial cultures.		
Unit-III	Study of aeration and agitation, determination of volumetric mass transfer coefficient ($k_l a$) of oxygen. Methods for estimation of biomass, substrate and product concentrations.		
Unit-IV	Kinetic study of fermentation. Study of bioseparation.		

List of Experiments

Dist of E	Aper mients		
S.No.	Experiments		
1.	Study the fundamentals of bioreactor, shaking incubator, spectrophotometer, HPLC, laminar flow chamber, autoclave, centrifuge. w.r.t. its construction, function (application) and principle of operation.		
2.	To prepare basic solid media as agar slants and agar plates.		
3.	Study of sterilization by application of a steam autoclave.		
4.	Quantitative estimation of glucose concentration by DNS colorimetric method or by pheno sulfuric acid method.		
5.	Estimation of cell concentration.		
6.	Determination of volumetric mass-transfer co-efficient of O ₂ by static method.		
7.	Determination of volumetric mass-transfer co-efficient of O ₂ by dynamicmethod.		
8.	To study the kinetics of alcohol (ethyl alcohol) fermentation by using baker's yeast (<i>Saccharomyces cerevisae</i>) in a batch bioreactor.		

References

1.	Shuler, M., Kargi, F., "Bioprocess Engineering, Basic Concep", 2 nd Edn., Prentice
	Hall of India Pvt. Ltd. (2004).
2.	Bhattacharya, R.N., "Experiments with Microorganisms", Emkay Publications,
	Delhi (1986).
3.	Aneja, K.R., "Experiments in Microbiology, Plant Pathology, Tissue Culture and
	Mushroom Cultivation", VishwaPrakashan (New Age International (P) Limited),
	New Delhi (1996).
4.	Experiments Handouts (Departmental)

Modelling & Simulation of Chemical Process Systems (Code: CET-467)

Subject: Modelling&	Year & Semes	Total	Course Cr	edit: 3	
Simulation of Chemical				T	P
Process Systems (Code: CET-467)	4 th Year & 8 th Semester		3	0	0
Evaluation Policy	Mid-Term (30 Marks)	Class Assessment (10 Marks)		Final-Term (60 Marks)	

Course Objective: To provide adequate information to the modelling of chemical engineering process systems and also familiarize the numerical simulation of model equations.

Course Outcomes (COs): At the end of the course, student will be able to:

CO1.	Identify the terms involved in inventory rate equation of mass, energy and momentum
CO2.	Recall the basic concepts involved in modeling and simulation
CO3.	Apply conservation of mass, momentum and energy equations to engineering problems
CO4.	Develop model equations for chemical engineering systems
CO5	Solve the model equations and chemical engineering problems using numerical
	techniques

Details of the Syllabus:

	Introduction: Introduction to process modeling and simulation, terminology of Process
Unit-I	modeling and simulation, Steps for building a mathematical model, Inventory rate equation of
	the conserved quantities, Mathematical formulation of the conserved quantities (Mass,
	Momentum and Energy equations), Molecular and Convective Transport.
	Rate of generation term and steady state macroscopic balance: Rate of Generation in
TI!4 TT	Momentum, Energy and Mass Transfer, Steady-State Macroscopic Balances, comparison of
Unit-II	microscopic and macroscopic balances, steady state macroscopic balance problem solving
	using least square method.
	Unsteady state macroscopic balance: Building blocks of unsteady state macroscopic
***	balance, Pseudo-Steady-State-Approximation, Conservation of Chemical Species,
Unit-III	Momentum, Energy and total Mass, Unsteady state Energy balance around a Continuous
	Stirred Tank, unsteady state macroscopic balance problem solving using Euler's method.
	Modeling of chemical process systems: Models, need of models and their classification,
	models based on transport phenomena principles, alternate classification of models,
T1 14 TX7	Continuous Stirred Tank Reactor (CSTR) with constant holdup, Continuous Stirred Tank
Unit-IV	Reactor (CSTR) with Variable holdup, Two Heated Tank, Gas phase Pressurized CSTR,
	Multi-Component Flash Drum, Gravity Flow Tank, Non-isothermal CSTR, Ideal Binary
	Distillation Column, Batch reactor.
TT *4 T7	Process simulation: Simulation of chemical process equipment, program development and
Unit-V	numerical solution, Case Studies.

	1.	Luyben, W. L., "Process Modeling, Simulation and Control for Chemical
		Engineers". McGraw Hill (1990).
Text Books	2.	NayefGhasem, "Modeling and Simulation of Chemical Process Systems",
Text Dooks		CRC Press, Taylor & Francis Group (2019).
	3.	Ismail Tosun, Modeling in Transport Phenomena – A Conceptual Approach,
		2 nd Edn, Elsevier Publications 2007.
	1.	Davis M.E., Numerical Methods and Modeling for Chemical Engineers,
		Wiley, New York, 1984
Reference	2.	Ashok Kumar Verma, Process Modelling and Simulation in Chemical,
Books		Biochemical and Environmental Engineering, CRC Press, Taylor & Francis
DUUKS		Group (2015).
	3.	Amiya K Jana, "Chemical Process Modelling and Computer Simulation", 2 nd
		Edition, PHI Learning Private Limited, (2011).

Industrial Pollution Abatement (CET-468)

Subject: Industrial Pollution	Year & Semester	Total C	Course Cr	edit: 3	
Abatement (CET-468)		neering	L	T	P
	4 th Year &	8 th Semester	3	0	0
Evaluation Policy	Mid-Term (30 Marks)	Continuous Assessment (10 Marks)		Final-Term 60 Marks)	

Course Objectives:

- 1. To understand the significance of industrial pollution abatement
- 2. To understand the sources, effects and prevention of pollution and recycling of water and waste
- 3. To design and understand the working of pollution control equipment

Course outcomes (COs): Upon successful completion of the course, students will be able to:

CO1.	Understand the sources, effects and prevention of pollution and recycling of water and waste				
CO2.	Illustrate the methods to measure the industrial pollution				
CO3.	Understand the principles of industrial pollution control and design air pollution control systems				
CO4.	Apply the basic chemical engineering concepts in design of industrial wastewater treatment				
	systems				

Details of the Syllabus:

	Introduction: Environment and environmental pollution from chemical process industries,
Unit-I	characterization of emission and effluents, environmental Laws and rules, standards for
	ambient air, noise emission and effluents
	Pollution Prevention : Process modification, alternative raw material, recovery of by/co
	products from industrial emissions/effluents, recycle and reuse of waste, energy recovery and
Unit-II	waste utilization. Material and energy balance for pollution minimization. Water use
	minimization, Fugitive emission/effluents and leakages and their control-housekeeping and
	maintenance
	Air Pollution Control: Particulate emission control by mechanical separation and
Unit-III	electrostatic precipitation, wet gas scrubbing, gaseous emission control by absorption and
	adsorption; Design of cyclones, ESP, fabric filters and absorbers.
	Water Pollution Control: Physical treatment, pre-treatment, solids removal by setting and
Unit-IV	sedimentation, filtration centrifugation, coagulation and flocculation.
UIIIt-I V	Biological Treatment: Anaerobic and aerobic treatment biochemical kinetics, trickling filter,
	activated sludge and lagoons, aeration systems, sludge separation and drying
Unit-V	Solids Disposal: Solids waste disposal – composting, landfill, briquetting / gasification and
Unit-V	incineration

	1.	Tchobanoglous, G., Burton, F. L., Stensel, H.D., "Waste Water Engineering:		
	Treatment and Reuse", Tata McGraw Hill, (2003)			
Text Books 2. Vallero, D., "Fundamentals of Air Pollution", Academic Press, (200				
	3.	Eckenfelder W. W., "Industrial Water Pollution Control", McGraw Hill,		
		(1999)		
	1.	Kreith F. and Tchobanoglous G., "Handbook of Solid Waste Management",		
Reference		Mc Graw Hill, (2002)		
Books	2.	Pichtel, J., "Waste Management Practices: Municipal, Hazardous and		
		Industrial", CRC (2005)		

Elective –III (CET-069-072) Elective- IV (CET-073--076)

The two of the electives will be online courses, each having 03 no. of credits (Total 06 credits). Courses will be managed by the faculty mentor from the Department (to be nominated). The courses will be floated at the time of beginning of semester preferably from SWAYAM etc.. The student will have to opt for any two of such courses of his/her choice.

The Department will be floating the following subjects as an option for online courses:

- 1. CET-069 Petroleum Refining
- 2. CET-070 Clean Technology in Process Industries
- 3. CET-073 Food Technology
- 4. CET-074 Instrumental Methods of Analysis
- 5. CET-075 Nanoscience and Technology