13B.1 Wall heat flux for turbulent flow in tubes (approximate)
The integral in Eq. 13.3-6 can be evaluated by making a
change of variable. Let

Pr1/3(-—~——yv* ) =x
14.5v

Then Eq. 13.3-6 becomes (after setting the upper limit equal to
infinity): '

-1
-3 O« o dx _ _
Tobx (14.5\/) o Trxe KTo=Tx)

The integral may be found in a table of integrals, where we find

J-oodx: n___n®m _2=m
°1+x*> 3siniz 3(%«@)—3\/5

Hence Eq. 13.3-6 becomes

-1
. 27 —
P —1/3( v ) =k(T,-T
T "\ Tas5v) 393 (To~Tx)

Then the dimensionless wall heat flux is

KTo-Tg) 27 \14.5v

This now has to be written in terms of dimensionless groups:

qoD B 3+/3 (A D<Uz>p 3__9_@__ .Ji "
k(To—TR)_Zn(14.5)(<UZ>)( " )Prl/ e / Rep Y

where Eq. 6.1-4a has been used in order to introduce the friction
factor. Thus we have obtained Eq. 13.3-7.




13B.2 Wall heat flux for turbulent flow in tubes |
a. The assumptions are, for the asymptotic solution discussed
here (the asymptotic form of the solution is introduced in Eq. 13.4-
10):
, i. Fully developed turbulent flow v
ii.  Axial heat conduction is presumed to be negligible
with respect to axial heat convection
iii.  The turbulent Prandtl number can be taken to be
unity (in developing Eq. 13.4-20)
iv.  The modified van Driest equaion of Eq. 5.4-7 is
used to describe the turbulent velocity
profile (in development of Eq. 13.4-20)
b. To get the constant C, in Eq. 13.4-10, we use B. C. 2. First

we have to get the derivative d©/d¢ using the Leibniz formula

£l—(—a—=0+C0 1)
g

£[t+(aa)

Then at £=1 (the tube wall), the turbulent thermal diffusivity
vanishes, and the dimensionless temperature gradient is unity, so
that we get the result in Eq. 13.4-14:

_c 1) T
1=C, 1+ 0] or C,=[I(1)]

The dimensionless wall temperature is obtained from setting
& =1in Eq. 13.4-12 (and setting C, =0)

0y =Col +C,y I(¢) dE+C,

i+ (a7)

The dimensionless bulk temperature is obtained using the definition
in Eq. 10.8-33, starting with Eq. 13.4-12 (and setting C, =0):

o _ 0995 _
© [eede

1 e | ¢ I(E) z
Cot+Cors M{ b (e }édé +C,
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Then we get the dimensionless temperature difference:

9,-9, Cojé I(‘g) )M{ 12) E}&d&

o] * g1+ (e

Then we exchange the order of integration to get the second line of
Eq. 13.4-15:

| 1(6)
0,-0, =G Hiv(af ]zg

SOLE (8) 1o I; ozde |az

o 1 I(E) o
Coly §[1+ a(t)/a)] =Ty £fr (e 1(1)-1()]2

I(¢)
=Goly e ()] = ok e[+ (aa])|

0 (1 [I(E)r 3
I(1) b E[l + (a(t)/a)]dé:

The first two terms cancel, and the third term gives Eq. 13.4-16, when
the expression for C, in Eq. 13.4-14 is used.

c. It is not necessary to find the constant C, in this problem
because we are interested only in the dimensionless temperature
difference. In obtaining this difference, the integration constant C,
cancels out. If, however, we want to find the complete temperature
profile, then we need an expression for C,.
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13C.1 Constant wall heat flux for turbulent flow between two
parallel walls
a. For slit flow, the analog of Eq. 13.4-6 is

p20_ 2], a0

8C 8§ a ) dE
with the boundary conditions d0/9¢ =0 at £=0, dO/IE=1at £=1,
and © =0 at { =0. Here the dimensionless variables are defined as:

T_ T]. . ¢ — Z_)z g — { y4
q0B/k’ Uomax b PC,T, e B [k

We now try a solution of the form (&, () =C,{ + ¥ (&), which should

be asymptotically correct at distances far down the tube. This leads
then directly to the following differential equation

_d a® ) d¥
Cof = 5[( +"07)E]

A first integration then gives

(1+a(t)J%—COI§ (£)dE +C, =C,J(€)

where we have introduced the abbreviation ] j ¢ ( )d§ and the
constant of integration has been set equal to zero since d9/d€ =0 at t

he tube axis. Then, since d0/dé =1 and a” =0 at the tube wall, we
find that C; =1/](1). Thus the dimensionless temperature profile is

@(é §)=Col+ Coj‘é—("‘a%l;)‘dz"‘cz

in which it is understood that a® is a function of €. Next we form
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_ J,0(8) ] [ : (f?)) E}d&
1 g = °1+(a®/a
0, -0, = COJ‘OI:(I%«))T)C—)df G J. (( ) )

Next we exchange the order of integration in the numerator and
make use of the definition of | in the denominator to find

J(E z
0, - C"IOT:(_(7>)/7) ](1)f° ((m)/a)[ dé]dé‘

The inner integral of the second term may be written as J(1)-] (&),
and the J(1) contribution to the second term of ©,-0, exactly
cancels the first term. The final expression for ©, —©, is thus

o 1 p [Er
©,-0,= [](1)]2 01+(06(t)/a)d§

Then, since g,B/k(T, - T,)=1/(©, - ©,), Eq. 13C.1-1 follows.
b. For laminar Newtonian flow, ¢ =1- &2 and a® =0; then

](5)=I§(1—Ez)d§=§—-§—§3 and. J(1) = . Furthermore

[U@Fde=[(&2-3& +3&°)de =&

Hence, finally, for laminar Newtonian flow (using the mean
hydraulic radius in the expression for the Nusselt number)

go(4B) 140

N =T, -1,) 17

(see the entry in Table 14.2-2)

For plug flow, J(£)=[;d€ =&, J(1)=1, and [[[J(§)]"d¢ = [,&%d¢ = 1.
Hence we finally get Nu = 12, which is the entry in Table 14.2-2.
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13D.1 The temperature profile for turbulent flow in a tube
a. Condition #4 is f;@(é, $)(E)EdE = C. Into this, we now

substitute the expression for dimensionless temperature of Eq. 13.4-
12, in order to get C,. We do this term by term:

1st term: f;CO§¢(§)§d§ = Coé’f; ¢(&)édE = ¢ (Eq. 13.4-14 was used)

4th term: f;Cz¢<§d§ =C,I(1)

e 1l o
-Gl 1+’((§(2)/a)‘ L o(&)eag|a
=Col, i j((jl Ja) [po(£)zde  [F o(£)ede d
I I(E) )]— L L@

) E[1+(a(’ Ja e 1(1) °E[1+(a(t)/a)]d§
Substitution into the 4th condition above and solving for C, gives
L@/ 0] o [1E)/10]
E[1+(a(’)/a ] °<§[1+ (*)/a ]

which is the same as Eq. 13D.1-1.
b. For a Newtonian fluid I(§) =] (1 E?)EdE =1&* -1 &*and

1= Then [ 5>/1<1>]=2¢2—f4,[< O/IOT =4£* ~4£° +£°,and

c2=jo

C,=[)(4¢° ~4&° + &7 )de - [[(25 - £2)aE = - %
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14A.1 Average heat transfer coefficients.

The total heat transfer rate is:

Q= wép(TbZ - Tbl)
=‘(10, 000 lbm/hr)(O.G Btu/lbm‘F)(2OO — 100 F)
= 600,000 Btu/hr

The total inside surface area of the tubes is:

A = 7DLioy = (7)(1.00 — 2 x 0.065 in)(1/12 ft/in)(300 ft) = 68.3 ft2

The various temperature differences between the inner tube surfaces and the oil are:

(Ty — Tp); = 213 - 100 = 113 F
(To — Th)a = (113 +13)/2 =63 F
(To — Ty)m = (113 — 13)/1n(113/13) = 46.2 F

Insertion of these values into Egs. 14.1-2,3,4 then gives the heat transfer coefficients:

hy = (600,000)/(68.3 x 113) = 78 Btu/hr-ft>-F
ha = (600,000)/(68.3 x 63) = 139 Btu/hr-ft2-F
hin = (600,000)/(68.3 x 46.2) = 190 Btu/hr-ft2-F

|41



14A.2 Heat transfer in laminar tube flow.

(a) The Prandtl number, based on the property values given, is

Cpu _ (0.49 Btu/lb,, F)(1.42 1b,, /ft-hr)
ko (0.0825 Btu/hr-ft-F) B

Pr= 8.43

(b) The Reynolds umber is

B (4)(100 1b,, /hr)
— (m)(1/12 £t)(1.42 1b,, /ft-hr)
= 1076

(¢) From Fig. 14.3-2, at L/D = (20 {t)/(1/12 ft) = 240, we read

A 2/3 —0.14
(Toe — To1) (ﬂ) | G (lﬂ’-) = 0.0028
(TO — Tb)ln 4L k Ho
Now, for uniform T,

(To2 — Th1) n <To - Tbl)
(To — Ty )m To — The

Hence, for this problem,

Ty —
In (—"—:@i) = (0.0028)(4 x 240)(8.43)"2/3(1.0) = 0.649,
To — Ty .
giving
Ty — Ty
To — Ty

Insertion of Ty = 215°F and Tj; = 100°F gives

= exp(—0.649) = 0.523

Ty = 215 — 0.523(215 — 100) = 155°F
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14A.3 Effect of flow rate on exit temperature from a heat exchanger.

(a) From the solution of Problem 14A.2 we find that Re= 10.76w and that

in which w is the mass flow rate in lb,, /hr and Y is the ordinate of Fig. 14.3-2 at
the prevailing Reynolds number. The exit bulk temperature is then

(b) The total heat flow through the tube wall is

Calculations for (a) and (c) are summarized below:

w7

Ib, /hr
100
200
400
800
1600
3200

Re

1076
2152
4304
8608
17216
34432

To — Ty _ exp
To—Tn

Y

0.0028
0.00185
0.0036
0.0040
0.0037
0.0033

—0.649Y
0.0028

Q= ’LUCA'p(sz — Tp1)

) = exp(—232Y)

Ty = Tp1 + (To — Tbl) [1 — exp(—232Y)]

—232Y
l1—e Tyr — Ty1, Tyo,

0.478
0.349
0.566
0.605
0.576
0.535

°F

54.9
40.1
65.1
69.5
66.3
61.5

°F

154.9
140.1
165.1
169.5
166.3
161.5

Btu/hr
2690
3930
12760
27260
51950
96460
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14A.4 Local heat transfer coefficient for turbulent forced convection in
a tube.

Fig. 14.3-2 requires the viscosity values uj at T and po at Tp. Interpolation in
Table 1.1-1, or on page 6-3 of CRC Handbook of Chemistry and Physics, 81st
Edition (2000-2001) gives pup = 1.13 mPa-S at T, = 60°F= 15.56°C, and po =
0.398 mPa-s at Ty = 160°F= 71.11°C, whence (p3/po) = 2.84. The other phys-
ical properties in Fig. 14.3-2, including g in the Reynolds and Prandtl numbers,

are evaluated at the “film temperature” Ty = (Tp + T3)/2 = 110°F= 43.33°C,

giving g = 1.489 Ib,, /hrft, G, = 4.1792 J/g’K = 0.99885 Btu/lb,,-F, and k =
0.6348 W/m-K = 0.36679 Btu/hr-ft-F. Then the Prandtl number at T} is

~

Cor _ (0.99885 Btu/lb,,-F)(1.489 Btu/hr-ft-F)
ko 0.36679 Btu/hr-ft-F

=4.05

and the Reynolds number calculated at T is

Re= DG _ 4w
p mDp
4% (15,000 lb, /hr)

= 4
T 7(2/12 £t)(1.489 Ib,, /hrft) 7.70 x 10

From Fig. 14.3-2 at this value of Re, we get the ordinate expression

A 2/3 —0.14
hin
Jan_ (Cort (ﬁﬁ> = 0.0028 (14A.4 — 1)
C,G \ & Ko

in which hj, can be regarded also as hjoc according to the analysis in Problem 14B.%,
and G = 4w/wD? = (47)(15,000 lb,, /hr)/(2/12 ft)> = 6.88 x 10° by, /hr-ft.

Insertion of the foregoing results into Eq. 14A.4-1 then gives

~

—2/3 +0.14
hroe = 0.0028C,G [ Z2# (-"—”)
k Ho

= 0.0028(0.99885 Btu/lb,,-F)(6.88 x 10° lb,, /hr-ft2)(4.05)2/3(2.84)+%-1
= 7.8 x 10% Btu/hrft.F

as the asymptotic value of the local heat transfer coefficient, and

qr|r=R = —qo = hloc(Tb - TO)
= (7.8 x 10%)(60 — 160) = —7.8 x 10*

as the radial heat flux at the inner wall of the pipe.



14A.5 Heat transfer from condensing vapors.

(a) The boundaries of the condensate layer are at Ty = 190°F and T = 212°F;
thus the film temperature T is (190 4+ 212)/2 = 201°F. The physical properties at
this temperature are well approximated by the values at 200°F, given in Ex. 14.7-1:

AH,,, = 978 Btu/lb,,
k= 0.393 Btu/hr-ft-F
p = 60.1 Ib,,, /3
g = 0.738 Ib,, /hr-ft

The resulting abscissa for Fig. 14.7-2 is:

kp?/*g!3(Ty — To)L
N5/3Aﬁvap
_(0.393 Btu/hr-ft-F)(60.1 1b,, /ft%)2/3(4.17 x 10® ft/hr?)!/3(22 F)(1.0 ft)
B (0.738 1b,, /ft-hr)5/3(978 Btu/lb,,)
= 168 Btul ~l1hr—172/3+5/3f1-2+1/3+145/3p—14+1_ dimensionless

This value falls in the laminar region of Fig. 14.7-2. Extrapolation of the laminar
line with a slope of 3/4, consistent with Eq. 14.7-5, gives

I'/p =170(0.168)%/* = 45
The heat transfer rate, neglecting subcooling, is

Q = 7Dl AH,,p = 7(1/12 t)(45 x 0.738 1b,, /ft-hr)(978 Btu/lb,,)
= 8400 Btu/hr.

A similar result is obtainable from Eq. 14.7-5, once the flow is known to be laminar.

(b) Comparison of Egs. 14.7-5 and 6 gives, for laminar condensate flow:

Qhor. _ 0.725 (L)1/4

Qvert.  0.943 \ D

Hence, if the tube were horizontal the heat transfer rate would be:
Qhor. = (8400)(0.725/0.943)(12)}/* = 12,000 Btu/hr

The assumption of laminar condensate flow on the horizontal tube is clearly rea-
sonable, given the result of (a) and the still smaller value of I'/ in (b).



14A.6 Forced-convection heat transfer from an isolated sphere.

(a) The physical properties of air at 1 atm and Ty = 2(Tp + Two) = 150°F=
65.56°C= 338.7K are:
p=pM/RTy =1.042 x 1072 g/cm?
p = 0.02023 cp = 2.023 x 10~* g/cm's, from Table 1.1-2

- Cp=1.008 J/g-'K = 1.008 W-s/g-K from CRC Handbook 2000-2001, pp. 6-1,6-2.
k = 26.9 x 107°> W/m-K from CRC Handbook 2000-2001, p. 6-185

The Reynolds and Prandtl numbers are

Re = Dveop
7’
_ (2.54 cm)(100 x 12 x 2.54 cm/s)(1.042 x 102 g/cm?)
B 2.023 x 10~* g/cm-s
=3.99 x 10*
Cyp
Pr= £
Tk

_ (1.008 W-s/g-K)(2.023 x 10™* g/cm-s)
B 26.9 x 10-5 W/cm-K
= 0.703

Substitution of these values into Eq. 14.4-5 gives

Nuy, = 2+ 0.60(3.99 x 10%)1/2(0.703)/3
= 108.6

Hence,

hm = 108.6k/D = 108.6(26.9 x 10™° W/cm-K)/(2.54 cm)
= 0.01150 W/cm? K

and the convective heat loss rate is

Q = 1D hm(To — Teo)
= m(2.54* cm?)(0.01150 W/cm?-K)([100/1.8] K)
=12.9 W = 3.1 cal/s

according to Eq. 14.4-5. The radiative loss is about 1.0 W for a perfectly black

spherein a large enclosure with walls at 100°F, and can be estimated by the methods
of §16.5.



(b) For Eq. 14.4-6, we need po = 0.02144 cp at Tp = 200°F= 93.3°C and the
following property values at T, = 100°F= 37.8°C= 310.9 K:

Poo = 0.01898 cp = 1.898 x 10™* g/cm-s
p=pM/RT- =1.136 x 10~% g/cm®

C, =1.007 J/g'K =1.007 W-s/g-K
k=27.0x10"° mW/m-K =270 x 107° W/em-K

The resulting values of Re and Pr calculated at the upstream state are

_ (2.54 cm)(100 x 12 x 2.54 cm/s)(1.136 x 10~* g/cm?)

Re 1.898 x 10—4 g/cm's

=4.63 x 10*

_ (1.007 W-s/g-K)(1.898 x 10™* g/cm-s)

Pr 27.0 x 10~ W/cm-K

=0.708

Substitution of these values into Eq. 14.4-6 gives

: 1/4
Nu,, = 2+ (0.4 Re'/? + 0.06 Re?/®) Pr®* <ﬁ?3)
Ho

=24+ 138.1 =140.1
whence

hm = 140.1k/D = 140.1(27.0 x 107° W/cm-K)/(2.54 cm)
= 0.0149 W/cm?-K

and the convective heat loss rate is

Q = 1D*hn(Ty — Two)
= 7(2.54 cm)?(0.0149 W/cm?-K)([100/1.8] K)
=16.8 W = 4.0 cal/s

according to Eq. 14.4-6. This result is believed to be more accurate than that found

in (a).



14A.7 Free-convection heat transfer from an isolated sphere.

For the conditions of this problem, the thermal expansion coefficient 8 = 1/T%
is (1/338.7 K), and the other physical properties are the same as in part (a) of
Problem 14A.6. (Note that, for the correlations in §14.6, 3 and p are evaluated at
Ty rather than T for calculation of Gr.) Then

Grps = (21P°9PATY (G
p? k

_ (2.54 cm)*(0.001042 g/cm-s)?(980.7 cm/s?)(100/(1.8 x 338.7]
- (2.023 x 10~ g/cm-s)?

)(0.703)

=4.92 x 10*

Eq. 14.6-4 gives

0.878 x 0.671
lam __ 1/4
Nuw™ = G5 (0.a92) rys7iepass ¢ O7F7)
_ (0.878)(0-671) (092 x 100"

[1 4 (0.492/0.703)°/16]4/9
=6.73

Hence,

hm = 6.73k/D = (6.73)(26.9 x 107°> W/cm-K)/(2.54 cm)
= 0.000712 W/cm?-K

and the convective heat loss rate is
Q= 7TD2hm(T() —Too)

= 7(2.54 ¢cm)?(0.000712 W/cm?-K)([100/1.8] K)
= 0.80 W = 0.20 cal/s

By the methods of §16.5, one can calculate that the rate of heat loss by radiation

is of comparable magnitude: 1.0 W for a perfectly black sphere in a large enclosure
with walls at 100°F.
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14A.8 Heat loss by free convection from a horizontal pipe immersed in
a liquid.

From the data provided, we find the following values at Ty = 32.3°C:

5= —1dp _ 0.99463 — 0.99528
© p dT 0.99496(33.3 — 31.3)
=327Tx107* K 1=1815x10"* F!

p = 0.99496 g/cm?)(12 x 2.54 cm/ft)*/(453.59 g/lby,) = 62.11 b, /ft?

~

C, = 0.9986 cal/g-C ~ 0.9986 Btu/lb,-F
= 0.7632 cp = 1.8463 Ib,, /hr-ft
k = 0.363 Btu/hr-ft-F
Cpu _ (0.9986 Btu/lb,,-F)(1.8463 lb,, /hr-ft)
k 0.363 Btu/hr-ft-F

= 5.08

Hence,

(0.5 ££)%(62.11 lb,, /ft3)?(4.17 x 108 ft/hr?)(1.815 x 10~*

x 20)
(1.8463 Tbyy /hr-5t)? (5.08)

GrPr

= 1.088 x 10°
Then from Eqgs. 14.6-1 to 3 and Table 14.6-1 we get

0.671
[1+ (0.492/5.08)°/16]4/9
0.671

Nu,, = 0.772 ( ) (1.088 x 10°)1/4

The heat transfer coeflicient is then

k 0.363
hm = Nu— = 84.6 ( —= | = 61. ft2.
Nuz =846 < 5 ) 61.4 Btu/hr-ft2.F

and the rate of convective heat loss per unit length of the pipe is

Q  hmAAT
7 = "7 = hntDAT

= (61.4 Btu/hr£t2-F)(3.1415)(0.5 ft)(20°F) = 1930 Btu/hr-ft
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14B .1 Limiting local Nusselt numbers for plug flow with constant
heat flux

(Note: Problem 10B.9-1 should be worked prior do doing this
problem)

a. For circular tubes with plug flow, the dimensionless

temperature distribution, the dimensionless wall temperature, and

the dimensionless bulk temperature are obtainable from Eq. 10B.9-1
on p. 325:

@:%:2@%62—% (where €=-;-and &=

oz
2
R

0y =0, =2{ +1

[ @v,Lde

=2 =2[ @&t =2[ (20 +1£2 - 1)edE =2¢
’ J.Ovo‘sdf jo J.( : )

Then the difference between the wall temperature and the bulk
temperature is

, k(T,-T 1
@O_Gb =—%ﬁ=z

and the Nusselt number is

hD _ 4,(2R)

R

=4-2=8

in agreement with Eq. (J) on p. 430. Note that, by convention, the
Nusselt number for tubes is defined using the diameter rather than
the radius, and this definition introduces the factor of 2.

b. For the plug flow in a slit of width 2B, we have for the
dimensionless temperature, wall temperature, and bulk tempera-
ture, all obtainable from the results of part (b) of Problem 10B.9:
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oz
v,B

k(T-T,)
9,B

O=

=§+%02—% (where 0'-—-% and { = 5)

Q,=0| _,=¢+1

_ f;®vodo

B I;voda

0, =_[;®d0'=j;(§+%02—-é—)d0=§'

Then the difference between the wall temperature and the bulk
temperature is

k(Ty—T,)

0

_1
3

The Nusselt number is then

Nu="UB)__%(4B) _5 4 1
k  k(T,-T,)

in agreement with Eq. (J) on p. 431. Note that the Nusselt number for

slits is defined in terms of 4B, and this is the origin of the factor of 4

which appears here (see heading of Tables 14.2-1 and 2, as well as

the caption for Figure 14.2-1 on p. 429.

14-11



14B.2 Local overall heat transfer coeflicient.

Let 0 and 1 denote the inner and outer surfaces of the tube, and hg and h; denote
the local heat transfer coefficients on those surfaces at the cross-section where the oil
bulk temperature is 150°F. According to the development in §9.6, the temperature
drops within a cross-section have the same ratio as the corresponding resistance
terms that sum to 1/(roUp): ’

T1—150_[ 1 +ln(r1/ro)]/[ 1 ]

213-Ty | roho ko1 riha
The numerator on the right is
1 1n(0.5/0.435)
(0.435/12)(190) 220

= 0.1452 + 0.0006 = 0.1458 hr-ft-F/Btu

in which a thernal conductivity of kg; = 220 Btu/hr-ft-F has been used for copper at
T =~ 190°F, based on Tables 9.1-5 and F.3-5. To calculate the denominator, we use
Eq. 14.7-3 for the heat transfer coefficient for filmwise condensation on horizontal
tubes. Iteration is required, since the temperature difference across the condensate
film is unknown. As a first approximation, we choose T3 = 190°F, and use the
physical properties at 200°F from Example 14.7-1:

AH,,, = 978 Btu/lb,
= 0.393 Btu/hr-ft-F
p = 60.1 1b,, /ft*
p = 0.738 lb,, /hr-ft
Then Eq. 14.7-3 gives

R 1/4
k3p*gAH,
hy = hy = 0725 | ——— 2
' pD(Ty — Tl)}
_ 0795 | 0:398°0%(4.17 x 10°)(978.8) 1/4
e (0.738)(0.5/12)(Ta — Th)

= 12,500(213 — Ty)~ /4
Equating the heat flow through the numerator and denominator resistances gives
(T1 — 150)/0.1458 = (213 — T1)r1hy = (213 - T )3/4(0.5/12)(12, 500)
or
213 — T} = 0.0000183(T; — 150)*/3

Successive substitutions of 77 in the right-hand term give a rapidly converging se-
quence of left-hand values: to the solution: T} = 212.9975,212.9954,212.9954, . . ..
Thus, the outer-surface temperature of the tubes at this cross-section is 212.9954°
F. The temperature drop through the tube wall is 0.0006/0.1458(212.995 — 150) =
0.25F. Thus, the thermal resitances of the tube wall and condensate film are unim-
portant here, as assumed in Problem 14A.1.
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14B.3 The hot-wire anemometer

a. The physical properties of interest at p = 1 atm and a film
temperature of 335°F are:

p=0.0499 1b,, /ft?
C, =0.242 Btw/lb,,°F
p=0.0594 b, /ft-hr=1.64x10"° b, /ft-s (from Eq. 1.4.14)

k= (0.242 + %(1'—299&))(1.64 x107°)=5.373x10™° Btu/ft-s°F

(from Eq. 9.3-15)
Pr =0.74 (from Eq. 9.3-16)

(0.01/12)(100)(0.0499)
(1.64x107°)

Also the Reynolds number is Re = =254

'Then Eq. 14.4-8 gives

Nu,, = (5.99 + 2. 29)(0 905)
+0.92(-3.54 +1062) (6. 33)(0 905) = 8.010

Then we get the heat transfer coefficient from

,_ Nuyk (8.010)(5.373x10°)
" D~ (0.0y12)
=186 Btu/ft* -hr°F

=0.0516 Btu/ft*-s°F

Finally, the heat loss from the wire is

Q=h,AAT =h,, - aDL-(T, -T..)

_(186)( O—glﬁ)(aoo 70)Btu/hr

=10.75 Btu/hr=3.15 W=10.75 W

b. For an approach velocity of 300 ft/s, Re = 762. Equation
14.4-8 gives Nu,, =14.20, and Q(300)/Q(100)=14.20/8.010=1.77.

This is very close to +/3 =1.73 from King's relation.
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14B.4 Dimensional analysis.

(a) The left-hand member of Eq. 14B.4-1 is expressible in terms of integrals of

the dimensionless product function v, T as follows:

o ol (CEEY PR R CREY RN (4)

Here the angle brackets denote cross-sectional averages as in Egs. 10.8-32 and 33,
whereas overlines denote long-term time averages. Thus the averages on the right
depend only on Re, Pr, and L/D, when viscous dissipation and radiant energy ab-
sorption and emission are neglected in the energy equation. With these assumptions,
and the further neglect of axial heat conduction, the quotient (Tpz — Tp1)/(To — Th1)
is equal to the time-average of Q/(wCp(Ty — Th1)-

(b) The heat transfer coefficients h, and hj, each differ from h; only by the
ratio of the corresponding AT definitions given in §14.1. But AT, and AT}, are
expressible in terms of AT} and AT, so their ratios depend only on Re, Pr, and
L/D according to the result in (a). Hence, Nu, and Nu, are functions of the same
arguments as Nu;, confirming Eqgs. 14.3-12 and 13.

Equation 14.3-14 requires extension of Eq. A to a variable upper limit z, giving

Tb(Z) - Tb]

= a function of (Re,Pr,z B
To — Ty ( ) (B)

Then, according to Eq. 14.1-18,

hocD  wCy dIn(Ty — Ty)
k  wDk d(z/D)

o w Cou \ dIn(Tp — T3)
“ \nDu k dz

dln[(To — 1)/ (To — T1))
dz

=4 RePr

Combining this result with Eq. B, we get (for this special case of uniform wall
temperature in the heat-exchange section),

Nugoe = Nujoc (Re, Pr, (%))

in agreement with Eq. 14.3-14.



14B.5 Relation between ;. and

a. We relate the rate of heat transfer across the increment of
surface 7Ddz to the decrease in the internal energy within the
volume element 1 zD?*:

Mo (7Ddz)(T, - T, ) = (1 7D*)pC, (v)dT

This is really an application of the d-form of the energy balance
discussed in §15.5, and given specifically in Eq. 15.4-4. It is clear from
this equation that the kinetic and potential energy changes are being
neglected, and that Eq. 15.4-4 has been multiplied through by w.

The above equation may now be integrated over a length L of
the tube to get, with T, = a + T,

L A To(L) dT A Ty(L)
Iohlocdzz—_zliDpCp<v>,[ ’ ——_l’_—__-%DpCp(v}J‘ ’

nOT,-T, LOT,(1-B)-«a

=22 ) a ’

- 2205 {1, (1)1 ) - a]- [T, (0)(1- ) - ]

= 22O el (1) - T, ()] [T, 0) - To(O)]

__1DpC,(0) [T, (L) = Ty (L)] - [T, (0) - To(0)]

B 1-B (Tb"To)ln

- —%Dpép <‘U) [Tb(L) - (Ot/(l _(ii)l_ll(?;b (O) B (Ot/(l - ﬁ))]

_ +21i_Dpép<U> T,(L)-T,(0)

(To=To),,

which agrees with Eq. 15B.5-2.
b. Equation 14.1-14 can be written as
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_$DpC,(0) [T, (L)~ T, (0)]
n L (To-T,),,

from which Eq. 14B.5-3 follows at once:
1.t
hln = _I:'J.Ohlocdz

Then, differentiating the integral in Eq. 14B.5-3 using the
Leibniz formula in Eq. C.3-2, we get

dh,, 1 1
—_— = Lhn +—hoc
dL LZ( .1) L,
or

dh,,
thClz:L =hln +L di

which is Eq. 14B.5-4
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~ 14B.6 Heat loss by free convection from a pipe
The properties of air at 1 atm and a film temperature of
190°F (or 650° R) are

u=0.216 cp

k=0.0173 Btu/hr - ft-°F
B=1/650 (°R)"

C, =0.242 Btu/Ib,,°F
Pr =0.727

Since the temperature difference is the same in both the original
problem (of Example 14.6-1) and the new problem (Problem 14B.6), it
suffices to determine the ratio h,, /h, , where the accent indicates the
result for the "new" problem.

Next we calculate the ratio of the heat-transfer coefficients:

h;n ~ (k’)g/‘l(ﬂ’ é; U ]1/4 [1 + (0492/]?1')9/16 ]4/9 :
[1+(0.492/Pr)"" ]4/9

(0 0173)3/4(550 0.242 0. 0190)1/4(1 299)

0.0152) (650 0.241 0.0216) \1.299
= (1.102)(0.930)(1.000) = 1.025

Thus, in the "new" problem, the heat-transfer rate is only slightly
greater than in the original problem.

If the thermal conductivity and viscosity had been assumed to
vary with temperature by the simple power-law suggested by the
simplified kinetic theory of Chapters 9 and 1, then almost no change
would have been predicted.
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14D.1 Heat transfer from an oblate ellipsoid of revolution
a. From Eq. A.7-13 we get (with £ =sinh§, K=cosh{,
S=sinn, C=cosn, s=siny, c=cosy)

1= 3 2] (30 + (359 +(KCF = (25 + (0

i=1

=a®|(K*-1)$? +K2(1- §?)]=a?(K*-$?) :h, =aVK?-$?

B2 = i(%} = 2[(KCe)” +(KCs)” +(25)7] = a2[(KC)? +(25)?]

=a?[K?(1-8?)+(K?-1)$?|=a?(K?-$?) .h, =aVK?-§?

S 9%, i 2
= 2;( 81//} = ﬂz[(KSs) +(KSc)2]: a’K?S* .. h, =aKS
These results may be used with the expressmn for surface elements
after Eq. A.7-18 to get

Spy =0 \Jcosh? € —sin® n(cosh Esin n)dndy

b. From Eq. A.7-17, we get Laplace's equation as

o 1[0ty o0) ) a
Vg—hghnhw(ﬁé‘[ h 85} J—O or dg(coshé 5)

since heat is flowing in the & direction only. This equation may be
integrated to give

© = K, arctan(sinh )+ K

with the boundary conditions: ©(§,) =0 and ©(e)=1. This leads to
Eq. 14D.1-7.

c. In the limit as £, — 0 (a two-sided disk of radius a = R), the
result of part (b), namely Eq. 14D.1-7, simplifies to
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ln- arctan(smhé)
in-0

O=1-

72z arctan(sinh &)

The normal dimensionless temperature gradient at the surface is
then obtained by using Eq. A.7-15, thus:

1d@ 1

arctan(sinh & )
§ é-‘—O R'\/l Sln dé( ( ) £=0
1 ( 2)( 1 )
= — || m————==—=-cosh¢&
Ry1-sin?> n\ #/{ 1+sinh® ¢ ro

= 1 (zj(coshO) (2) 1
R+1-sin* n\7@ R+/1-sin’n

Then the total heat loss through both sides of the disk is

Q=2[(n-q)dS=-2k[(n- VT ds

27 pmf2
—Zk(T - ) 7rR I cosn

=2k(Ty-T..)- EE :27R* [ "sin ndn=8kR(T, - T..)

R? cos nsin ndndy

The heat transfer coefficient is then

_Q 8kR(T, - T..) _ 8k
" AAT (aR’)(T,-T.) =R

and the Nusselt number is

h.(2R) _ 8k 2R _16

N
T TR Tk #

—=35.09
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15A.1 Heat transfer in double-pipe heat exchangers.

(a) In the absence of heat loss to the surroundings, Eqs. 15.4-7,8 give
wcépc(Tc2 - Tcl) = _’whéph(ThZ - Thl)

with each flow rate w expressed from plane 1 toward plane 2. Insertion of the data
then gives

Q. = (5000)(1.00)(T.2 — 60) = —(—10,000)(0.60)(200 — 100) = 600,000 Btu/hr
whence
Tep = 60+ 120 = 180°F
The log-mean temperature difference is
(ATha = (20 — 40)/In(20/40) = 28.85F
and the required heat exchange area, from Eq. 15.4-15, is

Q. (600,000 Btu/hr)

Ag = =
®” Uo(AT)m (200 Btu/hrft2-F)(28.85F)

= 104 ft2

(b) Eq. 15B.1-2 gives
Q U ATy — U, ATy
A~ (U, AT,/ U, ATy)
(50 x 20) — (350 x 40)
~ In((50 x 20)/350 x 40))
= 4926 Btu/hr-ft2
The required heat exchange area is then
Q 600, 000
Q/A ~ 4926

(c) The minimum usable flow rate of water to cool the oil to 100°F in coun-
terflow is

(10,000)(0.60)(200 — 100)
we =
(1.00)(200 — 60)
whereas the minimum usable flow rate of water in parallel flow is
(10,000)(0.60)(200 — 100)
we =
(1.00)(100 — 60)

= 4286 lb,,, /hr

= 15,000 1b,, /hr

(d) If parallel flow is used, with w, =15,500 lb,,, /hr of water, the outlet water
temperature will be '

T., = 60 + (10,000)(0.60)(200 — 100)/(15,500)(1.00) = 98.71°F
"Then (AT)in = (140—1.29)/1n(140/1.29) = 29.6°F and the required heat exchange

area is
Q _ (10,000)(0.60)(200 — 100)

T U (200)(29.6) = 101 &%

A
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15A.2 Adiabatic flow of natural gas in a pipeline.

(a) The density and mass flux at plane 1 are

_ pitM (100 x 144 1by/£t2)(16.04 1b,, /1b-mol)
~ RT (1545 x 530 ft-1b ¢ /l1b-mol)

p1 = 0.2821 Ib,, /ft?

G := pyvy = (0.2821 lb,, /ft3)(40 ft/s) = 11.28 lb,,, /ft2s)

Re and f at plane 1 are the same here as in Example 15.4-2, and f is approximated
as constant at 0.0025 along the pipeline, giving

ey = 4fL/D = (4)(0.0025)(52,800/2) = 264.
Furthermore,

p1p1 = (100 x 144 Iby /£t2)(32.2 1b,,ft/1bs-s2)(0.2821 Ib,y, /ft3)
= 1.308 x 10° 1b2 /ft*.s%.

Eq. 15B3-7 may be rearranged to give

ev —[(v+1)/29y]lns  y—1 _ pipy
1-s 2y G?

or, for this problem with v = 1.3 for methane,

264 —[2.3/2.6]Ins 0.3 1.308 x 10°
- = 1026
1—s 2.6  (11.28)2

‘This equation has the solution s = 0.74, corresponding to pz/p; = v/0.74 = 0.86
and p; = 0.86 x 0.2821 = 0.243 1b,, /{t3.

(b) Eq. 15B.3-8 and the result of (a) give
[1 = (p1/p2)*1G? (’Y - 1)]

Pip1 2y

. [1 = 0.8672](11.28 Iby /ft2-5)? (0.3)]
= (100 86) |1 0.3
(100 psia)(0 6)[ T T 1308 % 105 b2 /5 s7) \ 2.6

P2 =P1£?' [1-!—
P1

= 86 psia

(c) The temperature at the compressor inlet is

T> = Ti(p2/p1)(p1/p2) = 530(86/100)/(0.86) = 530°R.



Eq. 15.4-22 then gives
2
- (3)
P2
N %—L (&)(7_1)/7_ .
M v—-1|\p2

5] ()|

’U2

sz'é’

(49686 x 530 1b,,ft2 /s%-1b-mol) 13

16.04 1b,, /Ib-mol)

and the required compressor power output is

wD? A
) o,

W = wW, :(

2 ft)?2
= <—-7’( ) )> (11.28 1b,, /ft2-s)(7817 ft-1bs/lb,,) = 2.770 x 10° ft-lbs/s

4
= 504 hp

)0.3/1.3 _ 1]

= (—282 + 2.520 x 10° ft2/s2)/(32.2 b, ft/s%-Iby = 7817 ft-Ibs/lb,
f f
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15A.3 Mixing of two ideal-gas streams.
(a) The right sides of Eqs. 15.3-6, 7 and 10 are

w = w1, + wyy = 1000 + 10,000
= 11,000 Ib, /hr = 3.0556 1b,, /s

P = v1,w14 + v13wis + P12S1a + P18515
RTh, wia RTip wap -
M Vla M V1bp
= [(1000)(1000/3600) + (100)(10,000/3600) b, -ft/s?]
4 1000/3600  10,000/3600
(49686 x 540 ft2/sz) [ 000/ + /

= V1aWiq + V1pWip +

by, /ft
28.97 1000 100 /

= 555.6 + 25983.5 = 26539.1 lb,-ft /s?]

With C, = 6.97 Btu/lb-mole-F, hence C, = 6.97/28.97 Btu/lb,,,-F, the right
side of Eq. 15.3-10 becomes

- 1
E= Cp [wlaTla + wlelb] + 5 [wlav%a -+ wlbv%b]

1000 + 10,000
3600 3600

= (6.97 x 540/28.97 Btu/lb,, )(25036 1b,,ft?/s?- Btu) [ 1bm/s]

100 2
3600( 0)" + 3600

= 9.939 x 10° 4 1.390 x 10° = 1.0078 x 107 1b,,ft2/s®

[1000 10,000 10002 1, 12 /s ]

and v = C,/(C, — R) = 6.97/(6.97 — 1.9872) = 1.399.
Then Eq. 15.3-13 yields the solutions

! (1399 26539.1 L[ (1399 -1) 3.05556 x 1.0078 x 107
27\ 2.399 ) 3.05556 1.3992 (26539.1)2

= 5065[1 = 0.97838] = 109.5 ft/s and 10020 ft/s

the smaller one of which is stable.

Then Eq. 15.3-10 gives the temperature of the mixed stream:

= [Bfw - 31/C,

B [1.0078 x 107 28.97

6.97 x 25036 °R-s?/ft?

3.05556
= 546.5°R = 86.5°F

1
- 5(109.5)2 ft2 /s2]
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The cross-sectional area of the mixed stream is

S2 = S1a + S =

Wia + Wip _ RTh [wla +w1b]
PlaVia P1bV1d PlM
49686 x 540 1000/3600  10,000/3600
= ———— ft3/lb,, 2 1b,,, /Tt
(68086 <2807 v/ ) [ 1000 T 100 / ]

= 0.3816 ft2

Via U1b

and the pressure p; of the mixed stream is obtained from Eq. 15.3-7:

P - VW2
S2

26539.1 — 100.5 x 11
_ |26539.1 1095 x 11,000/3600] _ ¢ o5 104 1b,. /ft-s® = 1.00 atm

P2 =

0.3816

(b) If the fluid density were treated as constant, Eq. 15.3-6 would give

(S1a + S1b)v2 = S1avia + S1pv1s

whence
_ S12v1a + S1pV10

Sta + St
_ wia/p + wipp
B Wia/pV1a + wis/po1s
_ Wia + Wi
B Wia/V1a + w1b/V1p

11,000
= 2 1089 ft
T+ 100~ 089 H/s

(c) Eq. D of Table 15.3-1 gives, for the conditions of (b),

N v? v2 v2
E, = (wla/w2)‘§_a” + (wlb/wz)—;" — 2

2
1 2
( 0200 +(10,000,/11000

= 45454.5 + 4545.5 — 5995.1 ft2/s?
= 44004.8 ft2/s? x 3.1081 x 1072 ft-Ib;/(Ibpmft?/s? = 1.368 x 10° ft-Ibs/Iby,

= (1000/11000) )(1(;0)2 _ (1095

2
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15A.4 Flow through a Venturi tube.

(a) Eq. 15.5-34 requires the calculated values
So = (m/4)(Dy)? = (7 /4)(3/12 ft)? = 0.04909 ft2,
nM

_ 17y _ (14.696 x 144 Ib;/f?)(28.97 Ibyn /Ib-mol)
p2 = (g )(pe/P1) (1544.3 x 529.7 ft-1b; /Tb-mol)
= 0.0610 Ib,, /ft3,

P _ RTy (49686 x 529.7 Ib,,-ft2 /s2-1b-mol
;M 28.97 1by, /1b-mol

1 —(So/S1)*(p2/p1)*!" =1 — (Do/D1)*(p2/p1)*" = (3/12)*(0.75)*/** = 0.99990.
Substitution of these and known values into Eq. 15.5-34 gives

5 _ 0.4/1.4
(N NNY (E wn\(n,‘ﬁlngri\ /2(9085 X 10 14 ‘0.41 1 075 }

(0.75)1/1.4

) = 9.085 x 10° ft2/s?,

(b) For isothermal flow,

_ paM (0.75 x 14.696 x 144 lby/ft2)(28.97 1b,,/Ib-mol)
~ RT, (1544.3 x 529.7 ft-1b ¢ /1b-mol)

1 —(p2So/p151)* =1 = (p2/p1)*(D2/D1)* =1 — (0.75)%((3/12)* = 0.9978,

and

p2 = 0.0562 Iby, /£t3,

2
T .
- / (1/p)dp = T 1n(py /py) = 0686 X 52Ty 1 /6 75) = 2.614 x 10° 5822
1 M 28.07

Then Eq. 15.5-33 gives

2 x2.614 x 10°

=1.961b,,
0.9978 1.96 b /s

w = (0;98)(0.0562)(0.04909)\/

(c) For constant density at the entering value,
_ piM (14.696 x 144 1b;/ft2)(28.97 by, /1b-mol)
P=TRD (1544.3 x 529.7 ft-1b; /Ib-mol)
1-— (pzSo/p151)2 =1- (Do/D1)4 = 0.9961

2
RT, RT,
/1( /p)dp Mpl(pl p2) Mo (p p1)

_ 0.25RTy _ 0.25 x 49686 x 529.7 _ 5 na 2
=== . = 2.271 x 10° ft?/s

= 0.0750 b,y /t3,




15A.5 Free batch expansion of a compressible fluid.

(a) Just after the start of the discharge, p; is equal to pp and pz/p; attains the
critical value given in Eq 15.5-43. Hence,

9 1.4/(1.4-1)
P2 = po (14+1) = 52.8 atm

The expansion from p; to p; satisfies p/pT = R/M, hence

L _p2po
To  po p2

Inserting p2/po = (p2/po)'/” according to Eq. 15.5-39, we get

Ty = To(pz/Po)('r—l)/'r

o W (-1
=7 || ==
’ [(7 + 1) }

2 2
°<7-F1> 300(24)

(Ib) When p; = p, =1 atm, p; = 1/0.528 = 1.893 atm. Then the temperature
within the main part of the tank is

(v-1)/~ 0.4/1.4 _
T, =T, (2L — 300 (1393 = 300 x 0.5078 = 152 K
Do 100

~(c) At the state described in (b), p1/po = (1.893/100)}/1 = 0.0588. The time
required to reach this state is computable from Eq. 15.5-46:

_ , (V/S3) 9 o (1-v)/2 ~ }
= V(YRTo/M)(2/(y + 1))+D/G-D) (7 - 1) [(Po) ’ '
(10/0.1 ft)

~ /(1.4 x 49686 x 300 x 1.8/28.07 £t /s2)(2/2.4)2 4104

o (&) [(0.0588)“0'4/2 — 1]
= 0.58 s
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15A.6 Heating of air in a tube.

_ For the air contained in the 20-ft length of tube, we write Eq. 15.1-3 with
Wpn = 0 (since this system has no moving surfaces); also we use the approximation
A(v?/2) of the kinetic energy change from inlet to outlet. This gives the simplified
steady-state energy balance

o 1 ~
A (H + 51)2) =Q
for horizontal flow, or

1 T: P4 1 2 p1T2 2 ~
— — —_ 1 —
M Jr, CpdT + 21 l(?ﬂﬁ @

for horizontal flow of an ideal gas in a tube. Proceeding as in Example 15.3-1, we
get the algebraic equation

818
3

1 9.8

58 97[6.39(T2 —-Ti)+ —2— x 1074(T2 - T?) - x 107%(T2 — T?) Btu/lb,]

40T\ 2 .
15T,

Inserting T1 = 5°F, and an initial guess of 800°R for T, we get the following Newton
iteration sequence, converging to 864°R~ 354°F:

+ % (75 £t/s)? x 3.9942 x 107° Btu/(lb,, ft2/s?))

= (800 x 20/185 = 86.4865 Btu/lb,,)

0ld T, LHS, f=LHS  f =df/dTy, AT,  New Ty,
°R Btu/Ib,, ~RHS  Btu/lb,-R =—f/f °R
800 82.9245 -3.5620 0.2458 14.49 814.49
814.49 86.5761 +0.0896 0.2474 -0.36 814.12
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15A.7 Operation of a simple double-pipe heat exchanger.

(a) The two exchangers will work most effectively if connected so as to simulate
a single double-pipe exchanger operating in countercurrent flow. That is, the stream
to be heated should enter exchanger A through its inner pipe at plane 1, next to
the outlet of the twice-cooled hot water stream, and should exit the inner pipe of
exchanger B at plane 2, next to the original inlet of the hot-water stream.

(b) The Reynolds and Prandtl numbers for the stream being heated are:

4w (4)(5400 1b,, /hr _ .
Re = (WD,,L) - <7r(0.0875 #)(1.00 by, /bty ) = 2L 10

_(Cou _ {1.00 Btu/Ib,,-F)(1.09 Ib,, /hr-ft)\
Pr= < k ) - ( 0.376 Btu/hrft-F =290

At these conditions, with yo and g not distinguished, Fig. 14.3-2 gives

hinD
k

(Re)~1(Pr)™*/? = 0.0028

and the insensitivity of hj, to L/D at Re above 8000 gives hjoc = iy according to
Eq. 14B.5-4. Hence, the local heat transfer coefficient for the inner pipe wall is

k
hi = 0.002855(Re)(Pr)1/3

(0.376 Btu/hrft-F)
(0.0875 ft)
= 1237 Btu/hr-ft2-F

= 0.0028 (7.21 x 10%)(2.90)/3

and the local overall coefficient U; based on D; satisfies

11 1

D;U;  D;h; * D;hannulus
B 1 1 0.001
= (0.0875 x 1237) © (0.0875 x 2000) | 0.0875

+ Wall and deposit resistance based on D;

hr-ft-F /Btu

or 1 1 1
U. = 1237 T 2000 T 0001

= 0.000808 + 0.0005 + 0.001 = 0.002308 hr-ft2-F /Btu
Hence, U; = (1/0.002308) Btu/hr-ft2.F. Equafion 15.4-13 then gives

Tt — T, - |
In (-’i-—l) v 2+ 1 ) D) (154.7 — 1)
ThZ - Tc2

wh.Cph wcCpc

15-9



or

Ty — 70 1 1 1 |
1 = 0.0875 x 40
" (200 ~ Tcz> 0.002308 ((5400)(1.00) + (—8100)(1.00)) (m < 40)
=0.2941

in which L, wp, and w, are measured in the direction of the cold water flow.

The computation of T,y is summarized below. For each trial value of T3, an
energy balance with heat capacities of 1.00 Btu/lb,,-F gives

5400(1.00)(T:; — 70) = 8100(1.00)(200 — Ths) (154.7 - 2)

from which the outlet temperature Ty, of the cooled hot water can be calculated
for testing against Eq. 15A.7-1. The final T}, is very close to 136°F.

Ty Ths = 200—  Thy — 70 200 — Ty In %’»0-5%%
%(Tc? —70) ' .

130 160 90 70 0.2513

132 158.667 88.667 68 0.2654

135 156.667 86.667 65 0.2877

136 156 36 64 0.2955

135.8 156.133 86.133 64.2 0.2939
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15B.1 Performance of a double-pipe heat exchanger with variable
overall heat-transfer coefficient

a. We start with Eq. 15.4-12

d(T,-T,) 1 1
———t=U| —= — |(27ry )dl

cpc

Since U is a linear function of T, — T,, we write

and we choose a and B by requiring that the conditions at planes 1
and 2 are satisfied:

At plane 1: U=«a +ﬁ(Th1 - Tcl)
At plane 2: U,=«a +ﬂ(Thz - Tcz)

This gives us two equations and for finding the two constants o and

B: |

a=U. - (LI2 "ul)(Thl ‘Tcl)
1 (ThZ T, ) - (Thl - Tcl)
(U, -U,)
Th2 - Tcz ) - (Thl - Tcl )

ﬂ = (
Then the overall heat-transfer coefficient can be written as:

u—ul — V(Th_Tc)_(Thl_Tcl) AT—ATl
Uz‘ul (ThZ_Tc2)—(Th1_T1) ATz"ATl

C

b. The first equation in (4) may now be written as:

_dAT
AT

=(a+ﬂAT)( 1A + 1A ](Zmo)dl

whcph wccpc

| 511



Part of the right side may be rewritten by using Egs. 15.4-7 and 8:

1 + 1 _(Thz“Th1+Tc2“Tc1)
whcph wécpc _QC ' Qc

= (T =Te) = (Tia ~T)= 5-(AT; - 4T,)

The differential equation now becomes

dAT 1 ~
AT(a +BAT) Q_C(ATl AT, )(27r, )dl

Integration then gives:

(AT dAT B _L B L
Jur AT(a+ BAT) " O, (AT, - AT, )(27r, ), !
or
1, la+pAT]: A
+— =—(AT, - AT
o AT AT, Qc ( ' 2)

where A is the area of the heat-transfer surface. Then, introducing
the expression for a developed in (a), we get

U, AT,
Q. ln(—af : A—T;) = -A[U, (AT, - AT,) - (U, - U, )AT, ]

Finally, solving for Q, we find

Q.

This is the same as Eq. 15B.1-2.
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15B.2 Pressure drop in turbulent flow in a slightly converging tube
a. We begin with the d-form of the mechanical energy
balance as given in Eq. 15.4-2

1 R
vdv+gdh+;dp =dW - 1v° Ridz

h

When this is integrated from z=0 to z=L for flow of an
incompressible fluid in a horizontal tube and no mechanical work
term, we get (after using Eq. 6.2-16)

. 1 2
o -of) +5(pa- )= 2 e

b. Since w = pvS = pv(nD?) is constant for each cross section,
we have p,0,D? = pvD? so that, for an incompressible fluid

v (&)2

v, D

Furthermore, this result can be used to rewrite the local friction
factor thus

00791 0.0791 ( 2]1’2

(Do) (Dyv)" (o) \ Dy
_ 0.0791 ( p_)l"‘_ 0.0791 (_D_)”“
(D) (0,)"(D,/D)*\D1) Dy, v)* Dy

c. Use Eq. 15B.2-1 to make a change of variable in the
integral in Eq. 15B.2-3:

vaf D2'02f dz L D, vzf
—dz=| "—| — |dD = dD
o %=k, D(dD) DZ—DIJDl D

The limits on the integral over D are fixed by using Eq. 15B.2-1.
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d. When the expressions for the velocity and friction factor in
(b) are substituted into the integral in (c), the integration can be
performed to get

fwz f,, ____ 0.0791Lo? b, (D,/D)*(D/D, )"
0D (D, - D, )(Dyo,/v)"* P D
0.0791Lv? Dy/Dy __19/4
= X dx
(Dz - D, )(Dlvl/ V)l/4 Il

(£)0.0791Lv? K D, ]15/4 ) 1}

(D, - D, )(Dyo,/v)"* |\ Dy

dD

Then Eq. 15B.2-3 becomes

l(P -p )— lv2 (P.LT 1le (%)0.0791Lz;12 (Dl)ﬁ/‘l »
p 1 2 2 1 D2 (Dl - D2 )(Dlvl/v)l/4 D2

e. From Egs. 6.1-4 and 15B.2-2, we get for D, =D, =D and
'01 = ‘02 =7

(PP )=2L02 fzszﬂ 0.0791
YD D (Dup/u)"

We now have to show that the result in (d) simplifies to this result
when D, =D, =D and v, =v, =v. Clearly the first term on the right
side of Eq. 15B.2-6 vanishes when D, =D, =D. The next term gives
0/0, and hence we have to apply L'Hopital's rule:

1
I

. [(Dl/D2)15/4_.1] A 15y
b, (DyDy) -1 on xo1 e 1

This, along with the statements that D, =D, =D and v, =v, =0
completes the proof of equivalence.
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15B.3 Steady flow of ideal gases in ducts of constant cross section

a, In the absence of work terms associated with moving
mechanical parts and for a duct which is horizontal, the second term
on the left side of 15.4-2 and the first term on the right side can be
omitted. For a circular tube, 4 times the mean hydraulic radius equals
the tube diameter, we get for a differential length dL of the tube

vdv+ldp+202idL=O or vdv+ldp+%vzdev=0
P D I

b. Use of the product rule for differentiation,

s
d =|=—dp—-| = |dp
(p) o\
leads directly from Eq. 15B.3-1 to Eq. 15B.3-2. The d-form of the mass
- balance is

dw=0 or d(pvS)=0 or pdv+vdp=0 or dpzpd—;

For an ideal gas, pV = RT or pMV = RT or pM = pRT. Hence for the
isothermal flow of an ideal gas, the second term in Eq. 15B.3-2 is

zero, and that equation becomes, after multiplication by 2/v?

=3 (3 o

Then, combining the last two equations, we get Eq. 15B.3-3.
c. When the result in Eq. 15B.3-3 is integrated from "1" to "2"
encompassing a length L of the pipe, we get |

-2 -2 2 2
e, =211 % 9| 5o, -Ino )=t f1- A |+ &
M\{-2 =2 My (2 v,

2 2
=M——[1—(”—2J :l+ln(22—] =281 (1-7) +1n7
G

M(p0,)*| \m 2
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This may be solved for the "mass velocity” G to give

poi(1-1)
e, —Inr

Then

dG* _ -1 (-1r) _
dr —plpl{ev —Inr (ev —1nr)2 =0

so that the critical value of 7 is given by the solution of the equation

1-r

Te

c

e, —Inr, =

d. From Eq. 15.4-4, we find that the right side is zero (for an
adiabatic system with no work done by moving parts), and that the
ideal gas law makes the fourth term on the left be zero. In addition,
since the tube is horizontal, the second term on the left is also zero.
Hence we are left with

~

~ C ,
vdv+C dT=0 or vdv+-2dT=0 or vdv+—R———y——dT=O
p M My-1

The third expression comes from the use of the ideal-gas expression
C —Cy, =R and the definition y =C / Cy , which give

ép _ (CP/C") __7

?pzé,,—(:v (G,/¢,)-1 r-1

Next the energy equation can be integrated to give

Y |RT 1,2 ( Y JP_.1 2 ( 4 )Pl
102 + — =const or U+ ——|==50;+H —|—
2 (Y JM ? y-1)p 271 \y-1p
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where the ideal gas law has been used to get the second form. Next,
after solving the integrated form of the energy equation for p/p, we
substitute this expression for p/p into the second and third terms of

Eq. 15B.3-2 to get (after multiplying the latter by 2/v?)

2@—2()/ 1)dv %(P—l-Jrl—:l%vlz—y_l%sz(—iB:—de
v Yy Jo v ¥

This equation can be integrated to give

(ol k3
Y Uy Py Y U U

Using the macroscopic balance, v, /v, = p, /p,, we get

2
BT
Y p2 (plvl) UZ 2 Y UZ

We can now solve for G =p,v; (using s =(p,/p;)?) to get

_ _ , P11
C=h -[(y+1)/y]ins _y-1
1-s 2y
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e. The macroscopic energy balance is

C,(T, —T1)+%(ZJ§ _012)—_-()

Then using the ideal gas law in the first term and the macroscopic
mass balance on the second term gives

MC 1 1 |
___p(&_&%%cz(_?__z]:o
R \p, Py Py Pi

Then, since Mép / R=7v/(1-y), this equation can be rearranged thus

2
b (12016 (2)
P o W2y Jpi| \p
And this expression can be rearranged further to give Eq. 15B.3-8.
Let the right side of the above equation be designated by X and

proceed as follows:

.&_p_l_—f_l_zx or &_&.=&X or E-Z—:'B—Z—[l-i--p—lX)
P1Pr 0 Pr P11 P P1 P P1

Inserting the expression for X will then lead directly to Eq. 15B.3-8.
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15B.4 The Mach number in the mixing of two fluid streams

s. Requiring that the radicand in Eq. 15.3-13 be zero is
equivalent to the statement that

=55 ()

The factor (w/P) can be obtained from Eq. 15.3-11, and the factor
(E/w) can be obtained from Eq. 15.3-10. This gives

| -2
1 (y*-1 RT, A )
5_[ 2 )(02+M02) (CPT2+-§-02)

We now move the second factor on the right side to the left side,
multiply the entire equation by v3, and replace C, by (R/M)[y/(y -1)]
to get

1 RT,\* (y*-1\[R
() =( y? )[ﬁ(ytl)r[z +%U§}v§
We next multiply by 2 and rewrite the equation thus:
2 2 _
v§+2RT20§+(RT2) _(r+1 2RT20§+ 4 21 ot
M M 14 M 14

Then we collect terms in the same powers of the velocity at plane "2" -
to get

2 2
Lo - 2RTL (1 v§+(5§_) 0 or [Loz-RLz) g
14 M \y M Y M

This equation may be solved for the velocity at plane "2" to give

RT,
M

Uy =41Y
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This is exactly the speed of sound, given in Problem 11C.1(c).
b. To describe the behavior of a gas passing through a sudden
enlargement, we can set o

w,=w; and w, =0
and also
P1a = P1 T,=T, Sa=§ Sp1 =0

Then when w, P, and E are defined analogously to the quantities in
(2), we find that Egs. 15.3-11, 12, and 13 remain unchanged.
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15B.5 Limiting discharge rates for Venturi meters
a. First, we take the square of Eq. 15.5-34

w —Cdpzsz(ifl)( Y )I:(pz/Pl)z(l—-r(Y—l)/)')}

y-1 1-prol7

in which 8 =(S,/S,)? and r = p,/p:- Next we set dw?/dr =0 to get

J {,ﬂ/r (1 _ -1y )}
L2 =0

dr| 1-Br¥?
and, performing the differentiation, we have

(2/7)r (2/r)- ((1/y) + 1)r1/7’ ) 27 (1 _ r(y—l)/}') B(2y)r (2/7)-
1-prilr (1—ﬁr2/7)

—O or

[(2/)/)7‘(2/’/)_1 - ((1/y) + 1)7‘1/’/ ](1 - Bril" )
_py (1 _ -1y )[—,3(2/)/)1‘(2/7)—1] -0

When this is multiplied out, two terms cancel, and the remaining
terms are:

2 2/7 +B( ) (l.,_l)rl/r B= 7,3/7'_
Y Y Y

Muttiplication by yr ™" finally yields

2 (1+y)
| B(y-1)+ TR

This is equivalent to Eq. 15B.5-1.
' b. First we solve Eq. 15B.5-1 for =0 and get
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2 v/(v-1)
r=| —
(y + 1)

We substitute this expression for r into the first equation above in (a)
in for =0 and then rearrange it as follows:

- o Puf Y 2y ’ (r-1/y
w._. =C,p,5,./2 1
max dpl 0\/ Pl(}’ 1]1’ ( r )

2D
RT \y-1)\y+1 y+1

M y 2 2/(7_1)
= CyP1504/2
RT\y+1)\y+1

,yM 2 (y+l)/(7—1)
=Cyp1S, RT. m
1

in agreemént with Eq. 15B.5-2. |
¢. For isothermal flow, we get from Eq. 15.5-33

~2[,, (RT/pM)dp (2RT/M)in(py/p,)
w =Cy0,5 7 = CaPy5 2
1-(p2So/P1S1) 1-(p,S0/P:51)

=Cy01Sy7 \/ (ZRTl/ﬁ’grhz‘(l/r)

“inwhich r=p,/p, and B=(S,/S,)".
Now for negligibly small 8, we can find the maximum
discharge rate by setting dw?/dr = 0 which gives

i(rz ml) —orini-1=0
dr r r

This gives the value of r for the maximum discharge rate as
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_P_ 1
P1 e

Then

1 |2RT 1 RT M
Wnax = CaP1Sg :/—76—4\/_]—\/1-_ 5 = Cdplsowlzﬁ = Cdplso\/ﬁ

It is interesting to compare the results for air (y =1.4) for the two
cases. For adiabatic flow, we get

w D) (r+1)/(y-1) 2404 X
X = — =./1.4 — =+/1.4(0.8333
Cap1S0yM/RT; y( Y+ 1) \/ ( 2-4) ( )

=(1.183)(0.5787) = 0.6846

For isothermal flow, we have

W ax 1 1
C,p1Sor/M/RT e +/2.718

= 0.6065

The ratio of these two results is 1.13.

We estimate that this ratio will amost never be greater than
25%. Thus, the simpler isothermal expressions are frequently useful
for preliminary estimates of flow behavior
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15B.6 Flow of a compressible fluid through a convergent-divergent
nozzle

a. From Eq. 15.2-2 with no work done by moving parts and
with viscous heating neglected, we get for the assumption of flat
velocity profiles:

SIS

(vg —vlz)+f12%dp=0

Then, we set v; =0 and, assuming adiabatic flow, we can use Eq.
15.2-5 to evaluate the integral. This results in

(y=1)/y
12 P T (P_J 1o
P Y -1\ p

Then the ideal gas law may be used to rewrite this expression as

(r-1)/
152 - RTy v 1‘(&]y Y
2Y2 7
M y-1 P1

b. We may start with Eq. 15.5-34 with S, considered to be
very large, and S, replaced by S,

S o

We next replace p, by p,(p,/p;)"" and solve for S,, assuming that
C, = 1. This gives, with r =p, /p,

w

Puil _ Y \(,2r _ re1)y
01\/2(p1)(y_1)(r r )

52:'
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The minimum cross-section for given values of w, p;, and p, will

occur when

-1 (—1)[(2/y)r2/7 — ((,}, + 1)/y)r(y+l)/y]
i r(rz/y _ r0)y )2

ds? d(,
222 — = (p¥r —pri)y
dr dr (r ' )

When this equation is solved for r, we get

v/(r-1)
S
pr \Y +1

which is Eq. 15B.6-2.
c. Combining the results from (4) and (b) we get

RT, vy |;__2 |_RTy y (y=1)_RT, v
M y-1 y+1 M y-1\y+1 M y+1

v5 =

N

Then, from Eq. 11.4-56 and Eq. 15B.6-2, we find

(r-1)/r :
+1
h =T2(ﬂ) :T"’(yz )

2]

From the last two equations we get

2 Bﬂ(q or o= R
M

Therefore, the velocity at surface "2" is sonic (cf. Eq. 9.4-4). It is clear
that this problem is very similar to that in Problem 15B.5. Here,

however, we are considering the effect of varying S,, whereas in

Problem 15B.5 the reverse procedure was used.
d. Since we now want to get the velocity as a function of the

local pressure, we have to replace the first equation in (a) by

%@Awa+g%@=o
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We then use the fact that v; =0, and perform the integration to get

the velocity at any value of the local pressure for an ideal gas in
adiabatic flow

where r=p/p; (!). Then taking the square root and using the ideal
gas law, we get

0= \[&(L)(l_ r(?-l)/y)
M {y-1

The cross-section at any value of the local pressure can then be
obtained from (with r = p/p, ):

{27 (2)

RT
— . GpVY L) Y _ -0y
=P, S \/2( )(y_l)(l r )

Then, solving for the cross-section S, we get

S_ w/pl

o H % )(ﬁ)(l_ fr-)

|5-26



Next, for the conditions of the problem given in part (d) of the
problem, we have

R =(1544)(32.17) = ft’lb,, /Ib -mole-s* -R
RT,;/M =(1544)(32.17)(560)/29 = 9.592 x 10° ft*/s*

\/Zﬁﬂ(—”_) - \/(9.592 x 105)&-‘9 = 2591 ft/s
y-1 0.4

M
w=(101b-mol /s)(29 1b,, / 1b - mol
_pM _ (10 atm)(6.8087 x10* (Ib,, / ft-s°) per atm.)
' RT, (4.9686x10* Ib,,ft* /52 -Ib-mol-°K)(560°K)
=0.710 Ib,, / ft°

We may now summarize the calculations of v, T, and S thus:

-0.714
p=25911- 7%,  T=560r02%; =0T

p (atm) r r0-28 v T S

10 1.0 1.000 0000 560 oo

9 0.9 0.970 449 543 0.977
8 0.8 0.938 645 525 0.739
7 0.7 0.903 807 506 0.650
6 0.6 0.864 956 484 0.613
5.28* 0.528 0.833 1058 466 0.606
5 0.5 0.820 1099 459 0.607
4 0.4 0.769 1245 431 0.628
3 03 - 0.709 1398 397 0.688
2 0.2 0.631 1574 353 0.816
1 0.1 0.518 1798 290 1.171
0

0.0 0.000 2591 0 oo

*Pressure at the minimum cross-section
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15B.7 Transient thermal behavor of a chromatographic device

We start with the energy equation of Eq. 15.1-2, which we
apply to the gas inside the chromatographic column. We are
concerned only with the change in time (and not distance) within the
column. Since there are no moving mechanical parts, the equation
simplifies to

%um =Q=UA(T,-T)

in which the total kinetic and potential energy in the system are
considered constant, and U is the overall heat transfer coefficient
between the external gas stream and the gas within the
chromatographic device.

From thermodynamics we can write

~ (ol ou) ,~ = dp -
dl=| 2=\ dr | AV =C dT +|-p+T| 2= | [V
(‘va J{avl v +[ P bT)‘]

|4

The quantity inside the brackets is zero for an ideal gas and is

neglected here. Then U -U°=C, (T —T°), where the superscripts °
stand for the reference state, and

U = fpl:[dV = pLAIthot + péV (T - TO)Vtot

where the density and heat capacity are taken to be constants. The
energy balance becomes

A aT

iT  UA t
CyVii—=UA(T,-T =—= Tool I+ -T
PLy Vo At ( 8 ) ot dt pCVVtot|: gO( to) :l

We now introduce the dimensionless temperature © =T/T,, and the
dimensionless time 7 =t/t, and rewrite the energy balance as

5;% =B[(1+7)-0©]  with B =UAty/pCyV e
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This differential equation can be put into the form

Z—®+B®=B(l+r) with ©=1at =0
. .

This is a linear first-order differential equation (see Eq. C.1-2), which
with the indicated initial condition has the solution

@:(1+ r—l)+le‘B’
B) B

This is probably the simplest solution that can be offered for this
problem. We are now in a position to answer the questions in the
problem: .

a. The difference between the external gas temperature and
the temperature within the chromatographic device is

1 1 1 1
Tg—T=Tg0(1—T)—TgO(1+T—§+E€ B ):Tgo(g—'ge B )

b. The limiting value of the temperature difference will be

1

c. The time required for the temperature difference to be
within 1% of the limiting value is given by the solution of the
equation e™”* =0.01 or 7=(2.303)(2)/B.

d. Constant physical properties; no dependence of
temperature as a function of distance down the column; the
neglecting of potential energy and kinetic energy effects.

e. All the quantities that are contained in B.
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15B.8 Continuous heating of a slurry in an agitated tank

a. The starting point is Eq. 15.1-1 or 2. On the left side the
potential energy term @, is omitted because for a full tank the ®,,
is a constant. Similarly K, is time-independent and can be omitted.

The term U, = fvpl:IdV will be retained. Since U = H - (p/p), and p

and p are time-independent, we can replace the internal energy by
enthalpy, which is given by Eq. 9.8-8, the second term on the right
side of that equation being negligible. Furthermore, since the heat
capacity is considered constant, Eq. 9.8-8 becomes simply

A=0,+C,(T-T,)

where the inlet slurry temperature T, has been chosen to the datum
plane for the enthalpy. |

On the right side of Eq. 15.1-1, the mechanical work term and
the kinetic energy and potential energy terms can be disregarded. But
the heat addition term Q and the outlet enthalpy term must be
retained. Therefore, Eq. 15.1-1 becomes

i A .
;Eutot =-Hw+Q
or
~ 4T A
pCpVE =-wC,(T-T,)+UA(T, -T)

which is Eq. 15B.8-1.

b. When the system has attained steady state operation, the
left side of the above equation becomes zero, and the slurry
temperature has leveled off to T.. This quantity is then defined by
the equation

0=-wC,(T..-T;)+UA(T, - T..)

or (with the definition that UA/wC, =Q):
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. =n+@LVM;ﬁ;=n+QR
T 1+(uafwC,)  1+Q

From the last equation we may also get the relation

T,-T. wC, 1

T,-T. UA Q

which is needed presently.
Now the differential equation can be rewritten in terms of
the dimensionless variables given in Eqgs. 15B.8-2,3:

idrr) ) (7=
=QUT54L%%T-TJ]_GT—1J—U¥~1J)
T,-T,

T,-T.
=4{—é-@)4@-n=-@a+g)

i

Hence the differential equation in dimensionless form is

- dO
—=-0(1+Q
17 ="00+9)
¢. This equation is solved to give
| 1@)21(99 =—(1+ Q)J'ord‘r - or Q= 1+

This is just the dimensionless form of the solution given in the text.

d. When the solution is written in the dimensionless form, it is
easy to see that it satisfies the differential equation and initial
condition. It is also evident that ® -0 (or T — T_), which is to be

expected.
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15C.1 Parallel-counterflow heat exchangers

a. From Eq. 15.1-3, with only the enthalpy terms contribut-
ing, and Eq. 9.3-8 with only the first term being important (and the
heat capacity constant), we get for the region between a and b

A

wsChp(Ts = Thy )~ wsCpp(Th - Th) =0

from which Eq. 15C.1-1 follows.

b. Then the application of Eq. 15.4-4 gives, for the region
between the dashed lines in Fig. 15C.1, three differential energy
balances over the heat-transfer surface dA:

w,C,adT) = %U(TB - T} )dA
¢ " = Lu(r, -T"aa
Wabpaldl g = 5 (B A)

wyC,pdTy = Eu(:r}q —TB)+%U(T§ —TB)]dA |

Then introducing the ratio R, and the dimensionless differential area
do (defined in the problem statement) leads directly to Egs. 15C.1-2,
3, and 4.

c. First we differentiate Eq. 15C.1-4 with respect to a to get

1d°T, dT, 1(6171{1 d:r}})_o

ﬁda2+da ) da+da

Then using Egs. 15C.1-2 and 3 this becomes

——%+———(TB—T2)—i(T§—TB)=O

Next use Eq. 15C.1-1 to rewrite this as

e _do 1
+R—--0=0
da? da 4

d*T ar, 1 |
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In the second equation we have used the dimensionless temperature.
This differential equation may be solved (see Eq. C.1-7a) as follows:

0= C, exp|-}(R-VR? - 1)a]+c, exp[—%(R +VR? - 1)a]
: =Ce™% +Cpe™?

Application of the boundary conditions gives two equations for the
integration constants:

1=C, +C,
0=C,e™ +C,e™°T

The integration constants are therefore:

C e or 1 1
17 —em_aT — e™OT - 1_e(m_—m+)a7~ - 1 e,/Rz_laT
C e™-or 1 1
2= +em_a7- — p™Or - 1__e(m+—m_)a7 - 1_8‘\/R2‘1‘1T
d. Next we obtain d@/da::
e m_e™* m,e™"

do B 1- e\/Rz—laT 1- e—\/Rz—laT
Then evaluate this at & =0 to get

1 dTy| _ m . om,

= +
TBl - TBZ da |a=0 1- e‘/Rz‘l ar 1- e—‘lRZ -layp

Then eliminate the derivative by use of Eq. 15C.1-4 (also evaluated
at a =0) to obtain:
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R m m

S S S S __m s .
TBl—TB?_[ TBl+2(TA1+TA2)] l_emaT +1_e—\/R—2_-Iar (*)

We now replace the denominator on the left side by using Eq. 15C.1-
1, and then we have to manipulate the left side in such a way as to
obtain the ratio ¥ defined after Eq. 15C.1-8; thus the left side
becomes:

%(Tm ‘Tsl) +%(TA2 "Tsl) _ (TAI _TBl)+%(TA2 —Tp - Ty +TBI)
Thy—Tp Ty —Ty '
o I =Ty 11 1,
Ty-Tn 2 % 2

With this substitution Eq. (*) gives ¥ as a function of a;. But we

would like to have o as a function of ¥. That is, we have to solved
the following equation for x:

C= 4 + B with A=m_, B=m,. x = VR -lar
1-x 1-(Yx)

But this is just a quadratic equation, which can be solved by the
standard method, which yields two solutions:

_C-A

=1 and St
X an X C_B

The solution x =1 is physically uninteresting. The other solution
gives

)
)

ﬁ@zmH=2—q%1—l+R—JE?:I)
2-¥(1-1+R+VR? +1)

Woe _ (C(V¥)+

¢ (—(1/%)+

Mo _(2+4¥)-2¥m_ _2-¥(1-2m.)
-m

C(2+¥)-2¥m, 2-¥(1-2m,)

D= | N

+

e

Taking the logarithm of this equation gives Eq. 15C.1-8.



15D.1 The macroscopic entropy balance
a. First rewrite Eq. 11D.1-3 as

d a_ ay 1 1
521)5:—(V'pVS)——i;(V-q)—?('c:VV)

= _(v -pvé)—(v -—;:q) —-%z—(q-VT)f—;:(tVV)

We now integrate this over the entire macroscopic flow system,
which is presumed to have some moving parts in it so that the
volume and surface of the system are time dependent:

J 4 ' A 1
‘;[t):gii'[)f;ﬂl‘/r = “‘;[;§‘§7 ’}C)‘ff;)Ki‘/z - ‘;[t)(:‘;7 ';i:'(l:)61‘/r
| %[(q-V]nT)+(1::Vv)]dV

V(t)

Since the last term is the integral of the entropy production terms in
Eq. 11D.1-4, we can label this term g, .. We may now use the Leibniz

rule to move the time-derivative operator to the left of the integral
sign and the Gauss divergence theorem to transform the volume
integral into a surface integral:

9 a d ¢ o N d .
—pSAV =— | pSdV + |(n-pvsSES=—S, ., + ||n-pv SHS
V{t) ot dt v{n s{tg v )d dt s{tg v )d

- When this is inserted into the preceding equation and the Gauss
theorem applied to the integrals containing divergences, we get:

d A\ 1
—St == | (n-plv—-vs)SHS - (n-— )dS+ o
dt tot S_!.tg ( S) y S_!;) Tq gS,tt

We now divide the surface into four parts: S(£)=5; +5, +5,+5,, the

cross-section of the entrance (1), the cross-section of the exit (2), the
fixed solid surfaces (f, and the moving surfaces (m). The first surface
integral above will contribute only at 1 and 2:
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15D.2 Derivation of the macroscopic energy balance
When Eq. (N) of Table 11.4-1 is integrated over the entire
volume of the flow system we get:

[ S{tov? ot +pd)av =— [ (v-{3pu7+ pll+ by
v(t) vi(t)
- [(V-q)dV - [(V-pv)dV - [(V-[t-v])dV

1%40) 146 40)]

We now apply the Leibniz formula to the integral on the left side of
the equation to get

o g (zpv +pu + pCI))dV
tg%pvz +poU + p(i))dV + S{t)(n : (%pvz +pU + pﬁ))vs )dS

(Kiog + Uy + Do) + j' (n , (%pv2 +pU + pﬁ))vs )dS
S(t)

:-d—t-v(
_a
dt

This is now substituted into the preceding equation (in which the
volume integrals have been converted into surface integrals by using
the Gauss divergence theorem) to get:

- d

, E(Ktot + Uy, + q)tot) =~ I (n : (%Pvz +plj +,0fi))(v - Vg ))dS

S(t)

_ J‘(n.q)dS— J'(n.pv)dS- J(n-['c-v])dS
S@t) S(t) 5(t)

We now divide the surface into four parts: 5(t)=5; +5, +5; +S,,, the

cross-section of the entrance (1), the cross-section of the exit (2), the
fixed solid surfaces (f, and the moving surfaces (m). The first surface
integral above will contribute only at 1 and 2:

—I( (zpv +pLI+pd>)(v vs))dS

0
= (%Pl <Ui%> + oy, (o) + 0,9, (0; >)Sl - (%Pz <Ug> +p,U, (va)+ 0,9, (v, >)S2
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The contribution of the second surface integral at 1 and 2 is presumed
to be negligible with respect to the convective energy transport, but
will in general have a nonzero value on the surfaces; we call this Q.
The third integral will contribute both at "1" and "2" and on the
moving surfaces:

- j(n -pv)dS = +p1(v))S, = p,(0,)S, + WP

S(t)

where W is the pressure contribution to the work done on the
system by the via the moving surfaces. The fourth integral will be:

- _[ [T- v dS +W(T)
S(t)

which is the stress contribution to the work done on the system by the
via the moving surfaces. Of course there are also contributions at 1
and 2, but these are considered to be negligible to the pressure forces.
When all of the above contributions are assembled, we get

d
dt

(591 <7’1 > +pl, (o) + p1qA)1<v1 >)Sl - (%Pz <Ug > +p,U, (0,)+ 0,9, (v, >)52
+Q+p1(01)S; = Po(v,)S, + W, + WD

(Ktot + utot + (Dtot) =

which is the macroscopic energy balance given in Eq. 15.1-1.
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15D.5 The classical Bernoulli equatlon
For an isentropic flow,

du =—pdf/:—pd% or Vl:I:—pVV=—le

o

Then Eq. (E) of Table 11.4-1, with the heat and momentum fluxes set
equal to zero, becomes for a steady-state system

p(v Viv? ) + p(v : (—pr‘l )) = —(V : pv) + p(v .g)
Using g = -gVh and some standard vector identities

p(v-V10®)+po (v-Vp)=—p(V-v)-(v-Vp)-p(v-Vh)

The second term on the left and the second term on the right can be
shown to be equal, using the equation of continuity (appropriately
simplified for steady-state flow). Next, consider that the del
operators are acting only along a streamline, so that V = (v/v)(d/ds),
and hence we get

d 2 P d d
LoV =—E 2y pveh
po ds \? ( ) p ds p=pes ds

When this equation is divided through by pv, we get Eq. 3.5-11. Then
Eq. 3.5-12 follows at once.
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16A.1 Approximation of a black body by a hole in a sphere
Use Eq. 16.2-12

e

or

8(1 ~ €hole )
Chote (1 €)

f=

Into this we insert the values e =0.57 and ¢;;, =0.99 and get

0.57(1-0.99) _ 0.57(0.01) _ 0.0057
0.99(1-0.57)  0.99(0.43) 0.4257

f= =0.01339

Then using the definition of f we write

m}%ole ‘
47(3°)

Then solving for the hole radius we get

£=0.01339 =

Prote = 2+/0.01339(3) = 0.69 in.
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16A.2 Efficiency of a solar engine

The area of the mirror is (#R?)=257 ft?. Since the solar
constant (heat flux entering the earth's atmosphere) is, according to

Example 16.4-1, 430 Btu/hr-ft?, the energy input to the solar device
is

(430Btu/hr-£t* )(257 £t*)(3.93x10™* hp/Btu-hr)=13.3 hp

Therefore the efficiency of the solar device is

Efficiency = —1?),2_5 =0.150 =15%
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16A.3 Radiant heating requirements

The heat required is the sum of the radiant heat-transfer
rates betwen the floor and each of the other surfaces. Since no
pertinent data are supplied for its estimation, the convective heat
transfer will be neglected. It can be expected to be appreciable,
however. |

The total radiant heat-transfer rate is then

Qrad = O-Iqﬂoor (Tﬁoor - T?valls )2 F i

Floor to ceiling: F,=0.49
Floor to large walls: F,=F;=0.17
Floor to small walls: F,=F;=0.075

Summing the contributions, we get:
Y, F; =0.49 +2(0.17) + 2(0.075) = 0.49 + 0.34 + 0.15=0.98

Alternatively, we may consider the floor to be completely surrounded
by black surfaces. From that point of view we know that the sum of
the F; should be 1.00. A cumulative error of 2% has thus resulted
from considering each of the cold surfaces separately. Then we get

Quad = (1712107 Btu/hr - ft2R* )(450£t2)
.[(75 +460)* - (~10 + 460)* ]R4
=(1.712x 107 )(450)(8.19x 10" — 4.10x 10"°)
=3.15x10* Btu/hr

Here we have used the value of the Stefan-Boltzmann constant
given on p. 867.
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16A.4 Steady-state temperature of a roof

Since June 21 is (conveniently) very close to the summer
solstice, the angle of incidence of the sun's rays on a flat roof may be
calculated quite simply. We know that the earth's axis is tilted at an
angle of about 23.5 degrees. Thus the angle of incidence of a flat roof
at 45 degrees north latitude will be about 45-23.5=21.5 degrees,
- and the heat received by the roof will be given by the solar constant
multiplied by the cosine of the angle of incidence and then further
multiplied by the absorptivity of the surface: (430)(cos 21.5%)a. =
(430)(0.9304)a., in units of Btu/hr.ft2. We now equate the radiant
energy received from the sun by the roof to the radiant energy
emitted by the roof plus the heat lost by convective heat transfer for
the two cases given in parts (a) and (b):

roof ~ roof

(430)(0.9304)a = h(T oo — Ty, ) + €T

a. For a perfectly black roof, we have

(430)(0-9304)(1.00) = 2.0(T o — 560) +(1.712 x 10~ }(1.00) T4

roof

This equation may be solved by trial and error to get about 625°R or
165°F. _
b. For the flat roof with a = 0.3 and e = 0.07 we get

(430)(0.9304)(0.3) = 2.0(T ¢ — 560) +(1.712x107°)(0.07)T

roof

which may be solved by trial and error to give 610°R or 150°F.
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16A.5 Radiation errors in temperature measurements
Assume that the thermocouple behaves as a gray body in a

large black enclosure, and equat the net radiation loss to the
convective heat input:

€O'(Tfh - Tévall) = h(Tgas - Tth)

in which T is the thermocouple junction temperature.
For the conditions of this problem

(0.8)(1.712x10)[(960)" - (760)* | = (50)( s — 960)

gas

Solving this for T,,; we get

T . =960+ 222 — 971°R = 514°F
: 50

There is thus a 14°F difference between the calculated gas
temperature and the thermocouple reading.
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16A.6 Surface temperatures on Earth’s moon.

(a) A quasi-steady-state energy balance on a lunar surface element that directly
faces the sun gives

_ 4
Ipa = €T pax

in which Iy is the solar constant, T max is the temperature of that surface element,
and a and e are its total absorptivity and emissivity. Setting a = e for a gray
surface, and using the value calculated in Example 16.4-1 for the solar constant, we
obtain the quasi-steady-state estimate

Ts max = (loo)'/* = (430/1.7124 x 107°)'/* = 708°R

of the maximum temperature on the moon.

(b) For a spherical lunar surface, receiving radiation from the sun only, the
local intensity of incident radiation is

1(8) = Iycosd, for0<0<mn/2
MRS N for 7/2 <0 <,

when the sun is treated as an infinitely distant point radiator. Here 8 is the angular
displacement from the surface location nearest the sun. Replacement of Iy by I(6)
in the result of (a) gives the quasi-steady-state temperature prediction

T(6) = Ty max cos'/2() for 0 <6 < /2
10 for 7r/2 <0<

This prediction becomes less accurate in the partially shadowed region (penum-
bra), given by |6 — 7| = 0.0046 for a spherical lunar surface and the solar dimensions
shown in Fig. 16.4-1. Transient energy transport and shadows cast by the rugged
lunar topography also become important in this region, and radiation emitted and
reflected from Earth and the other planets become significant on the dark side of
the moon. '

154



16B.1 Reference temperature for effective emissivity
By the assumption of linear variation of emissivity with
temperature we write

e=a+bT

where a and b are constants. Then

e, —e°=b(T, -T°) and e, —e°=b(T, - T°)
and

(e, —e°)Ty{ =b(T, -T°)T;

(e, —e°)T3 =b(T, -T°)T,

However

(e, —e°)Ty =(e, —e°)T,

and therefore

T; -TiT°=T; - TiT°

This may be solved for the reference temperature to give

_I-T;

To=
T -T,

This is the same as Eq. 16B.1-2.
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16B.2 Radiation across an annular gap

The system in this problem is very similar that depicted in
Fig. 16.5-1 and described in Eq. 16.5-9. Since all the radiation leaving
the inner surface ("1") of the annulus is directly intercepted by the
outer surface ("2"), we know from the interpretation of F;, after Eq.
16.4-11 that F,, =1. Then

__ofrt-mi)
12 = 1 - el i 1 - 62
e A A eA

G(Tf—Tg)
1 1 1. 1 1

+
el A A A, A

Note that if, in Eq. 16.5-9 we had replaced A,F,, by A,F,,, then we
cannot set F,, = 0 in this problem, inasmuch as light leaving surface
"2" is not all intercepted by surface "1". In fact, it is not difficult to
show that F,, = A;/A,. Then if the inner cylindrical surface is only
slightly smaller than the outer cylindrical surface, then F,, will be
just slightly smaller than 1, and if the inner cylinder shrinks to a wire,
then F,, will approach zero.
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16B.3 Multiple radiation shields.

(a) Equation 16.5-1 gives the radiant heat flow between successive planes in
the series as . . . .
o(Ti - Tiyy) o(T} = T3,)

Qi1 = [/ei+1/eir1—1  Riip

in which
Riiv1=[1/ei+1/eiy1 — 1] [A;

Summing the thermal resistances R; ;41 from i = 1 to ¢ = n — 1, and equating the
heat flows through all of them, gives

i=n—1

Q Y. Rip1=0(T} - T;)
=1
whence
o(Ty - T,)
>ict ! Rijit

(b) The ratio of the radiant heat flow through n identical sheets to that between
two is

Q:

Q(n sheets) Ry, | 1
Q(2 sheets) (n—1)R;2 n-—1

(c) The ratio of the heat flow with three non-identical sheets to the heat flow
without the middle sheet is ‘

R1,3 _ [1/61+1/63—1]
R1,2+R2’3 [1/61+1/82—-1]+[1/62+1/63—1]

in agreement with the result of Example 16.5-1.
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16B.4 Radiation and conduction through absorbing media
a. We begin by combining Egs. 16.6-5 and 6 to get

0=-2 00 _ 1y o
dz qz aqz
This may be integrated to give

Ing" =-mz+C

The constant of integration may be obtained from the boundary
condition at z=0, so that

M =gPe™*  and (from Eq. 16.6-6) QL= m,g¢ e

Next, use Eq. 16.6-4 to get

2
0=x4TL, m,qy)e ™

dz?

Integration twice with respect to z gives

Vqé” -

T(z)= —m—ake “+Cz+C,

Next we apply the boundary conditions that T(0) =T, and T(5)=T,
to get

() )
et e oo e

a

b. The conductive heat flux is given by Fourier's law:

_ T's—1 v q(r) _
_ _ (r) ,-m,é ) 0 0 m,é
g, =—-k——=-qy’e +k 5 —-maa(l—e )
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For very large values of m,, the first and third terms become
negligibly small, and we are left with '

Ty-Ts
)

Very large m,: q, =-k

For very small values of m, we can expand the first and third terms
in a Taylor series and get:

Very small m,: g, = —qg)(l—maz+---)—kT° ;Ts
—i&)—(l—lﬂn 5—-")
m,o “
z_kTO —TS

)

Thus in both limits, the conductive heat flux is virtually unaffected by
the radiation.

=t



16B.5 Cooling of a black body in vacuo
An energy balance over the black body in the enclosure is

d dr e
U =0 or  pCV—-=Ag

When the Stefan-Boltzmann law is inserted, we get

m:V%E=AoU§—Tﬂ

This separable, first-order equation may be integrated as follows

T dT Ao ¢
=— dt
J.Tl Tél _ T4 ,OCPV jo

The integral on the left side may be integrated with the help of an
integral table to give

L
4T3

Therefore the temperature-time relation is

T
T, +T|

T, -T)|

+

2T T,

1 T)
arctan —

T,

3
ITZ +T)_ IT2 * T1|+2arctan1—2arctan T, _44clyt
ITz T| |T2 I T, T, PC 14

The left side gives T =T, as t goes to infinity, and T =T, as t goes to
zero.

The left side is dimensionless, and the right side is also, as
can be seen by using the table of notation given on pp. 872 et seq.

() ()

(2] &)

= dimensionless

|b-12



16B.6 Heat loss from an insulated pipe.

(a) Eq. 10.6-29 gives for this problem,

(cond) _ 27T(T0 — T2) -
QO /L T In(ri/ro) + In(ra/r1)
kol k12

with ro = 1.0335in., r; = 1.0335 + 0.154 = 1.1875 in.,and r, = 1.1875 4+ 2 =
3.1875 in. With the given thermal conductivity values, we then obtain

cond 27 TO - Ta
Qg )/L = In(l.1975/1.033(5) + 1n(3.)187§/1.1875)
26 0.35
_ 2m(250 — T,)
~0.0053 + 2.8
_ {334 Btu/hr-ft if Tp = 100°F;
10 if T, = 250°F

(b) The net radiative heat loss is given by Eq. 16.5-3. Setting e = a = 0.05 for
the aluminum foil, we get

QY /L = o7 D, (0.05)(Te — T4)
= 0.1712 x 10737 (2 x 3.1875)(0.05)(Ty — 540%)

_f 23 Btu/hr-ft  if Top = 100°F = 560°R;
~ 1 290 Btu/hr-ft if Tp = 250°F = 710°R

The free-convective heat loss is predictable as in §14.6. For T, = 100°F, Ex-
ample 14.6-1 gives
Q™) /[, = 18 Btu/hr-ft

For T, = 250°F, Eqs. 14.6-4,5 and Tables 14.6-1,2 give
Nul2™ = 0.772(0.515)(GrPr)!/* = 0.398(GrPr)!/*

The needed properties of air at Ty = (80 4 250)/2 = 165°F= 74°C are obtained
from the ideal gas law, from Table 1.1-2, and from CRC Handbook of Chemistry
and Physics, 81st Ed., 2001-2002, pp. 6-1, 6-2, and 6-185.

g = 0.0206 mPa-s = 0.0498 lb,, /ft-hr

p=pM/RT =1.017 x 107* g/cm® = 0.0634 lb,, /ft3
Cp = 1.012 J/g/K = 0.2420 Btu/lb,, /cdotR

k =29.5mW /m-K = 0.0170 Btu/hr-ft-F

B=1/Tf=(1/625)R™}
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Hence,

GrPr — ((2 % 3.1875/12)3(0.0634)%(4.17 x 108)(170/625)> ((0.2420)(0.0498))

(0.0498)2 (0.0170)
= (2.76 x 107)(0.709) = 1.96 x 107

and

Nup, = (0.398)(GrPr)!/*

= (0.398)(1.96 x 107)'/* = 26.5
Therefore,
Q™ /L = hpywD(Ty — T,) = (Nupmk/D)(xD)(To — T)

= Nupmk(To — Tp) |

= (26.5)7(0.0170)(250 — 80) = 241 Btu/hr-ft
giving

Qleond) — Qrad) _ Qleonv) (334 9318 = 293 Btu/hrft  if Tp = 100°F;
L ~ 1 0—290 — 241 = —531 Btu/hrft if Ty = 250°F.

(c) Linear interpolation to zero heat accumulation at the outer surface gives
the steady-state values

Ty = 100 + 293/824(250 — 100) = 153°F

Qeord) /I = Qlrad)+leonv) /1 334 4 (293/824)(0 — 334) = 215 Btu/hr-ft
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17A.1 Prediction of a low-density binary diffusivity.

(a) We begin by looking up the needed properties of the species from Table
E.1:

Species M, g/g-mol T., K Pc, atm

A: CHy 16.04 191.1 45.8
B: C;Hg 30.07 305.4 48.2

Equation 17.2-1 then gives the following prediction of D4 p for methane-ethane
(treated here as a nonpolar gas-pair) at p =1 atm and T = 293K:

T

b
m) (PeapeB) *(TeaTes)* "2 (1/Ma + 1/Mp)/? [p

DAB=a<

1.823
=2.745 x 1074 ( 293 >

V191.1 x 305.4
- (45.8 x 48.2)'/3(191.1 x 305.4)%/1%(1/16.04 + 1/30.07)'/2 /1 atm
= 0.152 cm?/s

(b) Equation 17.2-3 gives

1 1\? (peapeB)t/®
Dap)e = 2.96 x 1076 ek
(cDaB) x 10 (MA + MB) (ToATop) /2

1 1 \? (45.8 x 48.2)1/3
= 2.96 x 10~°
<10 ( * ) (191.1 x 305.4)1/12

16.04 ~ 30.07
=4.78 x 107° g-mol/cm-s

The reduced conditions for Fig. 17.2-1 for this problem, calculated as described on
page 522, are

T 293
r = = =1.21
VTeaTleg /1911 x 305.4
Pr = P = 1.0 = 0.021

V/PeAPeB  /45.8 x 48.2

At this reduced state, Fig. 17.2-1 gives (¢Dap)r = 1.20. Hence, the predicted
value of ¢Dap is 1.20(¢Dag). = 5.74 x 10~%. Dividing this result by the ideal-gas
- prediction ¢ = p/RT = 4.16 x 10™° g-mol/cm™ at this low-density condition gives
Dap = 0.138 cm?/s.

(c) Equations 17.3-14 and 15 give the binary interaction parameters

oap = (3.780 + 4.388)/2 = 4.084A and eap/K =154 x 232 = 189 K

| 1=\



when the Lennard-Jones parameters of Table E.1 are used for the individual species.
Then, at kT /e 4B = 293/189 = 1.550, Table E.2 gives Qp ap = 1.183, and Eq. 17.3-
12 gives the prediction

1 1 1
D = 0.00185834 /713 + )
A8 \/ (MA Mg ) po? gQcaiD, 4B

1 1 1
= 0.00185 3
0.0018 83\/ (293) (16.04 * 30.07)(1)(4-084)2(1-183)

= 0.146 cm?/s

(d) Use of Egs. 1.4-11a,c with the combining rules of Eqgs. 17.3-14,15 gives the

estimates
eap/K = 0.77y 191T1 x 305.4 = 186.0 K

T. 1/3 T \/3 ,
( A) +( ”‘) = 4.222A

DcA PcB
Then at kT /e ap = 293/186.0 = 1.575, Table E.2 gives Qp ap = 1.1755, whereupon
Eq. 17.3-12 gives

24
AB = )

1 1 1
! D = 0.001 3
B = 0.00 8583\/ (293) (16,04 + 30.07) (1)(4.222)2(1.1755)

= 0.138 cm?/s




17A.2 Extrapolation of binary diffusivity to a very high temperature.

(a) Equation 17.2-1 in the nonpolar form gives

DAB|1500K = DABlzggK(1500/293)1'823 = 2.96 cm?/s

(b) Equation 17.3-10, with n = p/kT, predicts Dap o« T%/?, thus giving

DBl sk = DAB|ygsx (1500/293)!° = 1.75 cm?/s

(c) Equation 17.3-12 and Table E.2, with e4p = 135.8 from Table E.1 and Eq.
17.3-15, gives

p aB
DABIISOOK = DAB|293K(1500/293)3/2 12931(/“3 = 2.51 cm?/s
D’AB|15OOK/5AB

The superior agreement of Method (c¢) with the experimental value of 2.45
cm? /s illustrates the wider range provided by the Chapman-Enskog theory when
combined with the Lennard-Jones potential-energy model.
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Equation 17.4-5 gives

~ N\ 1/3
por = KT (Fa
a4 2mpa 17,4

' 1/3
Dene = (1.38066 x 10~ 16erg/K)(T,K) { 6.02214 x 10?*molecules/g-mol /
A 2n(pa,g/cm-s) (200.61g/g-mol)(V4, cm?/g)

or in cgs units,

Insertion of the values tabulated for this problem, with p(cp) divided by 100 to get
KA, g/cm-s, gives the following results:

T(K) Dax, obs. Daa-, pred. Ratio, pred./obs.
275.7 1.52 x 10~° 1.24 x 1075 0.82
289.6 1.68 x 10~° 1.40 x 1073 0.84
364.2 2.57 x 1075 2.16 x 10~° 0.84

The predicted self-diffusivities are about 5/6 of the measured values.



17A.4 Schmidt numbers for binary gas mixtures at low density.

We begin by tabulating the needed molecular parameters for species A and B

from Table E.1, and estimating the binary parameters c4p and €4p/K from Egs.
17.3-14 and 15:

o

Species M, g/g-mol o, A e/k, K
A: H, 2.016 2.915 38.0
B: CClyF, 120.92 5.116 280.
AB: 4.0155 103.15

Equation 17.3-11 and Table E.2 then give the following prediction of ¢D4p for
binary mixtures of H; and Freon-12 at T = 25°C=298.15 K:

1 1 1
Dap = 2.2646 x 107°, /T
cran . \/ (MA * MB) o4 580D,4B

1 1 1
= 2.2646 x 107%,/298.15
8 \/ (2.016 + 120.92) (4.0155)2(0.9597)

= 1.794 x 10™° g-mol/cm-/s

With this prediction of ¢Dyp and the viscosity data of Problem 1A.4, the Schmidt
number can then be calculated as

Sc = H _ 14 _ 4
pDaB  McDap (zaMa+xMp)cDan

in accordance with Egs. G and L of Table 17.7-1. Results are as follows:

TA=CTH, 0.00 0.25 0.50 0.75 1.00

i, g/cm-s 124.0 x 1076 128.1 x 1075 131.9 x 107 135.1 x 10~® 88.4 x 10~
M, g/g-mol 120.92 91.194 61.468 31.742 2.016

Sc 0.057 0.078 0.120 0.237 2.44

We see that the Schmidt number depends strongly on the composition when
M4 and Mp differ greatly. This fact is also illustrated in Table 17.3-1.
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17A.5 Estimation of diffusivity for a binary mixture at high density.

The following properties of Ny and CyHg for this problem are obtained from Table
E.1:

Species M, g/g-mol T, K Pc, atm
AN, 28.01 126.2 33.5
B: C,Hg 30.07 305.4 48.2

(2) The measured value Dyp = 0.148 cm?/s at T' = 298.2 K permits calcula-
tion of an experimentally-based value of (¢Dapg).. The reduced conditions for this
measurement are

T 298.2
= = = 1.52,
pyr = —L 10 o025

J/PeAPeB /335 x 48.2
On Fig. 17.2-1, this state lies essentially at the low-pressure limit, with (¢Dag), =
1.47. Accordingly expressing ¢ by the ideal gas law, we find

cDap = ﬁprAB

_ 1 atm
~ (82.06 x 298.2 cm®-atm/g-mol
= 6.05 x 10™® g-mol/cm-s

Hence, the critical ¢Dyp value is

(¢cDaB)c = cDap/(cDaB)r = 6.05 x 107%/1.47 = 4.12 x 107% g-mol/cm-s

(0.148 cm?/s)

Now, the reduced conditions for the desired prediction are

T 288.2
r = = = 1.47;
VTcaTes  /126.2 x 305.4
R 0 995

VPeAPB  v/335 x 43.2

at which state Fig. 17.2-1 gives (¢Dap), = 1.42. The resulting prediction is then

cDap = (cDaB)(cDaB)r
= (412 x 107°)(1.42) = 5.8 x 107° g-mol/cm:s.

(b) Equation 17.2-3 gives the predicted critical value

1 1 \'? (33.5x48.2)1/3
Dap)c = 2.96 x 107°
(cDap) . (28.01 + 30.07) (126.2 x 305.4)1/12
= 3.78 x 10~ g-mol/cms.
Multiplication by (cDap)r = 1.42 as in (a) gives

cDap = (3.78 x 107%)(1.42) = 5.4 x 107® g-mol/cm's.
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17A.6 Diffusivity and Schmidt number for chlorine-air mixtures.

(a) We begin by tabulating molecular parameters for chlorine and air from
r‘,ag_rliir iii‘i L . B | | — e 1 1 e . (_f LR W

w
1

[N

14 and 15:
Species M, g/g-mol o, A e/k, K
A: Cl, 70.91 4.115 357.
B: Air 28.97 3.617 97.0
AB: 3.866 186.1

Equation 17.3-12 and Table E.2 then give the following prediction of Dap for
chlorine-air mixtures at T' = 75°F = 23.89°C = 297.04 K:

1 1 1
Dap = 0.00185834 (T3 + )
AP \/ (MA Mp ) po%gip,aB

1 1 1
= 0.001 .04)3
00 8583\/(297 04) (28_97 T 70,91) (1)(3.866)2(1.169)

=0.120 cm?/s

(b) Equation 17.2-1 needs the following values from Table E.1:

Component M, g/g-mol T, K Pe, atm
A: Cl, 70.91 417. 76.1
B: Air 28.97 - 132. 36.4

The nonpolar version of Eq. 17.2-1 then gives the prediction

1.823
Dap = 2.745 x 1074 ( 297.04 )

VATT. % 132.
-(76.1 x 36.4)'/3(417. x 132.)%/12(1/70.91 4+ 1/28.97)*/%2/1 atm
= 0.123 cm?/s

(c) The result of (a), and the ideal gas expression for ¢, give



za, 0.00 0.25 0.50 0.75 1.00

g, g/cm-s  0.000183  0.000164  0.000150  0.000139  0.000131
M, g/g-mol 28.97 39.455 49.94 60.425 70.91

Sc 1.28 0.84 0.61 0.47 0.375

We see that the Schmidt number depends strongly on the composition when

M4 and Mp differ greatly. This fact is also illustrated in Table 17.3-1 and in
Problem 17A.4.



17A.7 The Schmidt number for self-diffusion

(a) Equation 1.3-1b, written for non-tracer species A, gives

pe = 7.70 x 1075 MYy ?p2 3T}/

C.

for the critical viscosity in g/cm-s. Here M4 is in g/g-mol, p.4 in atm and T4 in
K. Eq. 17.2-2 gives

(cD = 2.96 x 10~°  — 1\ sp-1/s
A4x)e = 2.96 X E+ Ma. Pcadca

The resulting critical Schmidt number for self-diffusion with M4 ~ My, is

( p ) 7170 184
MacDasx/), 2.96v2

(b) Figs. 1.3-1 and 17.2-1, with the result in (a) for M4 &~ My, give Sc for
self-diffusion as the following function of T} and p,:

HT(TT) pT)
(CDAA*)r(Tr,pr)

Scaax = 1.84

Calculations from this formula are summarized below:

Phase— Gas Gas Gas Liquid Gas Gas
T, 0.7 1.0 5.0 0.7 1.0 2.0
Pr 0.0 0.0 0.0 sat. 1.0 1.0
Loy 0.32 0.45 1.62 7.8 1.00 0.94
(cDaas)r 0.72 1.01 3.65 0.37 1.03 1.83

Scaax 0.82 0.82 0.82 -39 1.79 0.94

171



17A.8 Correction of high-density diffusivity for temperature.

The following properties of CH4 and C,Hg for this problem are obtained from Table
E.1:

Species M, g/g-mol T, K Pe, atm
A: CH, 16.04 191.1 - 45.8
B: C,Hg 30.07 305.4 48.2

The reduced conditions (State 1) for the given ¢Dap value, calculated as de-
scribed on page 522, are

313 136
T, = =1.30; .
Pr= 58 x 482

T = 2.89
v191.1 x 305.4

and Fig. 17.2-1 gives (¢Dag), = 1.27 at this state. The reduced conditions (State
2) for the desired prediction are

351 136
T — = 1.45; L
Pr= 58 < 48.2

T = 2.89
v191.1 x 305.4

and Fig. 17.2-1 gives (¢Dap)r = 1.40 at this state. The prediction of cD4p is then
obtained as follows:

(CD)T|State 2
(cD)r|State 1
1.40

= 6.0 x 10“6—1'77 = 6.6 x 107° g-mol/c-s

(cDaB)|gtate 2 = (¢DaB)|State 1

The observed ¢Dap value at State 2 is 6.3 x 107% g-mol/cm-s, in fair agreement
with this prediction. )
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17A.9 Prediction of critical ¢Dap values.

(a) Equation 17A.9-1 gives KT /e aasx = 1/0.77 = 1.2987 at T' = T, 4, and Table
E.2 gives Qp a4« = 1.2746 at this argument value. Insertion of this result, along
with Eq. 17A.9-2, into Eq. 17A.9-1 gives

2.2646 x 107° 1 1 1
(cDaax)e = \/TCA ( + )

1.01 Ma ' Mas ) (2.44(T.a/pca)t/®)?(1.2746)
1 1 1/2 p2/3
=2.955%x107¢ [ — + — fed
8 (MA * MA*) T!/¢

which verifies Eq. 17.2-2, within the uncertainty of the coeflicient 1.01 determined
from low-density self-diffusion data.

(b) Evaluation of the component parameters in Egs. 17A.9-4,5 according to
Eqgs. 1.4-11a,c gives

1/3 1/3 ToaT-n\/®
oAB = 2.44\/ (T“A) <T°B) —2.44 ( cA °B>
PcA DeB PcAPcB

EAB 077/ ToaTen

K

and

Replacement of Ax by B and T.4 by \/TeaT.p in Eq. 17A.9-1 gives

2.2646 x 10~° 1 1 1
DaB)c = TeaT
(cDaB) 1.01 \/ AlcB (MA + MB) o2 50D AB

Evaluation of 0 4p and e4p/K according to Eqs. 17A.9-6,7 then gives

1 1\ (Peapen)/?
D c = 2. 1 -6 _— - MeAreb )
(cDaB) 955 x 10 (MA + MB) (ToAT.p)T"

by a procedure analogous to that given in part (a). This result reproduces Eq.
17.2-3 within the uncertainty of the empirical coefficient 1.01.
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17A.10 Estimation of liquid diffusivities.

(a) We begin by evaluating the solvent properties ¥p = 2.6, Mp = 18.016,
and the dilute-solution viscosity p = 1.22 cp at 12.5°C from a plot of the data
for liquid water in Table 1.1-2. The solute, acetic acid, has a molecular weight
M, = 60.052, and its molar volume V4 = My/p at its normal boiling point is
60.052/0.937 = 64.1 cm?®/g-mole. The Wilke-Chang formula, Eq. 17.4-8, then gives
the following prediction at 12.5°C:

VIsMa T
Dap = 7.4 X 10-sY¥eMe T
,UVX'S

_ o4 10-5 VZB)(IB016)(273.15 + 12.5)
- (1.22)(64.1)06

=98x10"°

(b) For a given composition, Eq. 17.4-8 predicts Dyp to be proportional to
T/p. Let Ty = 15°C = 288.15K, and T» = 100°C = 373.15K. Then, the predicted

viscosity for a dilute aqueous solution of methanol at T is

(DAB,L”)IT1 T_z_
/‘IT2 Ty

1.14 cp 373.15K
= (1.2 =% cm?
(1.28 x 107" cm®/s) (0.2821 cp) (288-15K>

=6.7x107% cm?/s

DABITZ =
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17B.1 Interrelation of composition variables in mixtures
a.. To get Eq. (H), use Egs. (A) and (D)

_molesof o _ p, __ (mass of ) / volume
volume M, (massof )/ (moles of &)

[0

and Eq. (I) follows immediately.
To get Eq. (J), use Egs. (F) and (E)

Equation (K) may be obtained similarly.
To get Eq. (L), use Egs. (F), (J), and (B) thus

N 1N 1 o)
ZxaMa == ZCaMa =~ Zpa ===M
a=1 € a=1 C a=1 ¢

and Eq. (M) may be obtained in a similar way.
To derive Eq (N), we use Egs. (F), (H), and (C) to get

_a_ (Pu/Ma) _ Agpa/Ma)(l/p) (04/Ma)
© X(os/Mp) [;(pﬁ/MB)(l/p)/;(wﬂ/Mﬂ)

B=1 =1 =1

The derivation of Eq. (O) is done in like manner.
b. To get Eq. (P') from Eq. (P),

M?| 1 1 1
Vi, =——| — 40, ——| Vo
*4 MA[M A(MB MA)] B

2 2
MA MA MB MB MA MAMB

1 1
= MAlMB Vo, = MsMp Vo,
M? IYRREYR
M, MB)
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In going from line 1 to line 2, we used Eq. (M) and then Eq. Eq. (K). To
get line 3, we used Eq. (K) again. The same method is used to get Eq.
(Q) fro Eq. (Q).

c. First we must write the binary equivalent of Eq. (N) in such
a way that only one variable appears on the right side (we have to
keep in mind that the two mass fractions cannot be varied
independently):

@4 D4
LM, M,

Then to get Eq. (P'), we differentiate

1 Dy
Vx, = Ml“‘ Vo My 2( 1 1 )VcoA
Dy 2~ D4 w, 1-w,\ \Ms Mpg

1 (1—wA)+wA( IJ
M\ My ) MMy g
(a)A +1—a)AJ
My Mg
Wy + g 1
M Mpg __ MM

= 3 A 2 A
0, o 0, o
M, M; M, M;

The derivation of Eq. (Q') from Eq. (O) proceeds similarly.
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17B.2 Relations among the fluxes in multicomponent systems

a. To verify Eq. (K) of Table 17.8-1, we proceed

N . N N ‘ N
Z Ja = 2 pa(va -.v);- 2 PaVq ‘"'EPO,V
a=1 a=1

a=1 a=
N N
=PZ “‘VEPO,
a= a=1
=pv-vp=0

as follows:

In the second line, we have used Eq. (C) of Table 17.7-1, and to get

thn third line weo niead Fa_ (R of theg %.@ﬂi‘nh]o ac we

L} %% Ea (B) aof

;S
E omm

"l ———— - | A Wy S—

N The proof of Eq. (O) of Table 17.8-1 proceeds anangously.r ] |
b. The verification of Eq. (T) of Table 17.8-1 follows directly

from the definitions of the fluxes:
jo=Pa(Vy—V) and n,=p,v,

Substitution of these definitions into Eq. (T) gives
N
Pa (va - V) =PV~ Wy Zpﬂvﬁ
B=1
This can be rewritten as
N
PaVa = PaV=PeVg “Pwa‘;(Pﬂ/P)Vg
=1
or, making use of Eq. (C) of Table 17.7-1,

N
—paV - _pa EO)BVﬂ
B=1

Then, use of Eq. (B) of Table 17.7-2 completes the verification.

The verification of Eq. (X) of Table 17.8-1
analogously.

may be done



17B.3 Relations between the fluxes in binary systems
The expressions for the fluxes are

ja :pA(VA “V)
JA:CA(VA_V*) or MA]:a:pA(VA"V*)

Next form the difference between the above expressions, and then

repeat for species B
jA‘MAJjasz(V‘V*) and jB_MBJ;:pB(V_V*)

Then eliminate v -—v* between these two equations to get

Then use Egs. (K) and (O) of Table 17.8-1 to eliminat the fluxes with
subscripts B and then rearrange to get

1 1 (M, M 1 1 1 1
j +—|=] ——i+—”i) or j (—+————)=] (-—+—)
]A( ) A( Ja 0, Ps A cr <

Pa Ps Pa Ps
- whence |
j (PA +PB) _ J*A(CA +CB)
4 P 4Pz CaCp

where Eq. (H) of Table 17.7-1 has been used. Next use Egs. (B), (C),
(E), and (F) to get Eq. 17B.3-1.
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17B.4 Equivalence of various forms of Fick's law for binary mixtures
(Note: Problem 17B.3 should be worked prior to Problem 17B.4)

a. To get Eq. (B ) of Table 17.8-2, we start by rewriting Eq. (A)
by using Eq. 17B.3-1 and Egs. (Q') and (L) of Table 17.7-1:

« POADs _ 1 MAMBVx
J CX % P 4B M2 A

Next, use of Eq. (G) of Table 17.7-1 allows us to rewrite this as

CX 4 Xp o, M, M,
P, @p (p/c)2

Ja=- Vx,

Then we note that Egs. (C), (F), and (H) of Table 17.7-1 give

Xa _fa P _P
w, ¢cp, ¢

. c 1 1 MM
Az““(B—“'B““)PSAs 4 Bva=_C°®ABva

(o/c)’

Equation (D) of Table 17.8-2 follows at once from Eq. (B) of
Table 17.8-2 and and Eq. (V) of Table 17.8-1:

NA :CAV*'*'JZ =CAV*—CBABva

Equation (F) of Table 17.8-2 is obtained by writing Eq. (C) of
the same table for both species A and B after using Eq. (I) of Table
17.8-1:

These equations may be rewritten as

- 17



(VA—V*)=—;1—JS)ABVxA and (VB—V*)=+—1—JS)ABVxA
A Xp

Subtraction of these equations eliminates the molar average
velocity, and we get '

D45
XaXp

VA—-VB=—(—1—+—1——]JSABVxA=— Vx,

Xa Xp
b. To get the first equation, we use is Eq. (Q') of Table 17.7-1

. M,M
joa ==PB4pVPs =—pD yp —]\/I—lva

From this equation, we conclude that the expressions written in a

mixture of molar and mass quantities are more complex than those

written entirely in molar quantities alone or mass quantities alone.
To get the second equatlon, we start W1th Eq. (B) of Table

170, HA._.A‘_LW g S 42N i A et _ 3 £ T (AN J'

?

written for species A and B
Ja=—cB,5Vx,
Jg =—c gV =+cdB,;Vx,

Then we rewrite these equations in terms of the combined molar
fluxes (using Eq. (V) of Table 17.8-1)

We now multiply the first equation by x, and the second by x, to get



Subtracting the second equation from the first then gives Eq. 17B,4-2
after use has been made of Eq. (J) of Table 17.7-1

This equation contains no reference to the mass average velocity or
the molar average velocity. That is true also of Eq. (E) of Table 17.8-
2, which can be derived in analogous fashion from Eq. (A) of the same
table.

c. We start by rewriting Eq. (F) in the following form

1 Xp+X
XaXp XaXp

This may also be written as

VA—VB:—QAB i"’—l"’ VxA:"'QAB VxA_Zx'E
Xa Xp X4  Xp

Then, finally

V,-Vp=-8,;(Vinx, - Vinx,)= —JS)ABVIn%“—
B
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17C.1 Mass flux with respect to the volume average velocity
a. Using the definitions of jg and j, we get

Using the relation just after Eq. 17C.1-3 the above result gives the

relation between the volume average velocity and the mass average
“velocity ‘

.— = YA-E 1
=

If we now subtract Eq. (E) of Table 17.8-1 from Eq. 17C.1-2 we get

. . vV, Vg).
M -ia=—pa(v™-v)= —m(ﬁ——ﬁﬂu

Then, using the relation just after Eq. 17C.1-3 we get

. 1- _‘—{Ii..}. Yﬁ. =13 _‘_{A_.'. E_ VA + VB
Ja ]A( PAMA PAMB) ]A(pAMA PBMB PAMA PAMB

and this leads to Eq. 17C.1-3

M _ . Vs Vs . Vg
= — + —— ) = =
Ja ]A(pB M, Pa MB) JaP M,

b. Starting from Eq. 17C.1-3 we have

M _ . VB=__JS \V c5V5
ia =iaP (=P 45 wA)p(cBMB)
1 1) (1-¢,V
as| 1 VP4 T Pa o)A\ csM;
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J{— d'lgfmv(loA +Pp ))CBVB

B
= =045V, + ¢4V 4P 45VPa +c5Vp %‘GABVPB
B _
== 15V04 + 04D 45 (VAVCA + VBVCB)
Since the second term on the right side is zero, we get Eq. 17C.1-4.

To get the equation just after Eq. 17C.1-4, we proceed thus.
The definitions of the partial molar volumes enable us to write

dV =V ,dn, + Vydn,

Since the volume is a homogeneous function of order 1, we get from
Euler's theorem:

V =n,V, +nzVy, or by dividing by v 1=c,V, +c5Vp (#)
Forming the differential of V from this}equation gives

AV =n,dV, +V dn, +ngdV, + VBdnB

Comparing this with the first equétion gives

ﬁAdVA +n5dV =0, or by dividing by V: c dV, +czdV, =0 (%)

Differentiating (#) and subtracting (*) gives the desired result.
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17C.2 Mass flux with respect to the solvent velocity
a. First we rewrite Eq. 17C.2-1 as

jg’ =pa(va —V)—pa(vN ._V)

Then we modify the terms on the right side as follows
N Py . Py |
azpava—v———pv—v=a———

J ( ) (PNJ n(Va ) J (pN)]N

Here we have used the definition in Eq. H of Table 17.8-1.

b. Application of Eq. 17C.2-2 to a binary system with N = B
gives

N _: BA .
Ja =])a (pB)]B

Then we make use of Eq. (K) of Table 17.8-1 and Eq. (A) of Table 17.8-
2to get

i =i —[&](—iA)=iA(1+—’;%)

Pz B
. (patps)_. (P P
=ju 2L =i = |=- & |pD,;Vo
]A( Pp ) ]A(pBJ (PB) ApT A

c. For a very dilute solution of A in B, we know that p; = p, so
that

ja=-pB 1V,
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17C.3 Determination of Lennard-Jones parameters fromydiffusivity data
for a binary mixture.

(a) Computational software is preferable to graphical methods for treatment of
this statistical problem. The results shown below were obtained by Dr. Mike Cara-
cotsios, using Athena Visual Workbench, a Windows package for formulation and
solution of chemical process models. The problem formulation and results are dis-
played fully at www.AthenaVisual.com /transportphenomena, a website provided
by Stewart & Associates Engineering Software, Inc.

In the following table, PAR(1) (the first adjustable parameter), denotes o 4p,
and PAR(2) (the second adjustable parameter), denotes e 4p/K. The values in
the “Last PAR(I)” column, with status “Estimated”, are the recommended pa-
rameter values in the sense of maximum posterior probability density based on
the data provided. The individual uncertainty of each parameter is reported as
“95% Marginal HPD Interval” (the interval of highest posterior density contain-
ing 95% of the posterior probability distribution for that parameter; we prefer this
Bayesian interpretation to the notion of a “confidence inter¥al”, which invokes a

- hypothetical population of alternative sets of data). The two columns labeled DY-
DPAR(1:NPAR) are the parametric sensitivities of the predicted diffusivities to the
individual parameters. Further documentation of this problem and the modeling

“capabilities of Athena Visual Workbench are provided at the website named above.

NONLINEAR SINGLE-RESPONSE ESTIMATION STATISTICS SUMMARY

SUM OF SQUARES OF RESIDUALS.............. 3.15638D-05
RESIDUAL DEGREES OF FREEDOM.............. 6
MODEL PARAMETERS ESTIMATED............. .. 2
RMS VALUE OF WEIGHTED RESIDUALS.......... 2.29361D-03

T(0.025)-STUDENT DISTRIBUTION VALUE...... 2.44?

ADJ.PARS Last PAR(I) Status 95% Marginal HPD Interval
PAR( 1) 3.313569E+00 Estimated 3.313569E+00 +- 4.080E-02
PAR( 2) 8.024473E+01 Estimated 8.024473E+01 +- 1.205E+01
EVENT OBSERVED PREDICTED. RESIDUAL ERROR(%) DYDPAR(1:NPAR) ->
1 4.7000E-01 4.7273E-01 -2.7282E-03 -0.58 -2.8533E-01 -1.2242E-03
2 6.9000E-01 6.9072E-01 -7.2080E-04 -0.10 -4.1690E-01 -1.6487E-03
3 9.4000E-01 9.3925E-01 7.5217E-04 0.08 -5.6691E-01 -2.1090E-03
4 1.2200E+00 1.2161E+00 3.8625E-03 0.32 -7.3404E-01 -2.6078E-03
5 1.5200E+00 1.5198E+00 2.2434E-04 0.01 -9.1731E-01 -3.1524E-03
6 1.8500E+00 1.8489E+00 1.0664E-03 0.06 -1.1160E+00 -3.7483E-03
7 2.2000E+00 2.2026E+00 -2.6318E-03 -0.12 -1.3295E+00 -4 .3978E-03
8 2.5800E+00 2.5801E+00 -5.1116E-05 0.00 -1.5573E+400 -5.1009E-03
NUMBER OF MODEL CALLS......... 13

NUMBER OF ITERATIONS.......... 4
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18A.1 Evaporation rate.

Let A denote chloropicrin and B denote air; then Eq. 18.2-14 gives, for constant
total pressure p and ideal gas behavior,

NAz| cDap In <$Bz)

s=a (22 — 1) TB1
_p _Dap In (PBZ)
RT (22 - 21) bB1

Inserting the values T = 15°C = 298.15K, pp, = p = 770 mm Hg and pp; =
770 — 23.81 = 746.19 mm Hg, we get :

Nl _ (770/760) atm (0.088 cm?/s) In ( 770
A#li=z1 7 (82.06 x 298.15) em®atm/g-mol (11.14 cm) 746.19
=1.03 x 10™® g-mol/cm?-s
Finally, the evaporation rate in g/hr is
Wa= NAZMAS
= (1.03 x 107° g-mol/cm?5)(164.4 g/g-mol)(2.29 cm?)(3600 s/hr)
= 0.0139 g/hr

(-



18A.2 Sublimation of small iodine spheres in still air.

(a) From Table E.1 and Egs. 17.3-14,15, we get the following values for the
system I,-air:

c

Species M o, A e/k, K
A: 1, 253.81 4.982 550.

B: air 28.97 3.617 97.0
AB 4.2995 231.0

Thus, at T = 40°C = 313.15K, we get the argument value
kT /eap = 313.15/231.0 = 1.356,

at which Table E.2 gives 0p 4p = 1.251. Equation 17.3-12 then gives

1 1 1
D = 0.0018583,4 /13
AB \/ (MA + MB)p02QD,AB

1 1 1
= 0.0018 13.15)3
0 583\/(3 3.15) (253.81 + 28.97)(747/760)(4‘2995)2(1.251)

= 0.0888 cm?/s

(b) Equation 18.2-27, with ry — oo, gives

1—
Wa =4rricDapln ( 33A2)
l—z4

= 47‘(’;‘1 pDAB 11’1 ( P )
RT P —DAyvap

(747/760 atm)(0.0888 cm?/s) In ( 747 )
(82.06 x 313.15 cm®atm/g-mol) 747 —1.03

= 2.95 x 10™® g-mol/s x 3600 s/hr
= 1.06 x 10™* g-mol/hr

= 47(0.5 cm)
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18A.3 Estimating the error in calculating the absorption rate.

Equation 18.5-18 gives
Wa = KcaovVDan

in which K is a product of known quantities. Then the error in Wy resulting from
small errors Acyo and ADyp is

_ (O0W4 OWy
AWy = ( BCAO) Acao + ( aDAB) ADyp

Kcao
= K+/DspA AD
ABAcao + 5vDap AB

Division by W4 then gives the fractional error expression

AW 4 - Acag n lADAB
Wa ~ cao 2 Dusp

Hence, the maximum absolute percentage error in the calculation of W4 under the
given conditions is

AWy
Wa

lmo = 5% + 5(10%) = 10%

max
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18A.4 Chlorine absorption in a falling film.

The absorption rate is predicted by Eq. 18.5-18, which may be rewritten in terms
of the average film velocity by use of Eq. 2.2-20:

6Dap(v;)

Wa =2mRLcyo I

The solubility is

CA0 = ,Oon/MA .
~ (0.998 g soln/cm?)(0.00823 g Cly /g soln)/(70.91 g Clz/g-mol Cl,)
=1.16 x 10™* g-mol Cly /cm?®

Then the predicted absorption rate is

Wa = 2m(1.4 x 13 cm?)(1.16 x 107* g-mol Cl/cm?)
y 6(1.26 x 10~% cm?/s)(17.7 cm/s)
(7)(13 cm)
= 7.58 x 107° g-mol/s = 0.273 g-mol/hr
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18A.5 Measurement of diffusivity by the point-source method.

(a) Directly downstream of the source, the distance s from the source reduces
to z; hence, Eq. 18C.1-3 takes the form

Wa
47Dapz
Therefore, the injection rate W, required to produce a mole fraction z4 ~ 0.01 at
p=1atm and T = 800°C= 1073K at a point 1 cm downstream of the source is

Wa = 41D4p(0.01c)z
= 47D 4p(0.01p/RT)z
= 4m(5 cm?/5)(0.01)[(1 atm)/(82.06 x 1073 cm3atm/g-mol)](1 cm)
=7.1x107% g-mol/s

CpA =

(b) Expansion of s in powers of r? at constant z gives, to second order in r,

= /22 2 = \/1 - = 14 =-——...
z¢+r z —I— Z[+222 ]

and

and
z [ 1r2 ]
— =l - +...
s

Equation 18C.1-3 then yields the following expansion for constant z, complete
through order r?:

Wa

ca(r,z) = T Dans s

% exp[—~(v0/2Das)(s — 2)]

r? ir

= c4(0,2) [1— %—2+ } [1—-(‘00/2'DAB)Z [—z—-—...] +]
= ca(0, 2) [1 ~ ———(1 + (v02/2DaB)) + O ( 4)]

Thus, ca(r, z) and z 4(r, z) will be within 1% of their centerline values as long as the
second-order term within the square brackets does not exceed 0.01. The deviation

rs of the sample collector from the axis, at the given conditions, therefore must
satisfy

222
14+ v92/2DaB

(0.02)(1 cm?)
1+ (50 cm/s)(1 cm)/(2 x 5 cm?/s)
= 0.00333 cm?

rs < v 0.00333 cm? = 0.058 cm

r2 <(0.01)

Hence,
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18A.6 Determination of diffusivity for ether-air system.

(a) Equation 18.2-17 gives

P(A) Az (22 - 21)($B)1n
T Ma At . c(xa1 — T 42)
_ oM Azy RT (22 — z1)
T T Ma At p In(zp2/zB1)
_ p Az . RT (22 — z1)
~ Ma At p In(p/(p— pavap))

for each finite increment At of time and —Az; of decrease in liquid height. Insertion
of the given constants gives

DaB =

(0.712 g/cm3) (0.2 cm) 82.06 x 295.15 cm®atm/g-mol)
(74.12 g/g-mol) (At,s) (747/760 atm) A
(z2 — 21, cm)
" In(747/(747 — 480))
(24642 cm®/g-mol gas) (0.2 cm) (22 — 21, cm)
~ (104.1 cm?®/g-mol liquid A) (At, s) In(747/267)
(z2 — z1, cm)
(At, s for 0.2 cm level decrease)

Dap, cm? /s = +

= 46.015

and the following calculated values for the six time intervals:

(z2 — z1), av., cm 1.0 1.5 2.0 2.5 3.5 4.5
At for Az; = —0.2 cm 590 895 1185 1480 2055 26585
Das, cm2/s 0.0780 0.0771 0.0779 0.0777 0.0784 0.0780

The average of these values is 0.07785 cm?/s.

(b) Conversion of the above result to 760 mm Hg and 0°C, using Eq. 17.2-1in
its nonpolar form, gives

Dap = 0.07785 x (747/760) x (273.15/295.15)1#?% = 0.0664 cm?/s

This result appears preferable to the one reported by Jost.

13-



18A.7 Mass flux from a circulating bubble.

(a) With the data provided, Eq. 18.5-20 gives the surface-average mass flux

[4D sBv
(NA)a,Vg = ;‘DB tCAO

_ [(4)(1.46 x 1075 cm?/s)(22 cm/s)
N (7)(0.5 cm)

=1.17x 107% g-mol/cm?:s

(0.041 x 1073 g-mol/cm?)

(b) Equation 18.1-2, with the surface-averaged k. obtained by Hamerton and
Garner, gives

(NA)a,vg - kC(CAO - CAOO)
= (117 em/hr)(1 hr/3600 5)(0.041 x 1072 g-mol/cm?)
=1.14 x 107° g-mol/cm?-s
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18B.1 Diffusion through a stagnant film--alternate derivation

From Equation 18.2-1 we get

1 dx, _ N4

1-x, dz cd 5

or

_ldxy N,
xg dz cd 5

Integration gives

J'XBQ de — NAZ J’Zz dz

Hence
Xpy _ Ny, -
I T em,, 23
Xp1 C&up
or
Dy 1 Xpo
NAz = 11'1

Zy=2Z1 Xpg

Which is in agreement with Eq. 18.2-14






18B.3 Effect of mass transfer rate on the concentration profiles
a. Rewrite Eq. 18.2-14 as

N — C‘SAB ]nl-xAz or 1—XA2 : NAZ(Zz_Zl)

When this is substituted into the right side of Eq. 18.2-11, we get

1— X, _ [exp NAz (22 -z, ))(2—21)/(22—7-1) _ (exp NAz (Z —Z ))

T—x, cd 45 Cad 4B

b. Starting with Eq. 18.2-1 and integrating directly we get

1 _d_ NAz

1“‘xA dZ CJSAB

and [ RN A= AVE [ dz
*al-x, e 5 "2

When the integrals are evaluated we get

~In - _
1-x4, COGJAB(Z Zl)

Changing signs and taking the antilogarithm of both sides then gives
the result in (a).

¢. Expanding the right side of Eq. 18B.3-1 in a Taylor series in
the argument of the exponent, we get

1_xA1 C@AB

(z—z) )+

If we retain just two terms in the Taylor series, and bring the "1" on
the right side over to the left side, we get

NAz(l_xAl) _
cd 45 (Z‘zl)

Xqg=Xa1—

which is of the form x, =mz + b, that is, a straight line function.
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18B.4 Absorption with chemical reaction

a. Equation 18.4-8 remains valid, but now the boundary
conditions are: at {=1, I'=1; and at {=0, dI'/d{=0. Hence the
boundary conditions lead to a pair of simultaneous equations:

1=C, cosh¢ +C,sinh ¢ and 0=0+C,¢

from which it follows thatC, =0 and C, =1/cosh ¢. Then the analog
of Eq. 18.49 is

I' = cosh ¢{/cosh ¢

The mass flux at the liquid gas interface at z =L is then:

de, | _CaoBup dT'|  _ oD yp ¢sinh ¢§|

it L d L
Z |yt Clee cosh ¢ | c=1

NAz’

z=L =

which leads directly to the result in Eq. 18.4-12.
b. We start with Eq. 18.4-7, the solution of which can be
‘written in the form of a superposition of exponentials

F=Ce? +C,e ¥
which is to be solved with the boundary conditions given just above

Eq. 18.4-8. This leads to the following equations for the constants of
integration:

1=C, +C, and 0=C,¢e? —C,pe™*?
These two simultaneous equations can be solved to give

1 e’ g2 e?

C, = = and C, = =
171462 e? 4o? 27 1462 ol 4e?

Therefore , the dimensionless concentration profile is
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e %e?  ele %[e¢(1—§) + e'“l"g)] _ cosh[¢(1-¢)]

= _ __- =
e’ +e? e?4e? %[e‘” +e“¢] cosh ¢

Thus we are led to the same result that we obtained in Eq. 18.4-9.
¢. Equation 18.4-12 can be written thus

ny?2 ny?2
NAZ|z=0 :(CAOfAB) KT tanh ML

Das Das
Therefore, for very large L we get (using an expansion appropriate
for large values of the argument)

| L—eo
N o), = Cao /B agki(1- 2exp(-2k;1? [ 45 )+++) = Cag | agki”

For very small values of L we get (using an expansion appropriate
for very small values of the argument)

_ k”I,z 1 k”LZ )
Az 20 = Cao VD agk] 1’ (1“3‘{9 ]
AB AB

7y 2 L—0
Lk +---):>0

AB

Similarly, Eq. 18.4-10 can be written as

”" 0wy 2 7"
L4 _ cosh K z—tanh ML sinh K
Cao0 D45 D45 °®AB

As L becomes infinite, this becomes

4 - cosh, |- 7 _sinh |-X z=exp(— ud z]

Cao0 AB D45 D 45

As L becomes zero, the dimensionless concentration becomes unity.
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Hence the final expression for the concentration profile is

2
Ca0 _| 14 Ko z
Cy 6D 45

b. From the result of (a) we get the absorption rate at the
liquid gas interface:

de ET IR
NAzL=o = "BAB‘ﬁ = %kzé?i“@AB
’ z=0
¢. The equation to be solved is
d’c dp _ flca)
—0 2+ =0 =
AB dz2 f(cA) or p dCA DAB

where we have introduced the variable p as before. The resulting
equation is integrated, as before, to give

P 7— 1 c _ _ dC' 2 c — —
.[opdp - O, J.oAf(CA Me 4 or p= —dzA = _\/‘DAB .‘.oAf(cA )de s

A second integration yields

(9 dEA _ 1 _
— = —fodz ==2

(2 401 (T )

Then we differentiate both sides with respect to z to get

! 4Ch _ 4 and dcy
(27 )] (e, )dc, 42 dz

= _\/(2/"(9/13 )j;AOf(CA )dc,

z=0

This together with N ,,| - =- ;(dc, /dz)|z=0 gives Eq. 18B.5-2.
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- 18B.6 Two-bulb experiment for measuring gas diffusivity--quasi-
steady-state analysis
a. The molar shell balance on Az gives for species A

SN 4|, = SN 4l,,., =0

Division by Az and taking the limit as Az goes to zero gives
dN ,,/dz=0or N ,,= constant.
b. Equation 18.0-1, for this problem, may be simplified thus:

N = -cD p(dx ,[dz)+x 4(N 4+ N g, )=—cd 45 (dx , /dz)

since N 4,=—N ,; this is true, because in a system at constant ¢ for .

every molecule of A that moves to the right, a molecule of B must
move to the left.

c. The equation in (b), with N ,,= constant, then becomes
dx 4 /dz=—(N ,,/c&® ,5), which when integrated becomes

NAz

X 4=~ z+C
47 e, !
d.Atz=L, x ,=xJ, so that
N
cd

Subtracting the last two equations gives then

N Az
cd 45

X =X = (L-2)

e. At z=-L, we know that x ,=x, =1-x}, so that
NAz

(1-x%)-x2 =;5;;(L‘(’L))

from which Eq. 18B.6-2 follows directly.
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f- A mass balance over the right bulb states that the time rate
of change of moles within V must exactly equal the rate at which
moles enter V by diffusion at the end of the tube. That is

—dd?(ch;)zSN As or Ve d;;‘ S(% +)£‘%‘£

in which § is the cross-section of the connecting tube.
¢. The equation in (f) may be integrated

LV

dej; :_[S'DABdt+C or -—ln(%—xJ“) t+C,

1-x} LV

The integration constant may be obtained by using the fact that at ¢ =
0, we know that the mole fraction of A in the right bulb will be zero,

or C, = —h1(— —O) Therefore

h. If we plot

l_ +
—Lvlr{2 XAJ vs. t

S

1
2

the slope will be the diffusivity, 8 ,5.
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18B.7 Diffusion from a suspended droplet

a. A mass balance on A over a spherical shell of thickness Ar
is (in molar units)

—4n(r+Ar)’-N,| =0

r+Ar

4m2'NArr

or, equivalently

(47r°Ny, )|,

—(47ZT NAr)'

r+Ar

Now divide by 47Ar and take the limit as Ar goes to zero to get
d .o
—(r°N,,)=0

This may be integrated to give r°N ,, = C,. We may use the boundary
condition that N,, =N,,, at r=r; (the gas liquid 1nterface) to
evaluate the constant and obtain r’N,, =N, ,.

b . Equation 18.0-1, written for the radial component in
spherical coordinates, is

dx
N, = _C‘DAB#*"‘A(NM +NBr)

If gas B is not moving, then N, may be set equal to zero and the
equation may be solved for the molar flux of A:

cDyp dxa

N, =-

r

Multiplying by r* and using the result obtained in (a), we get Eq.
19B.7-1:

2 _
rlNA’I—_l—x dr
A

¢. Equation 19B.7-1 can be rearranged to give

|-\



dx ,

2 dr _
11N g 727 —cD 4

Integration then gives

1
rlzNArl(_ ;)

or

T2

= —cd 5[~ In(1-x, )]

XA2

XA1
r

1 1
rlzNArl(;— - —) =+cd 45 [h1(1~ X4, )—In(1- xAl)]

1 I

This may be rearranged to give

¥y —71 X
rlzNArl( 4 1)=C‘DABln_BZ
rr, X1

or, when solved for the molar flux of A

When r, — o (and presumably also x,, — 0), this last result gives

N, = cd 45 In 1
r XB1
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18B.8 Method for separating helium from natural gas

Let A be helium and B be pyrex. Then a shell mass balance

gives the following equation

d
E(rNA’)Z O

Insertion of Eq. 18.0-1. with Ny, =0 and x, <<1, gives for constant
diffusivity

d( dc,
il B W Y
dr(r dr)

Integrating twice we get
c, =CiInr+C,

The boundary conditions are: at r=R,, ¢, =c,; and at r=R,,

€4 =C4,- Evaluation of the constants of integration gives for the
concentration profile:

Ca—Chr _ ]I‘(RZ/T)

Ca1—Ca2 ln(RZ/Rl)

Then the molar rate of diffusion through the wall is

—_ dc, +D,p (car—Ca2)
NAr - JSAB dr - r]n(RZ/Rl)
and
WA = ZT[T’L'NArz anSAB(CAl _CAZ)

In(R,/R,)

is the molar flow rate of the helium through the pyrex tube.

18-19



138B.9 Rate of leaching
a. The molar balance for substance A over a thin slab of
thickness Az is

NAZ[ZS—NAZI 5=0

z+Az

Division by SAz and letting the slab thickness Az go to zero yields

dN ,,

=0
dz

Then inserting an approximaté version of Fick's law gives

dc
NAZ = _°®AB —d—ZA—

which is good for a dilute solution of A in B. Thus the diffusion
equation becomes

d’c,
=0
dz*
b. The above differential equation may be integrated to give

The constants are determined from the boundary conditions that
c4 =C49 atz=0,and ¢, =c 5 at z= 6. The final expression is then

Cy—C z
4 Y = or _‘i__&zl___
Cas —Cap O Cao ~Cas o

c. The rate of leaching (per unit area) is then

NAzl

d 1Y PO,plcin—c¢
z=0=_°®A3_dc;iz=0Z_BAB(CAO—CAS)(“§)= AB(A; Aa)
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18B.10 Constant-evaporating mixtures.

(a) For this one-dimensional, steady-state, nonreactive system, the species con-
servation equations take the form

dNy./dz =0

and give
N = const. for each species.

The coefficients ¢Dqg depend only on T in low-density systems, according to Eq.
17.3-16 and the corresponding formula of Mason and Monchick for polar gas mix-
tures; thus, each of these coefficients is predicted to be constant over this isothermal
system.

Assuming insolubility of nitrogen (3) in the liquid mixture, we obtain N3, = 0;
then Eq. 17.9-1 gives
dy3 _ N 1z + N. 2z

dZ - CDl 3 CD23

as the Maxwell-Stefan equation for y3;. Integration and use of the boundary condi-
tion at z = L give

Ni. Ny,
1 = ~L)=
nya [CD13 + CD23] (z—L)=A(z—-1L)

whence

ys = exp[A(z — L) (18B.10—1)
Equation 17.9-1 and the condition y; + y2 + y3 = 1 then give

dyi _ yaNi: —y1 N2, + y3 N1,
dz - CD]Z CD13
_ (I—wy1 —y3)N1, — 1 N, 4 y3N1-
- CD12 CD13
_ Ny, Ni: + N2, (—le le)

CD] 2 0 CD] 2

cDh2 + cDi3

as the differential equation for the toluene mole fraction profile y;1(z). Insertion of
the notations B, C' and D, and the solution for y3, gives
dyr
5 = C —y1B — Dexp[A(z — L)]

Rearrangement of this result gives

P |
7?/;_ — By, = —C + Dexp|A(z — L)]



which has the form of Eq. C.1-2, with f(z) = —B and g(z) = —C+ D exp[A(z—L)].

Using the solution indicated there, we get

y1 = exp(B2) [ / exp(=Bz){—C + D exp|A(z — L]}dz + K}

= KeB7 — CeBz/e—-Bde+D6Bz/e[—Bz+Az—AL]dZ

—Bz
— KeBz _ CveB‘;:e = + De[Bz—AL] /e(A—-B)zdz
C D
=K Bz ~ [A(z—L)]
¢ tEtaiB°

The boundary condition y; = 0 at z = L gives

' C D
_ BL , ¥ , &
0= Ke +B+A—-B

The resulting integration constant is

_ "C .D —BL
K_[B —A—'B]e

Thus, the toluene mole-fraction profile is

D C D C
[A(z—L)] _ _~ | ,~BL+B=z ~
- Be [ + :l e + B

h(z) = BTA-B

in agreement with Eq. 18B.10-1.

(b) Numerical results of the suggested calculation procedure are shown in the
following graph, prepared by Mike Caracotsios. Cubic spline interpolation was used
to get equilibrium vapor compositions over the tabulated range of liquid composi-
tions. The interfacial vapor composition y;9 calculated from the equilibrium data
becomes equal to that calculated in step (iv) at a liquid composition z10 = 0.192.
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18B.11 Diffusion with fast second-order reaction
a. A shell balance on species A plus Fick's first law of

diffusion leads to
d’x, : | :
£-=0 which has the solution x,=Cz+C,
dz

When the constants of integration are determined from the boundary
conditions that x,(0)=x,, and x,(5)=0, the mole-fraction profile

becomes

z
Xp = on(l - g)

Then the rate of dissolution of A at the solid-liquid interface is

N I — dx , _ D5 4
Azlz—0 = AS™ T | T
dz |, o

b. For the system pictured in Fig. 18B.11, we have the
following differential equations ,

2 2
———ddx{_’ =0 (for 0<z<k8) and dd? =0 (for k6<z<9)
Z z

where x is as yet unknown. These equations have the solutions

x4 =Cz+C, and x5;=C,z+C,

The boundary conditions are now: x,(0)=x,, x,(x06)=0,
xp(K8)=0, and x5(8)=x5.. When these are used to get the four
constants of integration, we get the following linear profiles:

z 1 1
xAzon(l—}—g) and xB:wa(l—l—-K‘+(1—K)5z)

valid in their respective regions.
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Up to this point & is unknown. This quantity can be
determined from the statement that the rate of diffusion of A into the
reaction plane must be exactly equal to the rate of diffusion of B into
the reaction plane at z = §. This is expressed mathematically as:

dx . dx
dz z=Kd dz z=k6

When the differentiations are performed, we get

X X
—cdd, 0 -Z40 1 — L0 Beo
‘ AS( :«s) e Bs(a—x)a)

or

K 1-x

Bysxp0  DOpsxp.

From this we get

1_ (1 N JSBstoo)
K D 45% 40

Then the rate of dissolution of A at the solid-liquid interface is

¢ 0

‘ dx
NAzI CJSAS'E_ZA

z=0 =~

_ B usXp0 _ €D psX a0 1+ Dpsxpe.
2=0 KO o B 45X 40

[3-25



18B.12 A sectioned-cell experiment for measuring gas-phase

diffusivity
a. Equation 18.2-1 can be rewritten as
N Az — + CJSAB —dx—B
Xg dz

Integration from z to the top of the diffusion tube (z,) gives (since
N, is constant according to Eq. 18.2-3)

J'xBZ de _ NAz J-zzz dz

or
* xg CcDyp

This may now be rewritten as

AB

cdd 45

InXB2 _ N (2 -2)
Xg D45

This suggests that when Inx; (or log,, x;) is plotted against z, the
slope of the resulting straight line will be N, /¢ 45 (o1 (N4, /cd,5)

divided by 2.303).

b. The plot of the experimental data of log,, x5 vs z gives a
straight line of slope 0.171. The intercept at z = z; =0 is the logarithm
of the mole fraction of B at the interface. The intercept at log,, xz = 0
is the total length of the diffusion path, where the mole fraction of A

is maintained at zero.

c. We can tabulate, for the four sections of the diffusion tube,
the average distance, the average mole fraction of B , and the
logarithm (to the base 10) of the mole fraction of B, thus:

z (avg) Xg

0.60 0.243
1.60 0.359
2.60 0.531
3.60 0.785

logqo x5

-0.6144
-0.4444
-0.2749
-0.1051
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18B.13 Tarnishing of metal surfaces

Fick's first law as applied to the diffusion of oxygen gas
through the oxide film is

This is the form of Fick's law for a dilute solution of oxygen in
virtually stationary metal oxide. This equation may be integrated
(for a quasi-steady-state situation) with the boundary conditions
that co, =¢; atz = 0, and ¢g, =0 at z=2z(t) , where z(t) is the

slowly varying oxide film thickness at time ¢. The integration gives

Co

N 0, = °®OZ,MOX
Zf

Next we write an unsteady-state mass balance for the region
between z(t) and z(t+At) to account for the increase in oxygen

content between the two planes and the oxygen addition by diffusion
(27t + AB) =2/ (£))e;x = N At

where x is the stoichiometric coefficient in the oxidation equation,
and ¢, is the molar density of the oxide film, MO, . Dividing both

sides by At and letting At go to zero then gives the differential
equation for the location of the (slowly moving) oxide front

dt  cx  cx|  O2MO.,
f f f

This equation may be integrated with respect to time, using the initial
condition that z; =0 at t = 0. This gives Eq. 18B.13.1 as follows:
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18B.14 Effectiveness factors for thin disks
If we make the assumption that the catalyst can be treated as
a continuum, then a shell balance on species A gives:

dN ,,
dz

:RA

Then, inserting the expression for the molar flux analogous to Eq.
18.7-4, we get for an irreversible, first-order chemical reaction

d dc ., d’c,
E(—SA—C—Z;A—):—klaCA or H,—4 dz —kjac, =0

In the second form, it has been assumed that the effective diffusivity

is constant. This differential equation may be solved for the boundary
conditions that c, (+b) =c,; the result is

Ca _ coshqlkl”a/.l‘)Az _ cosh Az
s cosha[kja/B,b coshAb

The total molar flow (or the effective reaction rate in moles/time) is

dc
_pn %a
4 dz

W,|=2-2R?*|N | , =2-7R? =2-7R*P ,c 4, A tanh Ab

z=b

lz:b

¢ o

For n disks of thickness b/n, this result may be modified thus:

-

n(27rR219 ACaA tanh(lb/n)), and letting 17— oo

11m|W(")

n—oo

lim n(27R2 4c ,A tanh (Ab/n))

n—oo

=lim n(ZHRZJSAcAS [(Ab/n)+- ]) =27R*8 ,¢ 4 A°b = 2nR*bkjac 4
Then the effectiveness factor is

27R%20 ,c, AtanhAb tanhAb
=lim(W, /W)= 4-4s =
Na nl_I)Il( A/ A ) ZnRZJSACAS/lzb b
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18B.15 Diffusion and heterogeneous reaction in a slender cylindrical
tube with a closed end ,
a.. The mass balance over a small segment of the tube is

nA;. lz 5- Ny, |z+AZ 5= PAZf(wAO) =0
Division by SAz and letting the segment thickness go to zero gives

_dny,

dz gf(w/w) =0

b. The mass-average velocity is given by
U, = WpUy, T OpU,

At steady state, B is not moving so that v, is zero; if substance A is
present only in very small concentrations, then is quite small. Hence
v, =0.

c. Because of the result in (b), we can write the mass flux as

dw ,
AB dz

n,, =-pd

z

Then the diffusion equation becomes

d’w, P
or
2 2
d sz __PL Kw, =0
dg 5o 45

Here we have set the wall mass fraction w,, equal to that in the
main stream @, and we have introduced explicitly the first order
reaction kinetics. We have also switched over to a dimensionless
coordinate {=z/L.
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The differential equation is to be solved with the boundary
conditions:

B.C.1: at{=0, w,=w0,
B.C. 2: at (=1, dw,/dz=0
The general solution is

w, =C,coshN{+C,sinhN{

in which N = \/ PL?k}/Spd ;5. When the constants are determined
from the boundary conditions we get

sinh N

W, :
@:_COShNC_cosththg
- coshN{cosh N —sinh Nsinh N{
- coshN
_coshN(1-¢)
~ coshN.

d. The mass flow rate of A into the capillary is

dw ,

dz |,_,

_ _pBpSdo,
L d¢ £=0

__PB S0y, (=N)sinh N(1- C)I

L cosh N

_PB S0y

Wyl,_o = =P 45S

o
(Ntanh N)
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18B.16 Effects of temperature and pressure on evaporation rate

a. For ideal gas behavior, x,, =p,,,,/p, as pointed out
several paragraphs before Eq. 18.2-1. Since the vapor pressure
increases with temperature, according to the Clausius-Clapeyron
equation, x,; will also increase. When the total pressure increases,
x 4, will decrease.

b. The evaporation rate is given by Eqgs 18.2-14 and 15. Since,
at constant temperature, c<p and 45 «<1/p, the evaporation rate
should be nearly independent of the imposed pressure.

- ¢. The temperature dependence of the evaporation rate can
be estimated as follows: ¢ 1/T and (for the simple kinetic theory of

rigid spheres) 0 ,; < T¥2. This suggests that

(Evaporation rate at T’ : Evaporationrate at T ) = (T’/T)l/ 2

However, it is known that the kinetic theory of rigid spheres
underestimates the temperature dependence. If one reads off the
slope of the curve in Fig. 17.2-1, we estimate that

(Evaporation rate at T’ : Evaporationrate at T ) = (T’/T)3/ *

which is a more believable result.
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18B.17 Reaction rates in large and small particles
a. Equation 18.7-11 for small R becomes, on using the
expansion of the hyperbolic cotangent for small arguments

W ar = 47RD ¢ 4|1 (1+ L (K / D )R?+--)|
= “(% ”R3)(k{/a)cAR

where we have retained only the leading term.
For large R, we use the expansion of the hyperbolic

cotangent for large arguments (which may be found in mathematics
handbooks) to get

W g =47RD 4c 45 [1 - (AR + 21Rexp(—2)tR)+- - )]

=~ —(47R* |\k{ad 4c 4

where A =./kja/®0, , and only the leading term has been retained.

Note that for small R the rate of disappearance of A is
proportional to the volume of the catalyst, whereas for large R the
rate is proportional to the surface area.

b. Equation 18B.14-2 for small R becomes, using the
expansion for the hyperbolic tangent for small arguments

W4l =2 TR 4 4 A(Ab = 1 A%H% +--)
~ (2b7R? )(K{iz)c o,

Here, again, we let A = \/kja/8, , and we have kept only the leading
term. :

For large R we use the expansion for the hyperbolic tangent
for large arguments to get

lWA l =2 7IR?c 4 O Al(l —2exp(-2Ab)+-- )

= (27R? \k[a B 4c o

Here again,[W ,|e volume for small R, and |W ,| e surface area for
large R.
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18B.18 Evaporation rate for small mole fraction of the volatile liquid
According to Eq. 18.2-13

1 :]n(sz/xBl)z 1 ln1—xAz:1n(1—x,u)—ln(1—xm)

(xB )1n Xpy — Xp Xa1—Xay 1=X4 Xa1~Xan

We now wish to expand the logarithms for the situation where the
mole fractions are much less than unity. To do this we may use Eq.
C.2-3. This gives

1 ‘(xAz +3 %3 +%xi2+"')+(xA1 + 3% +%x31+”')
(xB)ln a1~ Xa2
_ (Xa1=%a2)+ %(xfu - xiz) + %(xil - xiz)‘*"'
Xa1~ X4

— 1 1 2 2

This is the expression in brackets in Eq. 18.2-16.
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18B.19 Oxygen uptake by a bacterial aggregate
a. A mass balance over a thin spherical shell gives

(47rr'2nA,)

- (47tr2nA,)

ot (4n‘r2Ar)rA =0

in which A is stands for oxygen. Dividing by 47nAr and taking the
limit as the spherical-shell thickness goes to zero, we get

2 2
dr ’

Then inserting Fick's first law of diffusion and introducing the zero-
order chemical reaction rate constant to describe the disappearance
of the oxygen, we have

1 d dp 177

The B in & ,; stands for the medium through which the oxygen is
diffusing. We then multiply the equation by R*/p,d ., and define the
dimensionless quantities: £ =7/R, x=p,/p,, and N = R*k{/p,D 45 -
Then the diffusion equation becomes, in dimensionless form

A dfdyx)_
§2d§(5 dé) N

b. If we assume the presence of an anoxic (oxygen-free) core,
then we have the following boundary conditions: at £ =1, ¥y =1; at
£=0, y=finite; and at £=¢;,, x=0 and dy/d& =0. The physical
significance of the last boundary condition is that there must be no
diffusion across the boundary between the anoxic core and the outer
region of the aggregate. This may occur if all the material that enters
across the outer surface of the aggregate is completely used up by the
time it reaches the spherical surface at £ =&,

¢. Two integrations of the above equation give:
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d _
523%:%1\153 +C, and x=1INE2-CE7+C,

The constant C, can be found from the boundary condition at £ =1,
so that

2=4N(&*-1)-Cy(&7 -1)+1

We now have to apply the two boundary conditions at & =¢;, in

order to determine the two quantities C; and &, (which as yet is
unspecified):

dy/dé=0at £=¢& 0=4N¢, +—C-%- or C,=-1N§&
0
x=0at E=&,: 0=LN(&-1)-G (&' -1)+1

Elimination of C; between the last results gives, after rearranging

G o

If N is very large, the cubic relation has the roots 1, 1, and —3. The
last of these is physically impossible, and the other two roots indicate
that if the reaction rate is exceedingly large, there the anoxic region
will occupy the entire sphere. If we set &, equal to zero, we find the
minimum value of N, namely N = 6. Below this value, there will be

no anoxic region. Thus the final expression for the concentration
profile is:

l=1_%N(1—§2)+%N§3(§"l-—1) for 12&£2&,20

and ¥ =0 for 0< ¢ <¢;. Equation (***) above gives the boundary of
the anoxic region in terms of N.
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18C.1 Diffusion from a point source in a moving stream
a. Make a mass balance (in molar units) over the ring-shaped
area element shown in Fig. 18C.1:

(27rArN ,, )lz —(27rArN )

o, H2mAzN )| - +(27A2rN,, )| =0

r+r

Divide by 27AzAr and take the limit as the dimensions of the ring-
shaped element go to zero:

lim (rNAz ) 2+Az (rNAz ) z 4 lim (rNAr )|r+Ar - (rNAr )Ir

Az—0 Az Ar—0 Ar =0

Then using the definition of the partial derivative, we get

Ny 9 M)_ 1_9_( aNAr) ON,, _
rc?z +8r(r or =0 ot ré’rré?r +8z =0

We now use the expression for the molar flux given in Eq. (D) of
Table 17.8-2:

ox . dc
Ny =-cD4p ‘aTA + a0, ==&y _af‘

ox . dc
V4 az AYz AB az A%Y0

In getting the approximate expressions, we have assumed that there
is negligible convective diffusion in the r direction, and that the
distinction between molar and mass average velocity is unimportant
in this system. These assumptions would be valid if the concentration
of A in the mixture is small. When these expressions are inserted into
the equation for the molar flux, we get Eq.. 18C.1-1.

b. To make the change of variable, we use c,(7,z)=c,(s,z),
and apply the chain rule of partial differentiation as follows:

(5) 3 2) (3 (39 4
dz ), s J\az), \dz), \ds), s \ 9z ),
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) - 2] (2(2)) 2.(2(%)

0z* 8282_8582,25 dz\ dz /), ).

_(9%caz Iy z+82cA z, 82cA§+1icA+82cA
ds* s ds s* dsdz)s \dsdzs s ds 9z

(3%) 8cA) ds\ _(de,) r
o) (5 (5) %)
EARE =
ar ), ds),s \ds), s
1 8[T(&:_A) ]_ (8{}(8@4) D =(32CAJ82—22+1(3CA) s% + 22
ror| \or ), ds| \ or ,Las® ) & slds), &

When these are substituted into Eq. 18C.1-1, we then get Eq. 18C.1-2.

c. Let
f(s,z)=cA-4’£AB:§exp[ (5 z))——exp( ofs-z))
Then
Gw Gt (DF
(e {2 tne)

When these expressions are substltuted into Eq. 18C.1-2, an identity
is obtained.

c. B. C. 1is clearly satisfied. To examine B. C. 2, we first have
to calculate the derivative
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aCA — WA (__1_6-01(5—2) _ ge—a(;—z))
2
Js 4And,z\ s S

Then
2 dc, —a(s-z)
S

When s is made to go to zero (which implies that z goes to zero as
well), the right side of the above equation goes to W ,, and therefore
the second boundary condition is satisfied.

To examine B. C. 3 we have to calculate the derivative with
respect to r:

dac, 8CA) r_ Wa o a2 r
— = — —_—Aa 1._ _
( or )z ( Js ),s 4ndd,g ¢ ( as)s

where s=+r* +z°. When r — 0, s goes to z, and B. C. 3 is satisfied.
The meanings of the three boundary conditions are:
B. C. 1: The concentration of A on a spherical surface at infinite
distance from the injection point must be zero (since A is diffusing in
all directions)
B. C.2: This is a statement that W , is the injection rate of A.
B. C.3: This means that the maximum in the concentration must be
on the z axis.
e. To determine the diffusivity, one can write Eq. 18C.1-3 as

In(c,8) = In(W, /47D 45 ) = (05 /20 45 )(5 - 2)

Hence, if c,s is plotted vs. (s—z) on semi-logarithmic paper, the
slope will be — (/24 45) and the intercept will be (W , /47D 45).
For more on this subject, see T. K. Sherwood and R. L.
Pigford, Absorption and Extraction, McGraw-Hill, New York (1952),
. 42-43; H. S. Carslaw and J. C. Jaeger, Heat Conduction in
Solids, Oxford University Press, 2d ed. (1959), Eq. 2; H. A. Wilson,
Proc. Camb. Phil. Soc., 12, 406 (1904).
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18C.2 Diffusion and reaction in a partially impregnated catalyst
Use the notation of §18.7 as well as the following dimension-

less quantities: {=t/R, T'=c,/c,z, and ¢ =+/kjaR*/d,. Super-
scripts I and II indicate the two regions.
a. In Region I, the diffusion equation and its solution are

H
=0 and ro-_5 ¢l
é 2

In Regiion II, the diffusion equation and its solution are (cf. Egs. 18.7-
6 and 9)

_Li 52 dr®
g

2y-~(11) Im) C{I C;I .
=¢T and T =—§—cosh¢’g'+—smh¢§

14 [t
3

dE
The boundary conditions that have to be satisfied are:

B.C.1: at£=0, TI®isfinite (whence C! =0)

B.C.2: até=x, rO=rm |

B.C.3: até=x, dr0/deé=dr®/de

B.C.4 até=1, r®=1

Boundary conditions 4 and 3 give us the following two equations:

1=Cl'cosh ¢ + C} sinh ¢

I II II II
0= —-(-:—LCOSh(DK + §—1—¢Sinh¢l(— C—Zsinhq)x + —C—2—¢cosh¢1<
K2 K K2 K

These two equation may be solved simultaneously to get

—sinh ¢x + ¢x cosh ¢k
sinh ¢(1- k) — ¢xcosh ¢(1 + k)

n_
C =
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cll = cosh ¢k — ¢k sinh ¢k
2 sinho(1- K)— ¢k cosh¢(1+ k)

Therefore the concentration profiles in the two regions are:

[(—sinh ¢k + ¢k cosh ¢x)cosh ¢&
) 1 +(cosh ¢k — ¢k sinh ¢k )sinh ¢&
¢ sinh¢(1- k) - ¢xcosh¢(l+ k)

rm-1 oK
& sinh ¢(1- k) —cosh ¢(1+ k)

To get the concentration profile for region I, we used B. C. 2.
b. To get the molar flux at the outer surface, we need

I
dc,

W, =-4nR*D, y
r

r=R

After evaluating the derivative at the surface, we get finally

_ _ [ cosh¢(1-k)+ ¢xsinh ¢(1+ k)
Wa= 4”R‘BACAR[1 ‘b( sinh ¢(1— ) — ¢k cosh @(1 + K‘)):l

In the limit that x — 0, this result simplifies to Eq. 18.7-11.
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18C.3 Absorption rate in a falling film

a. The total moles of A transferred per unit time across the
gas-liquid interface is W ,. This has to be equated to the amount if A
that is leaving in the film of finite thickness §:

5
W, = Wjo C4 (x,z)|z=LvZ (x)dx

When it is assumed that A diffuses only a very short distance into the
film, then v, (x) may be set equal to the fluid velocity at the gas-liquid
interface, v, ..., and taken outside the integral. Furthermore, since
c4(x,z) is virtually zero beyond a distance small compared to &, the
integration can be extended to infinity. This reasoning leads to Eq.
18C.3-1.

b. Inserting c,(x,z) into Eq. 18C.3-1 and changing to the
variable u requires no further explanation.

¢. Changing the order of integration requires specifying the
region of integration. In this case it is a triangular region extending
from u =0 to u = e ,and from the diagonal line £ = u across to & = oo,
When the order of integration is reversed, it is necessary to integrate
over exactly the same region, but this time from £=0 to £=e and
from u =0 up to the diagonal u = £. This leads to Eq. 18C.3-3.

Having done this, the inside integral can be performed
analytically to give

4°® vz max had y
W,= WLCAO\/“A—:;L'-“ 'Zfo ‘5?’@(‘52 )dég

Now the remaining integral can be done also to give

4“®AB’Uz,max

40 U2, max <
=WLc 4 \/—AZL—'——(—exp(——éz))lo = WLCAO\/ p

which is in agreement with Eq. 18.5-18.
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18C.4 Estimation of the required length of an isothermal reactor
a. The steady state mass balance over a length Al of the

reactor is
W po), = WO g0, ,, — (SAl)an,, =0

Dividing by w Al and letting Al go to zero gives

dw,, _ Sany,
dl w

or

dw,, SaN,M,
dl w

b. Next we want to use the result of Eq. 18.3-9 to write

M Mg (dxao/dl) _ SaM, (2c49AB L J
(MAon + Mpxg, )2 w g 1-3x,

Then integration gives

( Mywé ) xa(L) 4% 49 =L
25ac® 4 )40 [MAon + Mp(1- 24 )]2 In(1-3x4)



18C.5 Steady-state evaporation

a, We start with the second form of Eq. 17.9-1, written for
diffusion of a 3-component mixture in the z direction. For
convenience, we omit the index z on the species molar fluxes:

dx,, _i 1
dz  pacddyg

(xaNﬁ — xﬁNa)

Consider now the concentration gradient of species 3, taking into
account that N, and N, are constants, and that N, is zero:

dx, 1 1 N, N
s o (2,N)) 4 —— (N, ) = D o
i omy, e) oo, (FsN2) (c&‘)w c.’@zg,}c3

This first-order, separable differential equation is easily integrated
to give the result in Eq. 18C.5-1:

X3 =Xz exp( Viiz T Voxs )45 X390 €Xp AL

in which the notation v, is a symbol defined in the textbooi.
b . Next we consider the concentration gradient for species 2:

dx 1 1
d_22= CJ912 (szl —x1N2)+—05;(x2N3 —-x3N2)

or, in dimensionless form,

ax,
d¢

= (Vnzxz = Vo1p Xy ) = V3X3= VippXy — Vopp (1 Xy~ x3) = Vy3X3

= (Vnz T Voro )xi +("212 = Vo3 )xs — Voiz

When we use the abbreviations given in the text, this equation can be

recast in the form

d
dié =(Vi2 + Vaia )%, =(Varo = Va3 )Xz €XP(Vigs + Vi3 ){ = vy 0T



iy _ Bx, =Cxzexp AL — vy,

4

This is a first-order linear equation, which is readily solved

X, = eBC[fOCe‘BC (CxSOeAg - vm)]dC+ C, (C, = x, from B. C.)
e Pt 1 e -1
= eBé’ lichO “(14—_5— = Vo _———é—— + Xy

_ Cx5 eAC+(x20 _Cxyp V212)eB§ + Vorz
A-B A-B B B

in which

B N;+N, cdy, c; ¢y,

N By =Dy,
C By,

A-B Nl(“@u ~‘;913) +N2(°®12 —4923)
°®13 °®23.

¢. The results in () and (b) above are in agreement with Egs.
(2) and (3) of the article by Carty and Schrodt, cited in the text.
d. Figure 3 in the article by Carty and Schrodt indicates good

agreement between the above equations and the experimental data.
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18D.1 Effectiveness factors for long cylinders
Instead of Eq. 18.7-6 (for spheres) we have now (for
cylinders):

'~ 1d{( dc ” ) ..
JSA;E(r#):klaCA with ¢,(R)=c4z and c,(0)= finite

The differential equation may also be put into the form

1d( dey) (Ka), _
rdr(r dr) (JE)A)CA_O

This may be recognized as the equation for a first-order modified
Bessel function. Therefore, the solution is

cA=CIIo[ %rJ+C2KO( gar)
A A

Inasmuch as K, cannot satisfy the boundary condition at r = 0, we
must set C, equal to zero. The boundary condition at r = R then gives
the constant C,. The concentration profile is therefore

c, To («/k{’a/o(‘JAr)

CARr - IO( k{'d/o@AR)

This is the cylindrical analog of Eq. 18.7-9.
The molar flow of A at the surface is then

W g = ZnRL(—JSA id‘ifi)
r r=R

_(anL)QACAR I ka/D . RY-k"a/HD
Io(VK/a/®,R) 1(VK{a/B4R)- e/ B

which is the cylindrical analog of Eq. 18.7-11. The analog of Eq. 18.7-
12 is then
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Waro = (nRzL)(a)(—kl”cA )

Next we evaluate the effectiveness factor

W ( kia/& 4 R)
WAR() ( k"a/JS) R) ( k”a/i‘) R)

Na =

The generalized modulus for the cylinder is

k” k”a aR’L _ [k{a R
SP A 27RL | D, 2

Therefore the argument of the Bessel functions is

k{a/®,R=2A

We may now express the effectiveness factor in terms of the

generalized modulus thus:

_ L(2A)
a A (2A)
which is the desired result.
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18D.2 Gas absorption in a falling film with chemical reaction
The problem to be solved is

ac

d*c,
Umax az

=Dy ? - kf'éA
with boundary conditions ¢, (x,0)=0, c,(0,z) =c4,, and c,(e°,z) =0,
or, in dimensionless notation

i—_—a_zc._ac
a¢ 9

inwhich c=c,/c g, {=2/L, E=x+Jv,,, /O 4L, and a=k{L/v,_ .
We now take the Laplace transform the partial differential
equation and the boundary conditions to get

with ¢(£,0)=0, ¢(0,{)=1, ¢(e=,{)=0

d%c

sE—c(c'j,O):d—éz—aE with c(0)=1/s, €(2)=0

Because of the boundary condition at {= 0, ¢(&,0) = 0. The solution

of the ordinary differential equation for ¢ with its boundary
conditions is

e~ Lexp(- )

We will not invert this, since all we need is the molar flux at the wall,

dc / v dc
N — —JS A — —JS max_ %
Ax (z)lx=o AB™S » ABC A0 B, L dE i
The Laplace transform of this expression is
e — - Vo NS+
N =-0 max v =+ max
Ax (z)|x=o ABC A0 _°®_“AB LdE " ABCAO\/ B,L s

Hence the molar flux at the wall is
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Umax NSs+a
N4 (2)], +"‘®ABCA ;B { }
S

Umax
=+ ,5C40 L@

vmax

D45

(7

D

+4a

| Vimax | 1 1 1
=+ L + ;G‘l{— }
ABC40 i {\/s+ } g s\s+a

[V | @p(-0) , exp(-08)
=+ Daacao asL\ 7 +f0 \/”—z %

The first transform was obtained from a table of transforms, and the
second by using the convolution theorem.
The total molar flow rate through the interface is then

Wa=W[Ny(2)|_,dz

_ O [ ©XP(-00) | cexp(-aC)
= WL ,5¢ 4 T j( N +] NS CJdC

3 Upmax erfx/— erf+/a exp( a) erfva
= WLBastao \/ DL l: Na ( \a \ra 2a«/—)]
= WE 40U mman D a5 /K1 { (% + a)erfVa +/a/ w exp(-a)]

The double integral in the second line is evaluated by exchanging the
order of integration and then performing the inner integral. In going

from the third to the fourth line, Va was factored out of the
denominator.
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19A.1 Dehumidification of air.

(a) Let A denote H,0O and B denote air, as in Example 19.4-1. The interfacial
mole fraction of A is then estimated as

_ szo’vap _ 0.178 pSia,

- - —0.0121
A0 14.606 psia

The “film temperature” Ty = 2(Tp + Ts) is 65°F= 291.48 K. The gas-phase prop-
erties at Ty and zp — 1.0 are:

Dap = 0.246 cm? /s from Eq. 17.2-1
¢ =p/RT = 4.18 x 10™° g-mol/cm?
= 25.5 x 107° W/cm-K from CRC Handbook 2000-2001, p. 6-185

The molar heat capacity of the transferred vapor at Ty is

~

Cpa = 8.00 cal/g-mol-K = 33.47 J/g-mol-K

from O. A. Hougen and K. M. Watson, CPP Charts, Wiley, New York (1943), Fig.
26.

Substituting into Eq. 19.4-5 we get:

NAy5PA6: Nayé CDAgapA _ lnl—an CDABépA
k CDAB k 1-— T A0 k

_ (1-0.0180
B (1 - 0.0121)
0.0000418 x 0.246 g-mol/cm-s)(33.47 J/g-mol-K)
' ( 25.5 x 105 W/cm-K )

= (—0.00599)(1.350) = —0.0081

Then the right-hand member of Eq. 19.4-9 takes the value

~(NayCoa/k)s 0.0081 3 0.0081
1—exp(NayCpa/k) 1—exp(—0.0081) 1 — [1—0.0081+ $(0.0081)2 +...]
1 .
~ 1-1(0.0081)+...

= 1.004...

(b) From Eq. 19.4-9 we see that the quotient just calculated is the ratio of
the interfacial conduction fluxes calculated with and without allowance for diffusive
energy flux. The diffusive energy flux is evidently unimportant in this problem.
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19B.1 Steady-state evaporatlon
a. From Eq. (M) of Table 17.8-1 and the fact that B is

stagnant leads to N,, = cv,. Equation (D) of Table 17.8-2 states that

N, =c,0, =B ,5(dx, /dz) Equating the right sides of these two
expressions and dividing by ¢ gives

v, :xAv;—JE)ABEl}A or v;:——JBAB axy

dz 1-x, dz

b. When this expression for the molar average velocity is
combined with Eq. 19.1-17 (when simplified for steady state and
unidirectional diffusion with no chemical reactions), we get

_ Dp dxy dx, o d’x, dzxA+ 1 (dxA)zzo

1-x, dz dz TR | o dz* dz

‘which is just Eq. 19B.1-1.
c¢. Equation 19B.1-1 can also be written as (cf. Eq. 18.2-5)

N e AL

1-x, dz

One integration of this equation gives (cf. Eq. 18.2-6)

1 dx,
1-x, dz

_—_C1

and the second integration gives (cf. Egs. 18.2-7 and 8)
~In(1-x,)=C;z+C,

Then one can follow the text in §18.2 until Eq. 18.2-11 is obtained.
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19B.2 Gas absorption with chemical reaction
Equation 19.1-16 is

p(ag)t’* +v-Va)A):po®ABV2wA +7,

For constant mass density, p can be taken inside the time and space
derivatives. This gives: |

d
(—(—%‘-‘!+V~V[)A):°®ABVZ;)A +7,

We now divide by the molecular weight of species A to get
(%-{—V'VCA) =,,Vc, +R,

For steady-state diffusion, the time-derivative term can be omitted.
Since the bulk motion in the direction of diffusion is presumed to be
small, the v term can be omitted. Then we further simplify the
equation to diffusion in the z direction. This gives

d*c
where R, is the molar rate of production of species A per unit
volume. If A is disappearing by an irreversible, first-order reaction,

then R, = -k{c,, so that we arrive at
2
d°c,

0=, - kit,

which is just Eq. 18.4-4.
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19B.3 Concentration-dependent diffusivity
a.. For this problem the diffusion equation simplifies to

d dc
b. One integration of this differential equation gives

dc,

D45 (CA )72“ =C

and a second integration gives

B 4p(ch )dch = C, [ dz

a0

The integration constant may be obtained by applying the boundary
condition at z="b:

[ 8 45 (cy ey = Cy [ dz

CA0

Taking the quotient of these two equations gives

D ,p(ch)des

€a0 —

ICAbJSAB (C,/fa )dc;{

CA0

SN

which is equivalent to Eq. 19B.3-1.
¢. The molar flux at the solid-liquid interface is then

dc,

N, 24
A8 4z

NAzl

z=0 =7

1
== 45| T ) B p(c dC/J
z=0 AB(bJSAB J‘CAo AB( A) A

which is equivalent to Eq. 19B.3-2. The quantity in parentheses is the
concentration gradient, obtained by differentiating the result in (b)
with respect to z using the Leibniz formula.

d. When Eq. 19B.3-3 is inserted into Eq. 19B.3-2, we get
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NAzlzo ; ICAO[l .31( EA)+»82(CA—EA)2+'~-]dCA

CAp
B, (CA —Cy )3

4 [(CAO - CAb) +3 B, (CA —Cy )2

CA0
+

Cab

Q=

€a0 ]
4.

Cap

In the second term on the right side we have

_ \2]cA0

Y = =2 2 = =2
Ab .
[ A2 2 =
= (CAO _CAb)—z(CAO ~Cap )CA

= (Cfxo - C,Zab) ~2(cq0 - Cap)3(Ca0 + Cap)=0

In the third term on the right side we have

~ \3|40 3 2 = ~2 =3

Cap
(cib —3c¢%,C4 +3ca,C5 —Ca )
= (Cio ¢ b) + 3(CAO C,zab)EA +3(Ca0 —Cap)Ca
=(ca0 = Cap) ( A0 T CagCap + szﬁb)— 3(cao +cap)3(cao +ca)
+3(%) (ca0 +CAb) ]
=(ca0 - CAb)_%C 7CaoCap + ?liczqu]

= %(CAO —Cap )(CAO —Cap )2

When this is substituted into the molar-flux expression above, we get
the result in Eq. 19B.3-4.

e. If the diffusivity is linear in the concentration, so that the
terms in Eq. 19B.3-3 containing terms higher than the quadratic term
may be omitted, then the result in Eq. 19.3-4 is valid, but the
expression in brackets is just unity. This means that one gets a valid
expression for the mass flux by using the formula for constant
diffusivity, but using the diffusivity at the average concentration.
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where V; is the molar volume of the silicon dioxide. Equating the
right sides of the last two equations gives Eq. 19B.4-3.
d. Following the directions given in the text we get

~ C - C
rn.2 __ A0 AS |\ _1»
Vigkicys = JSAB( s ) ki'cas

and this may be rearranged to give Eq. 19B.4-4.
e. The differential equation for the movement of the
boundary is |

k! Ca0 — d_6_
N14(ky8/D )| Vy dt

or

- I/5 d6
1% k7={1+
BC 4051 ( B, )dt

This is a separable first-order differential equation, which may be
solved with the initial condition that §(0)=0:

~ it 5 ko
Ve aok] dt = jo( 5 )ch

AB

and this yields

kl”62

AB

VyCaokit =38+

which may be rearranged to give Eq. 19B.4-5.
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19B.5 The Maxwell-Stefan equations for multicomponent gas
mixtures

a. If we staft with the first form of the Maxwell-Stefan
equations, we have

which is just Eq. (F) of Table 17.8-2.

b. If we start with the second form of the Maxwell-Stefan
equation we have

AB

If now we add and subtract x,N , on the left side, we get
(x4 +x5)N,4 —x,(N, +Ng)=—cd,5Vx,

or

N, =x,(N4 +Ng)-cd,zVx,

which is just Eq. (D) of Table 17.8-2.
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19B.6 Diffusion and chemical reaction in a liquid

a. The differential equation for the steady-state diffusion
from a sphere is

P ld( 2 dc,

" 2 2+ _
BT dr) kit, =0 or §2d§(§ f) b°’T=0

According to Eq. C.1-6b, the solution to this equation is

r=S,0 G e

4 S

Application of the boundary conditions that I'(1)=1 and I'(e)=0
determines the constants, and the final result is (cf. Eq. 19B.6-1)

The mass flux at the sphere surface is then

_ D 45C 40 dI‘
r=R R

D 45C40
—a437 40 (1+b
R ( )

Il

NA’L:R =—o® =4

and the total loss of A from the sphere in moles per unit time is

"2 :
W, =47zR2(—-——‘[9ABCA°) 14 MR

b. The unsteady-state mass balance on the dissolving sphere
of species A is

_E(%nR psph)—47tR (——RO— 1+

D45
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Since we have used here the steady-state expression for the molar
flux at the surface of the sphere, this is a quasi-steady-state
treatment.

| The integration of this equation can be accomplished as
follows: First we divide through by 47 p;, to get

dt psph | °®AB

Next, put all the factors containing R on the left side

_ R dR _ 8 4pca0My
1+ (kiR /4D ,5) dt Peph

Next we introduce a new dimensionless variable Y = R+/k{"/® 4z and
write

Y ay ki, M,
1+Y dt Psph

Then we integrate

01+Y psph o
and finally
1+Y k£, M |
Y-Y,)-In =LA At _t) or
( 0) 1+Y, Psph ( 0)
ky” 1+ k{70 R ki€ aoMay
R-R,)-In =- t—t
D45 ( 0) 1+ \/k{7°®ABR0 Psph ( 0)

From this one can get the dependence of the sphere radius on the
time.
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19B.7 Various forms of the species continuity equation

a. To get Eq. (A) of Table 19.2-1 from Eq. 19.1-7, use Eq. (C)
of Table 17.7-1, in the form p, = pw, on the left side of Eq. 19.1-7,
and Eq. (S) of Table 17.8-1 on the right side.

To get Eq. (b) of Table 19.2-3 from Eq. 19.1-7, move the

term —(V-p,v) to the left side of the equation, and then use Eq. 3.5-4
(with f identified as o).

b. Rearrange Eq. 19.1-11 to get

ac, . X
;t +(V-cav )=—~(V-J,)+R,

Then rewrite the divergence term on the left side by differentiéting
the product .

ac,,
ot

+eo(V-v*)+(v* Ve, )=—(V ], )+R,

Then write ¢, = cx, and once again differentiate the products, thus:

Iy % o (Vv *) (v * Vi, )+ 2, (v V) = (VT3 ) + Ry

‘ ot “ ot

or, on rearranging

c(a;: +(v*-an))+xa(%+(V-cv*)) =—(V-];)+Ra

Next we may make use of the overall equation of continuity in Eq.
19.1-12 to modify the second term on the left (with the prefactor x,)

Jx, . N .
c( = +(v -an))+xa%Rﬂ =—(V-Ja)+Ra

This equation can be put into the form given in Eq. 19.1-15. No
assumptions have been made in getting to this result from Eq. 19.1-
11.
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19C.1 Alternate form of the binary diffusion equation
Equation 19.1-17, in the absence of chemical reactions, is

Equation 19C.1-1 can be written as

1M 1 1
——+—(V-VM)=0 5| V- —VM
Mo MM AB( M )
1 1
= @AB[—MVZM - W(VM -VM)}

To compare this with Eq. 19.1-17, we multiply through by M and then
replace M by its definition: M=x,M, +xgMp=x,M, +(1-x,)M;
=x,4(M, — Mp)+ Mj. This leads to

ox 4
o

M, — Mg )(Vx, - Vx,)

Vx,)=8,,V? (
(V xA) BV X4 + 8B p M

To get this result, we have also divided through by the factor
M, — M (which is never exactly equal to zero).

When this last equation is compared to the first equation
above, we see that the two results are the same, if

v =v+(YM)(M, - Mp)® ,5Vx,

To show this we introduce the definitions of v and v*, and also Fick's
first law in the form of Eq. (F) of Table 17.8-2. This yields

1 M,-M
xAVA +xBVB =‘M—(MAxAVA +MBxBVB)"'——‘——‘AM B xAxB(VA ""VB)
1

= (1/M)[(MAxA + Mpxp )x 4V 4 +(Mpxp + Myx, )x5v5)

Since this is an identity, the proof is completed.
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19D.1 Derivation of the equation of continuity

a. The equation of continuity for species A states that for an
arbitrary fixed volume V the time rate of change of the total mass of
species A must equal the net rate of addition of A over the bounding
surface S (by convection and diffusion) plus the rate of production of
species A by chemical reactions. This statement in integral form is
given by Eq. 19D.1-1. The surface integral may be transformed into a
volume integral by using the Gauss divergence theorem to give

j%pAdvz ~[(V-n,)dv +[r,av
\%4 \%4 v

Here we have also moved the time-derivative operator inside the
integral, inasmuch as the volume is not changing with time. Since the
volume is completely arbitrary, we may remove the integral signs to
get the equation of motion in the form of Eq. 19.1-6:

%)ti=—(v-nA)+rA

b. For an arbitrarily chosen "blob" of fluid, contained within
the volume V(t), whose boundaries are moving with the mass-
average velocity, we may write the mass conservation statement as
follows: the time rate of change of A within the volume equals the
rate of addition of A by diffusion across the surface S(t), plus the rate
of production of A by chemical reaction within V(¢) :

d .
dt V(t) S(t) V()

Next we apply the Leibniz formula to the left side to get

d .
V() S(t) S(t) V(t)

This may be rearranged to give

19-13



d .
| gPAdV == [(n-(ja +pav)piS+ [r,dv
V(t) S(t) V(t)

where use has been made of the fact that the surface of the blob is
everywhere moving with the mass-average velocity, i.e., v; =v.
Then, we make use of the Gauss divergence theorem for the surface

integral, to obtain

d .
[ gpAdV == .[(V'(]A +pAV))dV + [radv
70, 70 Z0)

Since the volume element V(t) was chosen arbitrarily, we may

remove the integrals to get the species equation of continuity for A in

the form of Eq. 19.1-7:

% .
%z—(v-(“ +pAv))+rA
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19D.2 Derivation of the eqution of change for temperature for a
multicomponent system

a. Applying the chain rule for the functions related in Eq.
19D.2-1, we get

oH | _Nof a(mH) dwg N d(mH) om
omy), A\ dog ), \om,), om ) \om,).

144 Y

N-1 3 o A
B=1 awﬂ o, Zymy (Zymy)
No A
_ (_8_11) (50-"2) A
ﬁ=1 860[3 ® m

(8H) S d(mH) dag) | (9mH)) ( Im
omy ), pA dwp ) \omy), \ om ) \omy),

Y

A R _
+H= 2{8&)[;)[—171)-*_1_1 (for ¢ =N)

Subtraction of these two results gives Eq. 19D.2-4.
b. Regard H as a function of p, T, and the first (N - 1) mass
fractions, so that

ol oOH N=Y oH
dH = dp+| Z=| 4T d
(@JT g *(w) *2(&0} Ve
,a)y ley p/T/wy

When this is applied to a fluid element moving with the fluid, Eq.
19D.2-5 results. Equations 19D.2-6 and 7 are standard thermo-
dynamic results.

c. Because of the relation m,=n,M,, the differential
quotients in the last term in the last equation can be rewritten, with
the help of Eq. 19D.2-4, in terms of partial molar quantities:

(for a#N)

14
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JH) _(oH) (H
I, ), \omg), \omy),

_1(oH) _1(u) _A, H
Mg\, ) — Mylony) ~M, My
Y Y

a

In Eq. 19D.2-5, we use Eq. (E) of Table 19.2-4 for the substantial
derivative of the enthalpy, and we use Eq. 19.1-14 for the substantial
derivative of the mole fractions. We also use Egs. 19D.2-6 and 7 for
the other differential quotients. Then Eq. 19D.2-5 becomes

Dp dInV Dv ~ DT
~(V-q)-(z:Vv)+ =L =|1-| == L4 pC ==
(V-a)-(=vv)+ 5 { (81nT)pw Dt P D

@y
NYH, H .
Pt w AASERS
d. Réarranging we get
» DT dlnV) Dp
C,~=—=-(V-q)-(1:V i
pC, o =~(V-a)=(r V)+(8lnijw Dt

The last term in this equation can be simplified as follows:

+:’:ZZ ((V.ja)—ra)—(z;z((v'ja)—ra)jz_:[
:::Ha((v Ja)=Re)+ Hy((V-Jn) - Ry)
=§1Ha((V-Ja)-—Ra)

This, then, leads to Eq. (F) of Table 19.2-4.
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19D.3 Gas separation by atmolysis or "sweep diffusion"
a. The Maxwell-Stefan equation for a three-component
mixture are

dx 1 1

d; - ¢ 5 (xaNs. = 23N..) + cdd 0 (FalNe = xcNoe)
dx 1 1

dzB "D, (¥aN . = x4No)+ cDpc (xaNe, = xcNa)

We now make the substitution x. =1-x, — x5 in order to have just
two independent variables. Then by introducing the indicated
dimensionless variables, we get Eqs. 19D.3-1 and 2.

b. Next we take the Laplace transform of Egs. 19D.3-1 and 2:

_ v = o 4

PXp—Xp1 =Y p4Xq +Y 05X +p 7Y,
= _ = = -1

pXp —Xpy = YpaX4 +YppXp+p~ Y

This set of equations can be solved simultaneously to give for X,

. XA(xAl/xBl;p)
plp-p)p-p-)

in which p, and p_ are given by Eq. 19D.3-4, and X, (x,;,%;p) by
Eq. 19D.3-5. Similar equations can be given for ¥; by interchanging
the subscripts A and B.

The transformed expression X, can be inverted by using the
Heaviside partial fractions expansion theorem if we exclude the
relatively unimportant cases p, =p_and p, (or p_) = 0. Thus we get

x4(8)= X(*a1,%10) + X (a1, %p15P, JeP* + X(x 41, %5,5p- )"
E P.p- p.(p.—p.) p-(p-—7.)

The expression for x; is obtained by interchanging all indices A and
B. |
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c. Finally, at { =1, x, = x,,, so that

X(xAl,xBl;O) + X(xAl,xBl;p+ )eP+C N X(xAllel;p—)ep_C
p.p- p.(p. -p-)- p-(p--p.:)

Xag2 =

and a similar expression for x;. We hence have a pair of equations
giving the relations among x,,, x,, x5, and x5,, the dimensionless

fluxes v,, and the dimensionless diffusivity ratios. Keys and Pigford
go further and give a plot of the separation factor |

o= Xa2/%B)
X a1/%p1
for the special case of very small mole fractions.

Note that the choice of notation in this problem has the
advantage that there is symmetry between A and B, which makes it
easy to give the results for both species after the result for one
species has been worked out.
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19D.4 Steady-state diffusion from a rotating disk

a. Equation 19.1-16 for steady-state diffusion in the absence
of chemical reactions is

(V-VD4)=B45Vp,(2)

For the special case that p, depends on z alone, the diffusion
equation simplifies further to

s _ g L4 H(¢)%a - L L0y

" iz i¢ ~ Sc de?

in which the dimensionless coordinate {=2z,Q/v has been
introduced.

b. The differential equation is solved by setting dp, /d{=p,

so that we get the first-order separable equation dp/d{=ScH({)p,
which has the solution

hlpzScf(fH(C)d§+lnCl or dﬁi:pzclexp(ScffH(z)dé—’)
A further integration gives
p,=C, J~0§ exp( Sc_[oz H (f)d?)d £+C,

The boundary conditions that p,(0) = p,, and p4 () =0 then give

Pa _q fogexp(Scjf H (?P?)dz 1 j'ocexp(%ScaQ_’3 ﬁf

Pro lep(sc[f H(EWT T~ [Texp(38eal* 6T

the second expression being the high Schmidt number limit, i.e.,
taking only the first term in the expansion for H. The integral in the
denominator can be evaluated analytically
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:exp(—u?’)du B ir})

e ]
1 3 = =
'[0 eXp(BSCM: )dé,‘ }/1Sca 1Sca

Hence the final expression for the concentration profile is

Pa 1 X Scajexp( Scaz"’)df

Pao )

¢. The mass flux in the z directioh is then

}/3Sca . d
3(%) exp(—§ScaC3)£

in which d{/dz =./Q/v. At the surface of the disk the mass flux is

%/1 Sca \/7 %/% 0 510 pAO B,,5c1QV2y-

V3 -
= 0-620/0,40 AB ( V/"DAB) Poiry v

d
Jaz =—Dap 52 = 40,4009 45

=

jAzlz -0 =P a0

which is the result in Eq. 19D .4-7.
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20A.1 Measurement of diffusivity by unsteady-state evaporation.

Assuming ideal gas behavior, and insolubility of species “B” in the liquid, we esti-
mate the mole fraction of ethyl propionate in the interfacial vapor as

PA,vap 41.5 V
= = = 0.0545
A T T 7612
Eq. 20.1-1-22 gives
4Dap
AV(t) = Sz 409 [Vt — v/240]

™

Linear interpolation to x 49 = 0.0545 in Table 20.1-1 gives ¢ = 1.0235, whence

- ™ AV 1°
Pan el = 4 e ay [ﬂ—m]

with AV in cm?® and ¢ in s. Application of this formula to the tabulated data gives
the following results:

Vit 15.5 19.4 23.4 26.9 30.5 34.0 37.5 41.5
DaB 1.2 0.0281 0.0278 0.0272 0.0273 0.0270 0.0273 0.0269

The average of the last seven determinations of Dap is 0.0274 cm?/s.
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20A.2 Absorption of oxygen from a growing bubble.

The interfacial molar flux of oxygen into the liquid is given by Eq. 20.1-75 as

2n + 1)D
Nao(t) = cao L—W—t)—A—B-

for a bubble with interfacial area S(t) = at™ and interfacial liquid concentration
cAo0, when a, n and c4p are constants. The solubility wap corresponds to a molar
concentration

cao = pwao/Ma
= (1.0 g soln/cm?)(7.78 x 10™* g O3 /g soln)/(32 g O2/g-mol O5)
=2.43 x 10™° g-mol Oy /cm?

which is used here as the interfacial concentration of dissolved O,.

(a) For constant growth rate of the bubble volume, r?  t, so that r, « t1/3

and S(t) o< 12 o t3/3 giving n = 2/3 in Eq. 20.1-75. Then at ¢ = 2 s, the interfacial
molar flux of O3 into the liquid is

(3+1)Dus

7t

= (2'43 x 1075 g-mol/cm3)\/(7/3)(2'60 x 105 cm2/s)

Nao(t) =cao

(3.1416)(2 s)
=7.55 x 10™% g-mol/cm?-s
The total absorption rate in g/s is then
C wa(t) = 4nr2 ()N ao(t) M4
= 4m(0.1/2 cm)?)(7.55 x 10™® g-mol/cm?-s)(32 g/g-mol)
=T7.6x107% g/s

(b) For constant radial growth rate, rs oc t and S(t) o ¢2, giving n = 2 in Eq.
20.1-75. Then the interfacial flux at time t =2 s is

4+ 1)D
NAo=cAo\/————( JDap
7t

= (2.43 x 10~ g-mol/cm®) \/ (5)(2.60 x 10~5 cm?/s)

m(2 s)
=1.11 x 1077 g-mol/cm?-s
and the total absorption rate in g/s is
wa = 4nr2(t)Nao(t)Ma
= 47(0.1/2 cm)?(1.11 x 10™7 g-mol/cm?-s)(32 g/g-mol)
=111x 1077 g/s |
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20A.3 Rate of evaporation of n-octane.

Table E-1 gives the following Lennard-Jones parameters:

Species M o, A g, K
A: n—Cngg 11423 7035 361
B: N, 28.013 3.667 99.8

Eqgs. 17.3-14,15 then give the interaction parameters 45 = 5.351A and EAB =
189.8 K, and Eq. 17.3-10 gives

1 1 1
2/s = 0.001 15)3
Dap, cm*®/s = 0.00 8583\/(293 15) (114.23 + 28.013) (p, atm)(5.351)2(1.185)

= 0.0580/(p, atm)

(a) If p =1 atm, then Dyp = 0.0580 cm?/s and z 40 = 10.45/760 = 0.01375.
Interpolation in Table 20.1-1 gives ¢ = 0.00859, and Eq. 20.1-20 gives the volume
of vapor produced in 24.5 hr as

Va = Sp\/4Dspt

= (1.29 cmz)(0.00859)\/4(0.0580 cm?/s)(24.5 x 3600 s)
= 1.585 cm?®

The mass of vapor produced in 24.5 hr is

= pVaMy
RT
- (1 atm)(1.585 cm®)(114.23 g/g-mol)
~ 82.0578 x 293.15 cm® atm/g-mol

=0.0075 g

(b) If p = 2 atm, then Dap = 0.0290 cm?/s and z 49 = 0.01375/2 = 0.0688.
Table 20.1-1 then gives ¢ = 0.00430, whence

Va = Sp\/4Dypt

= (1.29 cmz)(0.00438)\/4(0.00290 cmz/s)(24.5 x 3600 s)
= 0.561 cm?®

and the mass of vapor produced in 24.5 hr is

_ pVaMy

- RT

_ (2 atm)(0.561 cm?®)(114.23 g/g-mol)
~ 82.0578 x 293.15 cm? atm/g-mol

=0.0053 g
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20A.4 Effect of bubble size on interfacial composition.

Equations 20A.4-1 and 2 give
nr?]

Assumiﬁg H to be independent of r,, the ratio of w4 to its value for a very large
bubble is

wao(r)  Ppoo +20/rs 1+ 20
wao(00) Poo Pools

Thus, the bubble radius corresponding to a 10% increase of w4 over its value for
a very large bubble is given by

2 20
7 = 0.1 or Ty = —
PooTs P

For a gas bubble in water at 25°C, with po, = 1 atm, this gives the required bubble
radius as

_ (2)(72 dynes/cm)
~(0.1)(1.0133 x 108 dyne/cm?)
= 0.00142 cm = 14 microns

8

The (normally minor) dependence of liquid-phase free energy on total pressure has
been neglected here. To include this effect, one would need partial molar volume
data for the particular system.
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20A.5 Absorption with rapid second-order reaction

a. The first thing one has to do is to determine the parameter
v from Eq. 20.1-37, using the concentrations and diffusivities given
in Fig. 20.1-2. By a trial-and-error procedure we have found that

¥ =4.9x10° mm?/s. We now verify this by substituting into Eq.
20.1-37. We first have to convert the diffusivities in ft*/hr into units
of mm?/s:

(12-2.54-10 muy/ft)’
| 3600 s/hr
Dy =1.95x107° ft? /hr = 0.503x 10 mm?/s

0 45 =(3.9x107° ft*/hr) =1.006 10 mm?/s

Substituting into Eq. 20.1-37 now gives:

4.9%107°
1-erf =
0.503x10

_(4)/0.503%x10° | 4.9x107 49x10°  4.9x107
il ey —erf 3 eXp 3~ 3
1)V1.006 x 10 1.006 x 10 1.006x107°  0.503x10

or
1-erf 0.3121=(2.828)(erf 0.2207)(0.9525)
When the error functions are evaluated, using a table, we get

1-0.341 = (2.828)(0.245)(0.9525)

This gives 0.66 = 0.66. Therefore, zy(t) =4yt gives the location of

the reaction zone as a function of t. Thus we get the following table
of results that can be compared with Fig. 19.1-2:

t zp(t) =41t
0.625s 0.011 mm
25 0.022

10.0 0.044
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This is not in very good agreement with the graph in Fig. 19.1-2. The
reason for this may be that Eq. 415 on p. 336 of Absorption and
Extraction by Sherwood and Pigford (which corresponds to our Eq.

20.1-37), contains two errors: the r on the left side should be +/r and
the D, in the argument of the second error function should be Dj.
b. To get N ,, at 2.5 seconds, we use Eq. 20.1-38, as follows:

N, = Cao0 D ys
erf\[y/D 5 V 7t
_ (1 gmol/dm®)(10 cm/dm)’ 1.006x10° mm?/s
- erf\K4.9 %107 ) /(1,006 x 10-3) \/ (3.14159)(2.5 s)(1oo mmz/cmz)
1000

= 071-5-(1.13 x10?)=4.61 gmol/cm’s

20-6



20A.6 Rapid forced-convection mass transfer into a laminar boundary

layer.

Equation (20.2-51) gives, for the conditions of this problem,

R, = ((4)0 — woo)
“ " nae/(nae +nBo) —wao
(0.9 —0.1)
— 220 g,
1-0.9 0

Fig. 22.8-5 gives a dimensionless mass flux ¢ of 1.55 for mass transfer at R, = 8.0

and Sc = 2.0. With this result, Eq. 22.8-21 and Table 20.2-1 give

KA Kx20

1.55 = -
5= 110, 4,0) ~ 0.5972

so that
K =1.55 x0.5972/2 = 0.463

The definition of K in Eq. 20.2-48 then gives the total interfacial mass flux

v
nao(z) + npo(z) = povo(z) = Kpveo S0t
= 0.331/ pvoopt/x

In this problem npo(z) is stated to be zero, so the previous result reduces to

nao(z) = 0.33y/pveopt/
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20A.7 Slow forced-convection mass transfer into a laminar boundary
layer.

(a) Equation (20.2-51) gives, for the conditions of this problem, the binary
mass flux ratio

R - (wo — Weo)
v nao/(nao + nBo) — WAQ
_ (0.05—10.01)
1-0.05
Eq. (20.2-55) and Table 20.2-2, with Sc= 0.6, then give

R.,
1+ bR,
0.0421

= 0.4642 x (0.6“2/3)1 0768 x 0.0451 = 0.0266

Equation 20.2-48, with the specification npo(z) = 0, then gives the evaporative
mass flux

= 0.0421

K =aA™%3

v

nao(z) = povo(z) = Kpveo oz

= 0.0266+/ pvoopt/2x
= 0.01884/pvoopt/z

(b) Eq. 20.2-57 gives

n a0 — wao(nao + nBo) 2/3 v
- = 0.332
o (wa0 — WA )SC 0.33 e

which gives, since ngg = 0,

—2/3WA0 —WA : v
nao = 0.332Sc 2/3 ‘—“‘.‘_O'?‘ono
— WA Voo

.05 —0.01
= 0.332(0.6)‘2/39;]—5—_700—5——\//)1)0011/x

= 0.0196+/pvoopt/z

(c) At the value K = 0.0266 found in (a), Table 20.2-1 gives the interpolated
interfacial gradient II'(0,Sc, K) = 0.3797. Then Eq. 20.2-47, with ngo = 0, gives

the reference solution

n _ wp — weo II'(0, Sc, K) ; v
A0 T wo Sc pleo V00T
0.05 — 0.01 0.3797
= \/ 2
1005 0 Ve

= 0.0188+/ pvoopt/x

in excellent agreement with the truncated expansion used in part (a).

20-9



20B.1 Extension of the Arnold problem to account for interphase
transfer of both species

Equations 20.1-1, 2, and 3 are still valid if both species are
crossing the interface. In Eq.20.1-3 we now eliminate ¢ by using Eq.
(D) of Table 17.8-2 (evaluated at the interface) to get

* _ (NAZO +NBzO) axAI - _ (1+T) axA
’ N a0 =X 40 (NAZO + NBzO) 0z |z=0 1-x40(1+7) 0z |,

When N, =0 (or the ratio r = Ny, /N 4., goes to zero), this equation
simplifies to Eq. 20.1-4.
Equation 20.1-5 is then replaced by

Iy [ (A+r) Oxy|l |94 _ o *x,
ot \1-x,40(147) 0z |,y ) 0z 45 oz

We now introduce the dimensionless variables Il (defined in Eq.
20.1-23) and Z (defined just below Eq. 20.1-8); note that when
X .. =0, I is the same as —(X —1). Then the combinarion of variables
method gives (cf. 20.1-9) the ordinary differential equation

d*T1 dIl
+2(Z-
a7z Y2 0) 57 =0
along with
: 1(x 40 — X4 N147)dIT
1) + L a0 =2 )LD

This is Eq. 20.1-24.If r =0 and x,., =0, it reduces to Eq. 20.1-10. The
sign discrepancy comes about because (in the limit that x4, is zero, II

is the same as —(X —1). The solution of the ordinary differential

equation for IT proceeds exactly as that for X in the text, and the
final result is

_erf(Z- @) +erfp
- 1+erfe
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for the concentration profile. If r=0 and x,, =0, this reduces
exactly to Eq. 20.1-16. When this concentration profile is used to
- evaluate dIl/dZ at Z =0, then we get an expression for @(x,,,7):

(D(xAO,r) = +1(xAO _ono)(1+r)( 2 exp(_q)z)}

2 1-x,(1+7) |Vn l+erfo

This may be rearranged to give

(%40 = %40 )(1+7) =

1+erf 2
1= (147) (1+er (p)(pexp(+(p )

in agreement with Eq. 20.1-25.
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20B.2 Extension of the Arnold problem to nonisothermal diffusion
a. Equation (M) of Table 19.2-4 without the last two terms is:

0N N
= 2caH, +(V- ENaHa) = (V-kVT)
a=1 a=1

Replacing the partial molar quantities by quantities per mole (see
comment after Eq. 19.3-6), and assuming that k is constant then gives

oN N _ )
—a—taz::lcaHa +(V~C§1NaHa)=kV T

Differentiating the products in the first and second terms allows us
to rewrite this as

e Mo | 50a NVNH S (N -VE ) =kV2T
azlca ot 21 3t a};( ) az=1( « a)_

In the second term of this equation, we replace the derivative of the
concentration by using Eq. 19.1-10 (omitting the reaction-rate term),
and then we see that the second and third terms just exactly cancel.
Next, we replace the enthalpy by the heat capacity multiplied by a
temperature difference in accordance with Eq. 9.8-8, to get

N

N
Z,lc,, =Cra(T- T°)+a§}l(N -VC,(T-T°))=kV?T

For constant heat capacities this then becomes:

- - N
cC £+CP(2Na VT) kV>T



Next we make use of cép = pép, and then divide the entire equation
by pC,; this gives, with the help of Eq. (M) of Table 17.8-1

aT ((CEN) )ava or %]t:+(v*-VT)=aV2T
a=1

which is just the 3-dimensional version of Eq. 20B.2-1.
b. When Eq. 20B.2-1 is rewritten in terms of the dlmensmnless
temperature, we get

oMy .9y _ 9Ty

ot 9z 922

We now postulate that the dimensionless temperature is a function

only of the variable Z; =z/+/4at. This leads us to the following
ordinary differential equation:

. dZHT

dIl t D
+2(Z; T _ h _ o \F _ 0| Ban
iz2 (Zr - or) A where Pr =1, o ® o

It was shown in Eq. 21.1-24 that ¢ is a function of the terminal mole
fractions and the interfacial molar-fluxes, but not of time. Therefore,
since @7 is just ¢ multiplied by the square root of the Lewis number,
it may be treated as a constant in the above ordinary differential
equation. This equation may be solved by the same technique used in
§20.1 to give

1-erf(Z; - ;) _erf(Z; — @7 ) +erfo;
1+erfo, 1+erfor

HT =1—‘

c. To get the interfacial heat flux, we use Fourier's law:

o 9T _ _KT.-To) d
G ="k 0z _0— 1+ erfo; dzerf( (pT)‘Z:O
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_KT.-T,) 2
1+erfp; Jm
_K(T.-T,) 2 .
1+erfp; n exp( ¢T)
kT, -T..)
Vm(1+erfor )exp(+97 Wat

eXP[;(ZT ~¢r )2]

Next we calculate the ratio in Eq. 20B.2-4:

Ny +Ng cvl _ c@rqJoyt

pune - - —

P

{

1 e
e A ———

“F

1+erfo, )exp(+ o3 )«/a ]

_ k7;pé,, [VA(1+ extor )exp(+03)]
=r(1+erfor)o; exp(+(0%)

C,prlaft
Sl

In the first step, we used Eq. (M) of Table 17.8-1, and later we used
the relation cép = pép.



20B.3 Stoichiometric boundary condition for rapid irreversible
reaction

We begin by rewriting Eq. 20B.3-1 as

e (oa=02) (65 =) == eaom =) (52 =)

Then, using Fick's first law in the form of Eq. (B) of Table 17.8-2
(along with Eq. (I) of Table 17.8-1, we get

1 ox, 1 (vz_vR)=+%cJSBS%%—%cB(v:-—vR)

We now make use of the fact that the syst<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>