Part-IV- Development of Mathematical Models

2.1.1 Uses of Mathematical Models

Without doubt, the most important result of developng a mathematical model of
a chemical engineering system 1s the understanding that 1s gained of what really
makes the process “tick.” This insight enables you to strip away from the
problem the many extraneous “confusion factors™ and to get to the core of the
system. You can see more clearly the cause-and-effect relationships between
the wvanables.

Mathematical models can be useful in all phases of chemical engineering,
from research and development to plant operations, and even in business and
economic  studies.

1. Research and development: determining chemical kinetic mechanisms and
parameters from laboratory or pilot-plant reaction data; exploring the effects
of different operating conditions for optimization and control studies; aiding
in scale-up calculations.

2. Design: explonng the sizing and arrangement of processing equipment for
dynamic performance; studying the interactions of various parts of the
process, particularly when material recycle or heat integration 1s used; evalu-
ating alternative process and control structures and strategies; simulating
start-up, shutdown, and emergency situations and procedures.

3. Plant operation: troubleshooting control and processing problems; aiding in
start-up and operator traming; studying the effects of and the requrements for
expansion (bottleneck-removal) projects; optimizing plant operation. It is
usually much cheaper, safer, and faster to conduct the kinds of studies listed
above on a mathematical model than experimentally on an operating unit.
This 1s not to say that plant tests are not needed. As we will discuss later, they
are a vital part of confiming the vabdity of the model and of venfymg impor-
tant ideas and recommendations that evolve from the model studies.

2.1.2 Scope of Coverage

We will discuss m this book only determmistic systems that can be described by
ordmary or partial differential equations. Most of the emphasis will be on lumped
systems (with one independent variable, time, described by ordinary differential
equations). Both Enghsh and SI umts will be used. You need to be famuliar with

both.

[Reference: William L Luyben - Process modeling, simulation, and control
for chemical engineers-McGraw-Hill (1990)]
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2.1.3 Principles of Formulation

A. BASIS. The bases for mathematical models are the fundamental physical and
chemical laws, such as the laws of conservation of mass, energy, and momentum.

To study dynamics we will use them 1in their general form with time derivatives
included.

B. ASSUMPTIONS. Probably the most wital role that the engineer plays m mod-
eling 1s in exercising his engineering judgment as to what assumptions can be
validly made. Obviously an extremely rigorous model that includes every phe-
nomenon down to microscopic detail would be so complex that it would take a
long time to develop and might be impractical to solve, even on the latest super-
computers. An engineering compromise between a rigorous description and
getting an answer that 1s good enough 1s always required. This has been called
“optimum sloppiness.” It involves making as many simplifying assumptions as
are reasonable without “throwing out the baby with the bath water.” In practice,
this optimum usually corresponds to a model which 1s as complex as the avail-
able computing faciliies will permitt More and more this 1s a personal computer.

The development of a model that incorporates the basic phenomena
occurring in the process requires a lot of skill, ingenuity, and practice. It 1s an
area where the creativity and innovativeness of the engineer is a key element in
the success of the process.

The assumptions that are made should be carefully considered and listed.
They impose limitations on the model that should always be kept in mind when
evaluating 1ts predicted results.

C. MATHEMATICAL CONSISTENCY OF MODEL. Once all the equations of the
mathematical model have been wniten, it 15 usually a good idea, particularly with

big, complex systems of equations, to make sure that the number of vanables
equals the number of equations. The so-called “degrees of freedom™ of the system
must be zero in order to obtain a solution. If this is not true, the system 1s
underspecified or overspecified and something i1s wrong with the formulation of
the problem. This kind of consistency check may seem trivial, but I can testify
from sad experience that it can save many hours of frustration, confusion, and
wasted computer time.

[Reference: William L Luyben - Process modeling, simulation, and control
for chemical engineers-McGraw-Hill (1990)]
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Checking to see that the units of all terms in all equations are consistent 1s
perhaps another trivial and obvious step, but one that 1s often forgotten. It is
essential to be particularly careful of the time units of parameters in dynamic
models. Any units can be used (seconds, minutes, hours, etc.), but they cannot be
mixed. We will use “minutes” m most of our examples, but it should be remem-
bered that many parameters are commonly on other time bases and need to be
converted appropriately, e.g., overall heat transfer coefficients in Btu/h °F ft* or
velocity in m/s. Dynamic simulation results are frequently in error because the
engineer has forgotten a factor of “60” somewhere m the equations.

D. SOLUTION OF THE MODEL EQUATIONS. We will concern ourselves in
detail with this aspect of the model in Part II. However, the available solution
techniques and tools must be kept n mind as a mathematical model i1s developed.
An equation without any way to solve it 1s not worth much.

E. VERIFICATION. An important but often neglected part of developing a math-
ematical model 1s proving that the model describes the real-world situation. At
the design stage this sometimes cannot be done because the plant has not yet
been built. However, even m this situation there are usually either similar existing
plants or a pilot plant from which some experimental dynamic data can be
obtained.

2.2 FUNDAMENTAL LAWS

In this section, some fundamental laws of physics and chemustry are reviewed
their general time-dependent form, and their applicaton to some simple chemical
systems 15 1llustrated.

2.2.1 Continuity Equations

A. TOTAL CONTINUITY EQUATION (MASS BALANCE). The principle of the
conservation of mass when apphed to a dynamic system says

Mass flow mass flow ] __ [ time rate of change o1
into system out of system | | of mass inside system '

[Reference: William L Luyben - Process modeling, simulation, and control
for chemical engineers-McGraw-Hill (1990)]
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The units of this equation are mass per time. Only one total continuity equation
can be wrtten for one system.

The normal steadystate design equation that we are accustomed to using

says that “what goes m, comes out” The dynamic version of this says the same
thmg with the addition of the world “eventually.”

The right-hand side of Eq. (2.1) will be either a partial derivative /gt or an

ordinary derivative d/dt of the mass inside the system with respect to the inde-
pendent vanable t.

Example 2.1 Consider the tank of perfectly mixed liqud shown m Fig. 2.1 mto
which flows a liquid stream at a volumetric rate of F, (ft*/min or m*/min) and with
a density of pg (Iby/ft* or kg/m?). The volumetric holdup of liquid in the tank is ¥
(ft® or m?), and its density is p, The volumetric flow rate from the tank is F, and the
density of the outflowing stream is the same as that of the tank’s contents.

The system for which we want to write a total continuity equation is all the
liquid phase in the tank. We call this a macroscopic system, as opposed to a micro-
scopic system, since it is of definite and finite size. The mass balance is around the
whole tank, not just a small, differential element inside the tank.

Fg po = Fp = time rate of change of pV (2.2)
The units of this equation are Ib/min or kg/min,

(ﬂ’ lbm) ft* \/1b,\ _ (ft*XIb,/ft%)
min\F )" \min\®*/~  min
Since the liquid is perfectly mixed, the density is the same everywhere in the tank; it
does not vary with radial or axial position; i.e., there are no spatial gradients in
density in the tank. This is why we can use a macroscopic system. It also means that
there is only one independent variable, t,

Since p and V are functions only of ¢, an ordinary derivative is used in Eq.
{2.2).

dpV)
——=Fopo—Fp @3
dt
Foy
Pairy *
Finy Fuy
- ' 9 FIGURE 21
Perfectly mixed tank

B. COMPONENT CONTINUITY EQUATIONS (COMPONENT BALANCES).
Unlike mass, chemical components are not conserved. If a reaction occurs inside
a system, the number of moles of an indvidual component will mcrease if it 15 a

[Reference: William L Luyben - Process modeling, simulation, and control
for chemical engineers-McGraw-Hill (1990)]
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product of the reaction or decrease 1f it 1s a reactant. Therefore the component
contmuity equation of thejth chemical species of the system says
I:Fluw of moles ofjth ] [ﬂmv of moles ofjth

component into system component out of system

N rate of formation of moles of jth
component from chemical reactions

time rate of change of moles of jth

- |:cnmpunent mside system I (2.9)

The umts of this equation are moles of component j per umit time.

The flows m and out can be both convective (due to bulk flow) and molecu-
lar (due to diffusion) We can wnte one component continuity equation for each
component m the system. If there are NC components, there are NC component
continuity equations for any one system. However, the s total mass balance
and these NC component balances are not all independent, since the sum of all
the moles times their respective molecular weights equals the total mass. There-
fore a given system has only NC independent continuity equations. We usually
use the total mass balance and NC = 1 component balances. For example, in a
binary (two-component) system, there would be one total mass balance and one
component balance.

Example 2.3. Consider the same tank of perfectly mixed liquid that we used in
Example 2.1 except that a chemical reaction takes place in the liquid in the tank.
The system is now a CSTR (continuous stired-tank reactor) as shown in Fig. 2.3.
Component A reacts irreversibly and at a specific reaction rate k to form product,
component B.

A * B
Let the concentration of component A in the inflowing feed stream be C,,, (moles of
A per unit volume) and in the reactor C,. Assuming a simple first-order reaction,
the rate of consumption of reactant A per unit volume will be directly proportional
to the nstantaneous concentration of A in the tank. Filling in the terms in Eq. (2.9)
for a component balance on reactant A,

Flow of A into system = F; C,p
Flow of A out of system = FC,
Rate of formation of A from reaction = = VkC,

Cap
Ca0
¥
C.f‘ F
cr ¢, FIGURE 23

Cs CSTR.

- | for chemical engineers-McGraw-Hill (1990)]
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The minus sign comes from the fact that A is being consumed, not produced. The
units of all these terms must be the same: moles of A per unit time. Therefore the
VkC, term must have these units, for example (ft*)min~'¥moles of A/ft?). Thus
the units of k in this system are min~ !,

Time rate of change of A inside tank = %&]

Combining all of the above gives

dvey

& = FyCpo = FC = VC, (2.10)
[}

We have used an ordinary dernivative since ¢ is the only independent variable in this
lumped system. The units of this component continuity equation are moles of A per
unit time. The left-hand side of the equation is the dynamic term. The first two
terms on the night-hand side are the convective terms. The last term is the gener-
ation term.

Since the system is binary (components A and B), we could write another
component continuity equation for component B. Let Cy be the concentration of B
in moles of B per unit volume.

ﬂ% - Fy Cyo = FCq + VKC,

Note the plus sign before the generation term since B is being produced by the
reaction. Alternatively we could use the total continuity equation [Eq. (2‘3]] since
C, . Cg, and p are uniquely related by

MﬁCﬁ“'MBCB:P (2.11)

where M, and M, are the molecular weights of components A and B, respectively.

[Reference: William L Luyben - Process modeling, simulation, and control
for chemical engineers-McGraw-Hill (1990)]
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Example 2.4. Suppose we have the same macroscopic system as above except that
now consecutive reactions occur. Reactant A goes to B at a specific reaction rate k,,
but B can react at a specific reaction rate k, to form a third component C.

A—2 gk,

Assuming first-order reactions, the component continuity equations for com-
ponents A, B, and C are

Ve
A FyCoo— FCy + Vh, Co~ Vhy Gy en
d{";fﬂ] =F{|Cc0_FCc+ szff,

The component concentrations are related to the density

C
2 MC=p (2.13)
j=A

Three component balances could be used or we could use two of the component
balances and a total mass balance.

[Reference: William L Luyben - Process modeling, simulation, and control
for chemical engineers-McGraw-Hill (1990)]
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2.2.2 Energy Equation

The first law of thermodynamics puts forward the principle of conservation of
energy. Written for a general “open™ system (where flow of material in and out of
the system can occur) it is

Flow of intermal, kinetc, and flow of internal, kinetic, and
potential energy into system |- | potential energy out of system
by convection or diffusion by convection or diffusion
heat added to system by work done by system on
+ | conduction, radiation, and | = kurroundings (shaft work and
reaction PV work)

_I:time rate of change of intemal, kinetic, (2.18)

and potential energy inside system

Example 2.6. The CSTR system of Example 2.3 will be considered again, this time

with a cooling coil inside the tank that can remove the exothermic heat of reaction A
(Btu/lb . mol of A reacted or cal/g- mol of A reacted). We use the normal convention
that 4 is negative for an exothermic reaction and positive for an endothermic reac-

tion. The rate of heat generation (energy per time) due to reaction is the rate of
consumption of A times A.

Qg = —AVC, k {2.19)

Fy
Can ]
p{l F e R ———
T
¢ v

Ca

P F

P FIGURE 25

CSTR with heat removal.

[Reference: William L Luyben - Process modeling, simulation, and control
for chemical engineers-McGraw-Hill (1990)]
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The rate of heat removal from the reaction mass to the cooling coil is - (energy
per time). The temperature of the feed stream is T; and the temperature in the
reactor is T ("R or K). Writing Eq. (2.18) for this system,

FopolUs + Ko + o) = Fp(U + K + @) + (Q¢ + Q)

~W +FP=FoPo) = 2 [(U +K +)Vp] 220

where U = intemal energy (energy per unit mass)
K = kinetic energy (energy per unit mass)
¢ = potential energy (energy per unit mass)
W = shaft work done by system (energy per time)
P = pressure of system
Py = pressure of feed stream

Note that all the terms in Eq. (2.20) must have the same units (energy per time) so
the FP terms must use the appropriate conversion factor (778 ft- 1b,/Btu in English
engineering  units).

In the system shown in Fig. 2.5 there is no shaft work, so W = 0. If the inlet
and outlet flow velocities are not very high, the kinetic-energy term is negligible. If
the elevations of the inlet and outlet flows are about the same, the potential-energy
term is small. Thus Eq. (2.20) reduces to

V P P
dlpdrm=FuPaU¢—FPU+Qu+Q—FP ;"’ Foﬂup_n
1]

where ¥ is the specific volume (ft*/lb, or m®/kg), the reciprocal of the density.
Enthalpy, H or h, is defined:

Horh=U + PV (2.22)

We will use h for the enthalpy of a liquid stream and H for the enthalpy of a vapor
stream. Thus, for the CSTR, Eq. (2.21) becomes

Vi
WD  Fopoho — Foh+Q — AVKC, 223

[Reference: William L Luyben - Process modeling, simulation, and control
for chemical engineers-McGraw-Hill (1990)]
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For liquids the P¥ term is negligible compared to the U term, and we use the
time rate of change of the enthalpy of the system instead of the intemmal energy of
the system.

Vh
The enthalpies are functions of composition, temperature, and pressure, but
primarily temperature. From thermodynamics, the heat capacities at constant pres-
sure, C,, , and at constant volume, C,, are

aH gt
“r=(a—z~).. .= (57) 39

To illustrate that the energy is primarily influenced by temperature, let us
simplify the problem by assuming that the liquid enthalpy can be expressed as a
product of absolute temperature and an average heat capacity C, (Btu/lb,"R or
cal/g K) that is constant.

h=C,T
We will also assume that the densities of all the liquid streams are constant. With
these simplifications Eq. (2.24) becomes

pC, E}Etﬂ = pCFo Ty=FI) + Q = AVEC, (2.26)

10

[Reference: William L Luyben - Process modeling, simulation, and control

for chemical engineers-McGraw-Hill (1990)]
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Example 2.7. To show what form the energy equation takes for a two-phase system,

consider the CSTR process shown in Fig. 2.6. Both a liquid product stream F and a
vapor product stream F (volumetric flow) are withdrawn from the vessel. The pres-
sure in the reactor is P. Vapor and liquid volumes are ¥, and V. The density and

temperature of the vapor phase are g, and T, . The mole fraction of A in the vapor is

y. If the phases are in thermal equilibrium, the vapor and liquid temperatures are
equal (T = T,). If the phases are in phase equilibrium, the liquid and vapor composi-
tions are related by Raoult’s law, a relative volatility relationship or some other
vapor-liquid equilibrium relationship (see Sec. 2.2.6). The enthalpy of the vapor
phase H (Btu/lb, or cal/g) is a function of composition y, temperature T, and
pressure P. Neglecting kinetic-energy and potential-energy terms and the work term,

!

u

]

L]

e

-]

=

=

o3

M
J;/
x =

Fo Vi Ca p T

Can

9, :

To 0 4
- P

FIGURE 2.6

Two-phase CSTR with heat removal.
and replacing intemmal energies with enthalpies in the time derivative, the energy
equation of the system (the vapor and liquid contents of the tank) becomes

d(ﬂuﬂfgjﬁﬂh]=Fopnh0_f'ﬂh..pvp”ﬂ+Q-—J.Vk[?ﬁ 2.27)

In order to express this equation explicitly in terms of temperature, let us
again use a very simple form for h(h = C, T) and an equally simple form for H.

H=C, T+, (2.28)

where 4, is an average heat of vaporization of the mixture. In a more rigorous
model 4, could be a function of temperature T, composition y, and pressure P.
Equation (2.27) becomes
dlp, VAC, T+ 4,) + pV, C,T]
dt

= FopoC, Ty = FpC, T

—FpfC,T+ A)+ Q =AVKC, (229

11 | [Reference: William L Luyben - Process modeling, simulation, and control
for chemical engineers-McGraw-Hill (1990)]
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3.2 SERIES OF ISOTHERMAL,
CONSTANT-HOLDUP CSTRs

The system 1s sketched in Fig. 3.1 and 1s a simple extension of the CSTR con-
sidered in Example 2.3. Product B is produced and reactant A 1s consumed 1n
each of the three perfectly mixed reactors by a first-order reaction occurring in
the liguid. For the moment let us assume that the temperatures and holdups
(volumes) of the three tanks can be different, but both temperatures and the
liquid volumes are assumed to be constant (1sothermal and constant holdup).
Density 15 assumed constant throughout the system, which 15 a binary muxture of
A and B.

With these assumptions in mind, we are ready to formulate our model. If
the volume and density of each tank are constant, the total mass in each tank 1s
constant. Thus the total continuity egquation for the first reactor 1s

A < pFy — pF, =0 3.1
orF, =F,.
Likewise total mass balances on tanks 2 and 3 give

Fy= F,= F,= F,=F (3.2)

where F is defined as the throughput (m?/min).

We want to keep track of the amounts of reactant A and product B i each
tank, so component continuty equations are needed. However, since the system
1s binary and we know the total mass of material in each tank, only one com-
ponent continuity equation is required. Either B or A can be used. If we arbi-
tranily choose A, the equations descnbing the dynamic changes in the amounts of

Fy o F £y

B — V1 - - e ] =3  ——
k) 2 & ks

Cap Cal Caz Cas

FIGURE 3.1

Senies of CSTRs.

12 | [Reference: William L Luyben - Process modeling, simulation, and control
for chemical engineers-McGraw-Hill (1990)]
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reactant A in each tank are (with units of kg * mol of A/min)

dCyy
Vl At F{Cao - CM) - Vlklcm

dCy;
Vz ir F(C.u - CAZ) -~V kz Caz {3-3}

dC
V _""ﬁ F(C.mz - Caﬂ Va ka CA!.

The specific reaction rates k, are given by the Armhenius equation
k,=oe ®RTn  p=11213 (3.4

If the temperatures in the reactors are different, the ks are different. The p refers
to the stage number.

The volumes ¥, can be pulled out of the time derivatives because they are
constant (see Sec. 3.3). The flows are all equal to F but can vary with time. An
energy equation i1s not required because we have assumed isothermal operation.
Any heat addition or heat removal required to keep the reactors at constant
temperatures could be calculated from a steadystate energy balance (zero time
derivatives  of temperature).

The three first-order nonlinear ordinary differential equations given in Egs.
(3.3) are the mathematical model of the system. The parameters that must be
known are ¥, V3, V3, ky,k,, and k3. The variables that must be specified before
these equations can be solved are F and C,,. “Specified” does not mean that
they must be constant. They can be time-varying, but they must be known or
given functions of time. They are the forcing functions.

The mitial conditions of the three concentrations (ther values at time equal
zero) must also be known.

Let us now check the degrees of freedom of the system. There are three
equations and, with the parameters and forcing functions specified, there are only
three unknowns or dependent variables: C,;, C,,, and C,,. Consequently a
solution should be possible, as we will demonstrate m Chap. 5.

We will use this simple system in many subsequent parts of this book.
When we use 1t for controller design and stability analysis, we will use an even
simpler version. If the throughput F i1s constant and the holdups and tem-
peratures are the same in all three tanks, Egs. (3.3) become

dCy, 1
5 + (k + T)EM
dCaz
dC 1 1
4Ca3 -z

it + (k + ) " Cua
where 1 = V/F with units of minutes.

There is only one forcing function or input varable, C,q .

Cay (3.5)

13 | [Reference: William LLuyben - Process modeling, simulation, and control
for chemical engineers-McGraw-Hill (1990)]
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%3 CSTRs WITH VARIABLE HOLDUPS

I the previos esanple w ool shshily o penmit the volanes mooesch nesclor
o vary wilh time, both total amd component contmnty equainens o reguoesd
for cach ractor. To show the cffects of higher-order kamctics, assume e acton
soow nb-oder nooreckml A

Bem:lor 1:
dV,
d F
;; {Flghli = Fa:n ':ﬁu"'FII:M"‘Tflklmﬁl] ':?“EJ
Bemlor 2:
ILF:E =F —F;
id
d . . .
3 (Y2 Cadd = Filyy = Fy Cpa =~ Va1l €y (3.7)
Reactor 3 :
d,ﬁ = F;=F,
il
d :
o (W3 Caa)- Fy Oy = F; Cpy = F55(C,5) (3.8

Our malhematical mode]l pow wnlams six Lest-order pealiear ordimary
differentinl equations. Paromerters that must be known are &, k,, k;, and n
Initial conditions for all the dependent vanables that are to be infgrated muwst be
given . Oy, Cuz, Cua, Fiy Fo o By L The Toreing, Bincbions Eﬁ-ﬂlﬂ anid gy st
nlsy he prven.

Let us now check the degrees of freedom of this system, There are six ogua-
bowes. Reet there are mme onkonowns: Oy Oan g, Vo KL F L Fy, and Fy
Clearly this system is not sufficiently speeified and a solution could not be
obtaingd.

Whal have we mssead oo oo mode b A pood plant operator coolld 1ake
on; look at the smysm and soc what the problem s We have not spocificd how
the Hlows out of the tanks are to be set. Physially there would probably be
conlrod valves e owtlel hoes Lo reealale the Dows. How ame these conlmul
valves to be sct? A common configuration 1s to have the level in the tank con-
trolled by the outflow, 1.c., a level controller opens the control valve on the exit

14 | [Reference: William L Luyben - Process modeling, simulation, and control
for chemical engineers-McGraw-Hill (1990)]
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line to increase the outflow if the level in the tank increases. Thus there must be a
relationship between tank holdup and flow.

F, :fﬂ’n F, =fLFzJ Fy =f{1’31 (3.9)

The f functions will describe the level controller and the control valve. These
three equations reduce the degrees of freedom to zero.

It might be worth noting that we could have considered the flow from the
third tank F; as the forcing function. Then the level n tank 3 would probably be
maintamed by the flow mto the tank, Fz . The level m tank 2 would be controlled
by F,, and tank | level by F, . We would still have three equations.

The reactors shown in Fig. 3.1 would operate at atmospheric pressure if
they were open to the atmosphere as sketched. If the reactors are not vented and
if no mert blanketing is assumed, they would nm at the bubblepoint pressure for
the specified temperature and varying composition. Therefore the pressures could
be different in each reactor, and they would vary with time, even though tem-
peratures are assumed constant, as the ﬁ’s change.

15 | [Reference: William LLuyben - Process modeling, simulation, and control
for chemical engineers-McGraw-Hill (1990)]
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[Reference: William L Luyben - Process modeling, simulation, and control
for chemical engineers-McGraw-Hill (1990)]
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There 1s one energy balance for each tank, and each will be similar to Eq.
(2.26) except there 1s no reaction mmvolved m this process.

Energy balance for tank I:

d(pC_ VT,
A i) ok, Ty~ FiT) + 0 3.10)
Energy balance for tank 2:
WGHRT) _ o F,T, - F,T) 6.1

Since the throughput 1s constant F,= F; = F, = F. Since volumes, densities,
and heat capacities are all constant, Egs. (3.10) and (3.11) can be simplified.

dT,

pC, Vs =L = pC, F(T, = T)) + ¢, (3.12)
dT.

pC, V2 =2 = pC, F(T = T)) (3.13)

Let’s check the degrees of freedom of this system. The parameter values that
are known are p,C_, ¥}, V2, and F. The heat input to the first tank Q, would be
set by the position of the control valve in the steam line. In later chapters we wall
use this example and have a temperature controller send a signal to the steam
valve to position it. Thus we are left with two dependent variables, Ty and T, ,
and we have two eguations. So the system 1s comectly specified.

17 | [Reference: William L Luyben - Process modeling, simulation, and control
for chemical engineers-McGraw-Hill (1990)]
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3.5 GAS-I'HASE, IMRESSURIZED CSTR
supposs a muxture of gases 1s fed mto the reactor sketched n Fig. 5.2, The

mechor o hilled walh reaching pess which e perfectly oisel. A reverable -
finn aeers -
" WM B
ka

T [urward reaction s Lith-order in A G reverse reaction s lirst-order m B,
Mot thied the stomchwomme ne coellcient Lor A ard the onder ol ihe reaclon ane
not the same. The mole fraction of rcactant A in the reactor 15 y. The pressure

mside Lhe wessel s P o(abeolule), Both Poad vy ocan vary wilh e The volume of
the repctor M B comsmnt

We will assume an w so fhe lemperalure I' 8 constant,
erfect gasss arc - The feed stream Was o deasts-py nmd T mwite—
FravLIOT) S i aelric flow pate 1s Fp .

" The How cut of the reactor passes Lhrough a resiriction (control valve) ini
another wessel which 5 held at a constant pressure P, (absohc) The outflow wall
vary wilh Uk pressare and e composiion of e oeacion, Flows  Boweh contiol
vilves are discussed im more desntll m Part [II; here It us wse the formula

F=C, ,"‘P_‘"“ (3.14)
N O R
C, 5 the volvesizing coefficien: Density vames with pressare and compaesition,
MP _ . it :
P=gT = [¥M, — (1 — JiMy] RT (3,15)

where M = everspe molocubr weight
M, = molecular weight of rcactant A
My — molecular weight of product B

e FIGURE 12

o Cing=phase CSTR

18 | [Reference: William LLuyben - Process modeling, simulation, and control
for chemical engineers-McGraw-Hill (1990)]
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The concentration of reactant in the reactor 1s
_Py
" RT

with units of moles of A per unit volume. The overall reaction rate for the
forward reaction 1s

1 {dn 1 /dn
- 15 _ o A = — | —B
Re = kalCd 2V ( dt )R Vv ( dt )R

The overall reaction rate for the reverse reaction 1s

1 dn,., 1 dﬂﬂ)
Rep=k;Cg=—|—] ==—=|—
RoTamm ZV(JI)H V(dt R
With these fundamental relationships pinned down, we are ready to write
the total and component contmuity equations.

C, {3.16)

Total contimuty
d
V=L = poFo— oF (3.17)
t
Component A continuity:
dC, _ 15 . Wk
V = FoCpg = FCy = 2Vky(Ch) " + 2Vk, Cy (3.18)

The 2 i the reaction terms comes from the stoichiomefric coefficient of A.

There are five equations [Eqgs. (3.14) through (3.18)] that make up the math-
ematical model of this system. The parameters that must be known are ¥, C,, ki,
k,,R, M, ,and My. The forcing functions (or inputs) could be P, pg, Fg, and
Cho- This leaves five unknowns (dependent variables): C, , p, P, F, and y.

19 | [Reference: William LLuyben - Process modeling, simulation, and control
for chemical engineers-McGraw-Hill (1990)]
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23 [Reference: William L Luyben - Process modeling, simulation, and control
for chemical engineers-McGraw-Hill (1990)]
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[Reference: William L Luyben - Process modeling, simulation, and control
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3.6 NONISOTHERMAL CSTR

In the reactors studied so far, we have shown the effects of varable holdups,
variable densities, and higher-order kinetics on the total and component conti-
nuity equations. Energy equations were not needed because we assumed isother-
mal operations. Let us now consider a system i which temperature can change
with time. An imeversible, exothermic reaction 1s camed out m a single perfectly
mixed CSTR as shown in Fig. 33.

A I B
The reaction is nth-order in reactant A and has a heat of reaction A {Btuﬂb* mol
of A reacted). Neghgmble heat losses and constant densifies are assumed.

To remove the heat of reaction, a cooling jacket surrounds the reactor.
Cooling water is added to the jacket at a volumetric flow rate F;and with an

Fy
C.M.‘l
o 5L_~.,.M_.,_! F
J
T
T, , 4
T
F Vi €
§
Th R
L c_.l._
T
) FIGURE 3.3
A ;‘ B MNonisothermal (ST

inlet temperature of Ty, . The volume of water in the jacket V, is constant. The
mass of the metal walls 1s assumed negligible so the “thermal inertia™ of the
metal need not be considered. This is often a fairly good assumption because

the heat capacity of steel is only about 0.1 Btu/lb,°F, which is an order of mag-
nitude less than that of water.

[Reference: William L Luyben - Process modeling, simulation, and control
for chemical engineers-McGraw-Hill (1990)]
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A. PERFECTLY MIXED COOQLING JACKET. We assume that the temperature
everywhere in the jacket is T;. The heat transfer between the process at tem-
ﬁ!t:—re\l“ and the cooling water at temperature T is described by an quezall
heat transfer coefficient.

Q=UAuT = T)) (3.19)

where () = heat transfer rate -
{/ = overall heat transfer coefficient
A= heat transfer area

{vyz

In general the heat transfer area could vary with the holdup in the reactor if
some area was not completely-d ‘with reaction mass ligud at all times. The
equations describing the system are:

Reactor total continuity:
dv
at
Reactor component A continuty :

=Fy,—F

AN - Fy Cro = FCo = VHCW)

Reactor energy equation :

Vh
p L = pFoho= FR) = IVKCF ~UA(T=T) (320

Jacket energy equation :

dh
psVs 3t = Fapshyo = h) + UAT —T)) (3.21)

where p; = density of cooling water
h = enthalpy of process liquid
h; = enthalpy of cooling water

The assumption of constant densities makes C, = C, and permits us to use en-
thalpies in the time denvatives to replace intermal energies,

A hydraulic- between reactor holdup and the flow out of the
reactor 15 also needed. A level controller 15 assumed to change the outflow as the
volume 1n the tank rises or falls: the higher the volume, the larger the outflow.
The outflow 1s shut off completely when the volume drops to a mimmum value
Viin «

Fo= KV[V - I';min) (3.22)

[Reference: William L Luyben - Process modeling, simulation, and control
for chemical engineers-McGraw-Hill (1990)]
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The level controller s a proportional-only feedback controller.
Finally, we need enthalpy data to relate the h’s to compositions and tem-
peratures. Let us assume the simple forms

h=C, T and h;=C;Tj (3.23)

where C, = heat capacity of the process liquid
C; = heat capacity of the cooling water

Using Egs. (3.23) and the Arrhenius relationship for k, the five equations
that describe the process are

V
iTz —Fy—F (329)
iU;—t‘ZQ = Fy Cpo= FCy = V(C,Yae ¥ (325)

pC, ) = pC,(Fy Ty = FI) = 2V(C P28 ~UA(T = T)) 626)

dT,
p1ViCi—" < Fip;CTyo = T)) + UA(T = T)) (3.27)
F= KF'{V - l'Fmin:' (3.25)

Checking the degrees of freedom, we see that there are five equations and
five unknowns: V, F, C,, T, and T;. We must have initial conditions for these
five dependent variables. The forcing functions are Ty, Fy . Cpq, and F, .

The parameters that must be known are n,a, E,R, p, C,, U, A, p;, V.,
Cy, Ty, Ky, and V;, . If the heat transfer area varies with the reactor holdup it

would be mcluded as another wvarable, but we would also have another equation;
the relationship between area and holdup. If the reactor 1s a flat-bottomed verti-
cal cylinder with diameter D and if the jacket 1s only around the outside, not

around the bottom

4
Ay =—VF 3.29
H=7] (3.29)

We have assumed the overall heat transfer coefficient [/ 1s constant. It may be a
function of the coolant flow rate F; or the composition of the reaction mass,
giving one more varable but also one more equation.

[Reference: William L Luyben - Process modeling, simulation, and control
for chemical engineers-McGraw-Hill (1990)]
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3.7 SINGLE-COMPONENT VAPORIZER

Boiling systems represent some of the most interesting and important operations
in chemical engineering processing and are among the most difficult to model. To
describe these systems rigorously, conservation equations must be written for
both the vapor and liquid phases. The basic problem i1s finding the mate of wvapor-
1zation of material from the liquid phase into the vapor phase. The equations
used to descnbe the boiling rate should be physically reasonable and mathemati-
cally convement for solufion.

Consider the wvaponzer sketched m Fig. 36. Liquefied petroleum gas (LPG)
15 fed mto a pressunzed tank to hold the hqud level m the tank. We will assume
that LPG 1s a pure component: propane. Vaporization of mixtures of com-
ponents 1s discussed i Sec. 3.8.

The hquwd m the tank 15 assumed perfectly mixed. Heat s added at a rate Q
to hold the desired pressure in the tank by vaporizing the hquid at a rate W,
(mass per time). Heat losses and the mass of the tank walls are assumed neglgi-
ble. Gas is drawn off the top of the tank at a volumetric flow rate F,. F is the
forcmg function or load disturbance.

A. STEADYSTATE MODEL. The simplest model would neglect the dynamics of
both vapor and liquid phases and relate the gas rate F, to the heat imput by
poF(H, = ho) = Q 330

where H - enthalpy of vapor leaving tank (Btuﬂbm or cal{’g}
h, = enthalpy of liquid feed (Bsu/lb,, or cal/g)

Vi
T
Fo P Steam
Py "]
Ty o
L [ar]
FIGURE 3.6
LPG vaporizer.

[Reference: William L Luyben - Process modeling, simulation, and control
for chemical engineers-McGraw-Hill (1990)]
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B. LIQUID-PHASE DYNAMICS MODEL. A somewhat more realistic model 1s
obtained 1if we assume that the volume of the vapor phase 1s small enough to
make its dynamics neghgble. If only a few moles of liqud have to be vaponzed
to change the pressure in the vapor phase, we can assume that this pressure 1s
always equal to the vapor pressure of the liquid at any temperature (P = P, and
W, =p, F,). An energy equation for the liquid phase gives the temperature (as a
function of time), and the vapor-pressure relationship gives the pressure in the
vaporizer at that temperature.

A total continuity equation for the hqud phase 15 also needed, plus the two
controller equations relating pressure to heat input and liquid level to feed flow
rate F, . These feedback confroller relationships will be expressed here simply as
functions. In later parts of this book we will discuss these functions m detal

Q=run Fo=lfawn (3.35)

An equation of state for the vapor i1s needed to be able to calculate density
p, from the pressure or temperature. Knowing any one property (T, P, or p,) pins
down all the other properties since there 1s only one component, and two phases
are present in the tank. The perfect-gas law 1s used.

The liquid is assumed incompressible so that C,= C, and its internal

energy 1s C, T. The enthalpy of the vapor leaving the vaponizer is assumed to be
of the simple form: C, T + 1.

Total contimuty :
dv,
.ﬂE{i:p'ﬂFﬂ'—pru (3.36)
Energy :
d(V,
Cop T = g C Py Ty~ 9, FAC, T+ 4) + 0 (37)
State :
MP
Po=or (3.38)
Vapor pressure :
A
InP= T +B (3.39)

Equations (3.35) to (3.39) give us six equations. Unknowns are Q, Fy, P, ¥, p,,
and T.

[Reference: William L Luyben - Process modeling, simulation, and control
for chemical engineers-McGraw-Hill (1990)]
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3.8 MULTICOMPONENT FLASH DRUM

Let us look now at vapor-liquid systems with more than one component. A
liquid stream at high temperature and pressure 1s “flashed” into a drum, 1.e., its
pressure 1s reduced as it flows through a restriction (valve) at the inlet of the
drum. This sudden expansion is ireversible and occurs at constant enthalpy. If it
were a reversible expansion, entropy (not enthalpy) would be conserved. If the
drum pressure 1s lower than the bubblepoint pressure of the feed at the feed
temperature, some of the lqud feed will vaponze.

Gas 1s drawn off the top of the drum through a control valve whose stem
position 1s set by a pressure confroller (Fig. 3.7). Liqud comes off the bottom of
the tank on level confrol.

The pressure P, before the pressure letdown valve 1s high enough to
prevent any vaporization of feed at its temperature Ty and composition x,; (mole
fraction jth component). The forcing functions in this system are the feed tem-
perature Ty, feed rate F, and feed composition Xg;. Adiabatic conditions (no heat
losses) are assumed. The density of the liqud m the tank, p,, i1s assumed to be a
known function of temperature and composition

PL=fw, 1 (3.48)

PC
. ¥
Feed ,—@

__%-——p-
F o VL L
pn T 7
x o X |
Ty P =
F

£
i
% » Liquid

FIGURE 3.7
Flash drum.

[Reference: William L Luyben - Process modeling, simulation, and control
for chemical engineers-McGraw-Hill (1990)]



Part-1V- Development of Mathematical Models

The density g ol e vapor m e domn s a koown [upetion el engperatere 1,
composition ¥; and prassure P If the perfect-gas law can De used,

M2P
where MY 5 the average mokecular woight of the gas.
NE
My =3 My {250
i=1

wikere Mj s tbe molecular wewhl of Usgth componenl

A. STEADYSTATE MODEL. The simplest model of this system is one that
neglects dymamics completely. Pressure 15 assumed constznt, and the steadystate
total and component continuity equations and o stendystaie ensrgy balonee are
used Vapor and liqud phases are assmmed to be o equibboum.

Tolal conlmwty:
po o= F +pFy (3 51)
Component  continuity:

fig Fa Py F E F

Blly 3.52
.HE;' o .I‘I-'fﬁu ¥ Mr- I { :I
Vapor-hagmd eqnithriom
5 =1 (353)
Emesgy  equetion
huﬁﬂFu: HFFFI:-"" h‘-ﬂ'[._ FL {3"54.!'

[Reference: William L Luyben - Process modeling, simulation, and control
for chemical engineers-McGraw-Hill (1990)]
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Thermal properties :
ho= fixontd  H=fumn H=Jfy, 1. (3.55)

The average molecular weights M** are calculated from the mole fractions
in the appropriate stream [see Eq. (3.50)]. The number of variables in the system
is 0+ Z{NC - 1}* Pus Fw M:F: YisYas . .. Ync-1s PLs FL: Miv! X1y X25  +vy
Xnc-1s Ty by and H. Pressure P and all the feed properties are given. There are
NC = 1 component balances [Eq. (3.52)].

There are a total of NC equilibrium equations. We can say that there are
NC equations like Eq. (3.53). This may bother some of you Since the sum of the
y's has to add wp to 1, you may feel that there are only NC - | equations for the
y’s. But even if you think about it this way, there 1s still one more equation:
The sum of the partial pressures has to add up to the total pressure. Thus, what-
ever way you want to look at it, there are NC phase equlibrium equations.

Number of
Equation equations
Total continuity (35 1) 1 .
Energy (3.54) I
Component continuity (3.52) “NC-1
Vapor-liquid equilibrium (3.53) NC
Densities of vapor and hiquid (3.48) and (3.49) 2
Thermal properties for liquid and
vapor streams (3.55) 2
Average molecular weights (3.50) 2
INC+7

The system 1s specified by the algebraic equations listed above. This 1s just a
traditional steadystate “equilibrium-flash™ calculation.

3.11 IDEAL BINARY DISTILLATION COLUMN

Next to the ubiquitous CSTR, the distillation column 1s probably the most
popular and important process studied in the chemical engineering literature.
Distillation 1s used in many chemical processes for separating feed streams and
for punficaion of fmal and mtermediate product streams.

Most columns handle multicomponent feeds. But many can be approx-
imated by binary or pseudobinary mixtures. For this example, however, we will
make several additional assumptions and 1dealizations that are sometimes valid
but more frequently are only crude approximations.

[Reference: William L Luyben - Process modeling, simulation, and control
for chemical engineers-McGraw-Hill (1990)]
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The purpose of studymg this simphfied case first 15 to reduce the problem to
its most elementary form so that the basic structure of the equations can be
clearly seen. In the next example, a more realisic system will be modeled.

We will assume a binary system (two components) with constant relative
volatility throughout the column and theoretical (100 percent efficient) trays, ie.,
the vapor leaving the tray i1s in equilibrium with the liquid on the tray. This
means the simple vapor-lqud equlibrium relationship can be wused

ox,

Y T @D, (3.7)

where x, = liquid composition on the nth tray (mole fraction more volatile
component)
¥, = vapor composition on the nth tray (mole fraction more volatile
component)
o = relative volatility

A smgle feed stream 1s fed as saturated hiquad (at 1ts bubblepoint) onto the
feed tray N.. See Fig. 3.12. Feed flow rate is F' {mol/min) and composition is z
(mole fraction more volatile component). The overhead vapor 1s totally con-
densed in a condenser and flows mto the reflux drum, whose holdup of Lgud is
Mj (moles). The contents of the drum 1s assumed to be perfectly mixed with
composition xp. The liquid in the drum 1s at its bubblepoint. Reflux i1s pumped
back to the top tray (Ny) of the column at a ratt R. Overhead distillate product
1s removed at a rate D.

We will neglect any delay time (deadtime) m the vapor lme from the top of
the column to the reflux drum and in the reflux line back to the top tray (in
mdusimal-scale columns this 15 usually a good assumption, but not m small-scale
laboratory columns). Notice that yyr 1s not equal, dynamically, to xp. The two
are equal only at steadystate.

At the base of the column, liquid bottoms product 1s removed at a rate B
and with a composition xp . Vapor boilup is generated in a thermosiphon reboiler
at a rate V', Liqud circulates from the bottom of the column through the tubes m
the vertical tube-mn-shell reboiler because of the smaller density of the vapor-
liquid mixture in the reboiler tubes. We will assume that the liquids i the reboil-
er and in the base of the column are perfectly mixed together and have the same
composition Xg and total holdup Mgz (moles). The circulation rates through well-
designed thermosiphon reboilers are quite high, so this assumption is usually a
good one. The composition of the vapor leaving the base of the column and
entermg tray | 1s yg . It 1s In equlibnum with the liqud with composition xp .

The column contains a total of N theoretical trays. The liquid holdup on
each tray including the downcomer is M, . The liqud on each tray is assumed to
be perfectly mixed with composition x,. The holdup of the vapor is assumed to
be neglgible throughout the system. Although the vapor volume 1s large, the
number of moles 1s usually small because the vapor density 1s so much smaller
than the lqud density. This assumption breaks down, of course, in high-pressure

. columns.

~ | for chemical engineers-McGraw-Hill (1990)]
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M lurther mssumiplon we sall moake 1 thal ol eyuooolel overllow, 11 e
mtlar hemls ol vaporeaion of the wo conpoments are Abool e s, whenever
onc mele of vapor condenses, it vaporizes a mole of liquid, Heat losses up the
column and tcmpcrature changes from tray o tray (scnsiblc=hcat ciiocts) arc
pasnmie] neghyihle. These pesmpbions mean thal the vapor amd o] mies
throngh the sinpping amd recilying sections will be constant mder deadysiaie
conditions. The “operating lines™ on the fanubar McCabe-Thiele diagram are
srmight  |mes.

Homwvever, wies are intaresfed bere i dymamie comdiwons, The assarmplions
above, inehdmpe peplioghle vapor boldup, mesn that the vapor maie hroogh 4l

K Fur,
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FIGUKE 112
JHmﬁJ:_-’ distillatian ealumn, 3
I for chemical engineers-McGraw-Hill (1990)]
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frays of the column i1s the same, dynamically as well as at steadystate.
V=W=V=V==Vr

Remember these V’s are not necessarily constant with time. The wvapor hoilup can
be manipulated dynamically. The mathematical effect of assuming equimolal
overflow is that we do not need an energy equation for each tray. This- is quite a
significant simplification.

The liquid rates throughout the’ column will not be the same dynamically.
They will depend on the flwd mechanics of the tray. Often a simple Francis weir
formula relationship 1s used to relate the liquid holdup on the tray (M,) to the
liquid flow rate leaving the tray (L,).

F, = 333Lh,)"° (3.78)

where F = liquid flow rate over weir (ft/s)
L, = length of weir (ft)
h,, = height of liqud over weir (fi)

More rigorous relationships can be obtained from the detailed tray hydraulic
equations to include the effects of vapor rate, densities, compositions, etc. We will
assume a simple functional relationship between liqud holdup and lhqud rate.

M, =fy (3.79)

Finally, we will neglect the dynamics of the condenser and the reboiler. In
commercial-scale columns, the dynamic response of these heat exchangers is
usually ‘much faster than the response of the column itself. In some systems,
however, the dynamics of this peripheral equipment are important and must be
mcluded m the model

With all these assumptions in mind, we are ready to write the equations
descnibing the system. Adopting the usual convention, our total continuity equa-
tions are written in terms of moles per unit time. This i1s kosher because no
chemical reaction 1s assumed to occur in the column.

Condenser and Reflux Drum

Total continuity:
dM

dt

2. y_R-D (3.80)

Component continuity (more volatile component):

d(Mpxp)

2= Vywr = (R + Dixp (3.81)
Top Tray (n = Ny)
Total continuity:
‘l_t"":;* =R =Ly 3.8)

. I .

" | for chemical engineers-McGraw-Hill (1990)]
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Comporent continuity

d‘[M?:.': L Rxp— Lyt Xur = F¥xr-1=Vhw 13.53)
Wit to Top Tray (n= N = 1)
Total continuzty:
ﬂf_i L= Lyroy 3840
Companent contimuity :
'ﬂ‘“""":j; '1‘”"}..—.1_.~_-_r:-;_n,- v =Ly vinroy o Fonrog=V¥ayr-y (385
nifr Trmy
Tetal conbimuity:
"-!:: b (3,36
Component contanuity:
f‘“‘i‘;xﬂl m aaiFasy=LoXe+ Vy,. = Fy, (3.47)
Feed Tray (n = My)
Total continuily:
e (.5

Component continuity ;
n-..M - Foui 3

First Tray (= 1)

Totml confimaby
%._L- L, =1L, (3.940)
Component cONURUNY :

-e I for chemical engineers-McGraw-Hill (1990)]
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Reboiler and Column Base

Total continuity:

dM
dt&h—V-B (3.92)
Component continuity :
% = lel i Fyﬂ - qu (3-93]

Each tray and the column base have equilibrium equations [Eq. (3.77)].
Each tray also has a hydraulic equation [Eq. (3.79)]. We also need two equations
representing the level controllers on the column base and reflux drum shown in
Fig. 3.12.

D= fiss  B=fomn (3.94)

Let us now examine the degrees of freedom of the system. The feed rate F
and composition z are assumed to be given.

Number of variables : -

Tray compositions (x, and y,) =2N¢

Tray liquid flows (L,) =Ny

Tray liquid holdups (M,) =Ny

Reflux drum composition (xp) =

Reflux drum flows (R and D) =12

Reflux drum holdup (M.,) =l

Base compositions (xp and ypg) =2

Base flows (V and B) =2

Base holdup (M) =

4N; +9
Number of equations :
Equation
number
Tray component continuity =Ny (3.87)
Tray total continuity =Ny (3.86)
Equilibrium (trays plus base) =N;+1 (3.717)
Hydraulic =Ny (3.79)
Level controllers =2 (3.94)
Reflux drum component continuity =1 (38 1)
Reflux drum total continuity =1 (3.80)
Base component continuity = | (3.93)
Base total continuity = | (3.92)
Ny +7

Therefore the system 1s underspecified by two equations. From a control
engineering viewpoint this means that there are only fwo variables that can be

[Reference: William L Luyben - Process modeling, simulation, and control
for chemical engineers-McGraw-Hill (1990)]
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confrolled (can be fixed) The two vanables that must somehow be specified are
reflux flow R and vapor boilup ¥ (or heat input to the reboiler). They can be held

constant (an openloop system) or they can be changed by two controllers to try
to hold some other two vanables constant. In a digital simulation of this column

in Part II we will assume that two feedback controllers adjust R and } to control
overhead and bottoms compositions X; and Xg .

R =f 1{xp) V= fz{u} (3-95}

[Reference: William L Luyben - Process modeling, simulation, and control
for chemical engineers-McGraw-Hill (1990)]



