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CHAPTER 1: THERMODYNAMIC SYSTEMS: BASIC CONCEPTS 

1.1 Introduction 

The word “Thermodynamics” originates from its Greek roots (therme, heat; dynamis, force). As a 

subject it is concerned with quantification of inter-relation between energy and the change of 

state of any real world system. The extent of such change of state due to transfer of energy to or 

from the system is captured through the basic equations of thermodynamics which are derived 

starting from a set of fundamental observations known as “Laws of Thermodynamics”. The laws 

are essentially ‘postulates’ that govern the nature of interaction of real systems and energy. They 

are products of human experiential observations to which no exceptions have been found so far, 

and so are considered to be “laws”. The scope of application of the laws of thermodynamics 

ranges from the microscopic to the macroscopic order, and indeed to cosmological processes. 

Thus, all processes taking place in the universe, whether in non-living or living systems, are 

subject to the laws of thermodynamics.  

Historically speaking, thermodynamics, is an extension of Newtonian mechanics which 

considered mechanical forces (or energy) as the agent of change of state of a body (anything 

possessing mass), the state being defined by its position and momentum with respect to a frame 

of reference. With the discovery steam power which propelled the so-called ‘Industrial 

Revolution’ of the 18th

It may be evident from the foregoing introduction, that for the purpose of any thermodynamic 

analysis it is necessary to define a ‘system’. A system, in general, is any part of the universe 

which may be defined by a boundary which distinguishes it from the rest of the universe. Such a 

thermodynamic system is usually referred to as control volume as it would possess a volume and 

 century, it became evident that not only the direct application of 

mechanical energy can change the state of a system, but that fluids themselves can act as 

reservoir of energy, which can be harnessed to effect changes in the real world to human 

advantage. It was this observation that laid the foundations of thermodynamics, which now 

constitutes a generalized way of understanding and quantifying all changes that occur during 

processes taking place in the universe as a result of application of energy in any form.  

 

1.2 Thermodynamic System: Select Definitions 



would also contain a definite quantity of matter. The system boundary may be real or imaginary, 

and may change in shape as well as in size over time, i.e., increase or decrease.  

A system can either be closed or open. A closed system does not allow any transfer of 

mass (material) across its boundary, while an open system is one which does. In either case 

energy transfer can occur across the system boundary in any of its various forms; for example, 

heat, work, electrical / magnetic energy, etc. However, for most real world systems of interest to 

chemical engineers the primary forms of energy that may transfer across boundaries are heat and 

work. In contrast to closed or open systems, a system which is enclosed by a boundary that 

allows neither mass nor energy transfer is an isolated system. 

All matter external to the system constitutes the surroundings. The combination of the 

system and surroundings is called the universe. For all practical purposes, in any thermodynamic 

analysis of a system it is necessary to include only the immediate surroundings in which the 

effects are felt.  

 A very common and simple example of a thermodynamic system is a gas contained in a 

piston-and-cylinder arrangement derived from the idea of steam engines, which may typically  

 

Fig. 1.1 Example of simple thermodynamic system 

exchange heat or work with its surroundings. The dotted rectangle represents the ‘control 

volume’, which essentially encloses the mass of gas in the system, and walls (including that of 

the piston) form the boundary of the system. If the internal gas pressure and the external pressure 

(acting on the moveable piston) is the same, no net force operates on the system. If, however, 

there is a force imbalance, the piston would move until the internal and external pressures 



equalize. In the process, some net work would be either delivered to or by the system, depending 

on whether the initial pressure of the gas is lower or higher than the externally applied pressure. 

In addition, if there is a temperature differential between the system and the surroundings the 

former may gain or lose energy through heat transfer across its boundary.  

This brings us to a pertinent question: how does one characterize the changes that occur in 

the system during any thermodynamic process? Intuitively speaking, this may be most readily 

done if one could measure the change in terms of some properties of the system. A 

thermodynamic system is, thus, characterized by its properties, which essentially are descriptors 

of the state of the system. Change of state of a system is synonymous with change in the 

magnitude of its characteristic properties. The aim of the laws of thermodynamics is to establish a 

quantitative relationship between the energy applied during a process and the resulting change in 

the properties, and hence in the state of the system.   

Thermodynamic properties are typically classified as extensive and intensive. A property 

which depends on the size (i.e., mass) of a system is an extensive property. The total volume of a 

system is an example of an extensive property. On the other hand, the properties which are 

independent of the size of a system are called intensive properties. Examples of intensive 

properties are pressure and temperature. The ratio of an extensive property to the mass or the 

property per unit mass (or mole) is called specific property. The ratio of an extensive property to 

the number of moles of the substance in the system, or the property per mole of the substance, is 

called the molar property.     

Specific volume (volume per mass or mole) /tV V M=       ..(1.1) 

Molar Volume (volume per mole) /tV V N=  

where, 
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1.3 Types of Energies associated with Thermodynamic Processes: 

We know from the fundamentals of Mechanics, that the energy possessed by a body by virtue of 

its position or configuration is termed potential energy (PE). The potential energy of a body of 

mass m which is at an elevation z from the earth’s surface (or any particular datum) is given by:  

PE mgz=            ..(1.2) 

Where, g is the acceleration due to gravity (= 9.81 m/s2

21
2

KE mu=

). 

The energy possessed by a body by virtue of its motion is called the kinetic energy (KE). For a 

body of mass m moving with a velocity u, the kinetic energy of the body is given by:  

           ..(1.3) 

It follows that, like any mechanical body, a thermodynamic system containing a fluid, in 

principle may possess both PE and KE. It may be noted that both PE and KE are expressed in 

terms of macroscopic, directly measurable quantities; they, therefore, constitute macroscopic, 

mechanical forms of energy that a thermodynamic system may possess. As one may recall from 

the basic tenets of mechanics, PE and KE are inter-convertible in form.   

It may also be noted that PE and KE are forms of energy possessed by a body as a whole 

by virtue of its macroscopic mass. However, matter is composed of atoms /molecules which have 

the capacity to translate, rotate and vibrate. Accordingly, one ascribes three forms intra-molecular 

energies: translational, rotational and vibrational.  Further, energy is also associated with the 

motion of the electrons, spin of the electrons, intra-atomic (nucleus-electron, nucleus-nucleus) 

interactions, etc. Lastly, molecules are also subject to inter-molecular interactions which are 

electromagnetic in nature, especially at short intermolecular separation distances. All these forms 

of energy are microscopic in form and they cannot be readily estimated in terms of 

macroscopically measurable properties of matter. It needs to be emphasized that the microscopic 

form of energy is distinct from PE and KE of a body or a system, and are generally independent 

of the position or velocity of the body. Thus the energy possessed by matter due to the 



microscopic modes of motion is referred to as the internal energy of the matter. The microscopic 

variety of energy forms the principal consideration in case of transformations that occur in a 

thermodynamic system. Indeed, as mentioned earlier, it is the realization that matter or fluids 

possessed useful form of microscopic energy (independent of macroscopic KE or PE) that formed 

the basis of the 18th century Industrial Revolution.  

As we will see later, the majority of practical thermodynamic systems of interest are the 

ones that do not undergo change of state that entails significant change in its macroscopic 

potential and kinetic energies. Thus, it may be intuitively obvious that in a very general sense, 

when a thermodynamic system undergoes change of state, the attendant change in the internal 

energy is responsible for the energy leaving or entering the system. Such exchange of energy 

between a thermodynamic system and its surroundings may occur across the system boundary as 

either heat or work or both.  

Thermodynamic Work: 

Work can be of various forms: electrical, magnetic, gravitational, mechanical, etc. In general 

work refers to a form of energy transfer which results due to changes in the 

external macroscopic physical constraints on a thermodynamic system. For example, electrical 

work results when a charge moves against an externally applied electrical field. As we will see 

later, it is mechanical work that is most commonly encountered form in real thermodynamic 

systems, for example a typical chemical plant. In its simplest form, such work results from the 

energy applied to expand the volume of a system against an external pressure, or by driving a 

piston-head out of a cylinder against an external force. In both the last examples, work transfer 

takes place due to the application of a differential (or finite) force applied on the system 

boundary; the boundary either contracts or expands due to the application of such a force. In 

effect this results in the applied force acting over a distance, which results in mechanical energy 

transfer.  

Consider the system in fig.1.2, where a force F acts on the piston and is given by pressure 

x piston area. Work W is performed whenever this force translates through a distance.  



 

Fig. 1.2 Illustration of Thermodynamic Work 

Thus for a differential displacement ‘dx’ of the piston the quantity of work is given by the 

equation: 

dW Fdx=            ..(1.4) 

Here F is the force acting along the line of the displacement x. If the movement takes place over a 

finite distance, the resulting work is obtained by integrating the above equation. By convention, 

work is regarded as positive when the displacement is in the same direction as the applied force 

and negative when they are in opposite directions. Thus, for the above example, the equation 1.4 

may be rewritten as: 

( / )tdW PAd V A= −           ..(1.5) 

If the piston area ‘A’ is constant, then: 

tdW PdV= −            ..(1.6) 

As may be evident from eqn. 1.6, when work is done on a system (say through compression) the 

volume decreases and hence the work term is positive. The reverse is true when the system 

performs work on the surroundings (through expansion of its boundary).       

 

 

 



Heat 

We invoke here the common observation that when a hot and a cold object are contacted, the hot 

one becomes cooler while the cold one becomes warmer. It is logical to argue that this need be 

due to transfer of ‘something’ between the two objects. The transferred entity is called heat. 

Thus, heat is that form of energy that is exchanged between system and its surrounding owing to 

a temperature differential between the two. More generally, heat is a form of energy that is 

transferred due to temperature gradient across space. Thus heat always flows down the gradient 

of temperature; i.e., from a higher to a lower temperature regions in space. In absence of such 

temperature differential there is no flow of heat energy between two points. Heat flow is regarded 

to be positive for a thermodynamic system, if it enters the latter and negative if it leaves.  

Like work, heat is a form of energy that exists only in transit between a system and its 

surrounding. Neither work nor heat may be regarded as being possessed by a thermodynamic 

system. In a fundamental sense, the ultimate repositories of energy in matter are the atoms and 

molecules that comprise it. So after transit both work and heat can only transform into the kinetic 

and potential energy of the constituent atoms and molecules.  

 

1.4 Thermodynamic Equilibrium 

In general change of state of a thermodynamic system results from existence of gradients of 

various types within or across its boundary. Thus a gradient of pressure results in momentum or 

convective transport of mass. Temperature gradients result in heat transfer, while a gradient of 

concentration (more exactly, of chemical potential, as we shall see later) promotes diffusive mass 

transfer. Thus, as long as internal or cross-boundary gradients of any form as above exist with 

respect to a thermodynamic system it will undergo change of state in time. The result of all such 

changes is to annul the gradient that in the first place causes the changes. This process will 

continue till all types of gradients are nullified. In the ultimate limit one may then conceive of a 

state where all gradients (external or internal) are non-existent and the system exhibits no further 

changes. Under such a limiting condition, the system is said to be in a state of thermodynamic 

equilibrium. For a system to be thermodynamic equilibrium, it thus needs to also satisfy the 

criteria for mechanical, thermal and chemical equilibrium.  

 



 

Types of Thermodynamic Equilibrium 

A thermodynamic system may exist in various forms of equilibrium: stable, unstable and 

metastable. These diverse types of equilibrium states may be understood through analogy with a 

simple mechanical system as depicted in fig. 1.3 – a spherical body in a variety of gradients on a 

surface.   

 

Fig. 1.3 Types of Mechanical Equilibrium 

Consider the body to be initially in state ‘I’. If disturbed by a mechanical force of a very small 

magnitude the body will return to its initial state. However, if the disturbance is of a large 

magnitude, the body is unlikely to return to its initial state. In this type of situation the body is 

said to be in unstable equilibrium. Consider next the state ‘II’; even a very small disturbance will 

move the body to either positions ‘I’ or ‘III’. This type of original equilibrium state is termed 

metastable. Lastly, if the body is initially in state ‘III’, it will tend to return to this state even 

under the influence of relatively larger disturbances. The body is then said to be in a stable 

equilibrium state. If ‘E’ is the potential energy of the body and ‘x’ is the effective displacement 

provided to the body in the vertical direction, the three equilibrium states may be described by the 

following equations: 

Stable Equilibrium: 
2

20; 0E E
x x

∂ ∂
= >
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       ..(1.7) 

Unstable Equilibrium: 
2
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       ..(1.8) 



Metastable Equilibrium: 
2

20; 0E E
x x

∂ ∂
= =
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       ..(1.9) 

The above arguments may well be extended to understand equilibrium states of thermodynamic 

systems, which are relatively more complex in configuration. The disturbances in such cases 

could be mechanical, thermal or chemical in nature. As we shall see later (section 6.3), for 

thermodynamic systems, the equivalent of (mechanical) potential energy is Gibbs free energy. 

The considerations of change of Gibbs free energy are required to understand various complex 

behaviour that a thermodynamic system containing multiple phases and components (either 

reactive or non-reactive) may display under the influence of changes brought about by exchange 

of energy across its boundary.   

 

1.5 The Phase Rule 

Originally formulated by the American scientist Josiah Willard Gibbs in the 1870’s, the phase 

rule determines the number of independent variables that must be specified to establish the 

intensive state of any system at equilibrium. The derivation of the general phase rule is shown in 

chapter 6, but here we state it without proof: 

2F N rπ= + − −           ..(1.10) 

Here, F = degrees of freedom of the thermodynamic system in question; N = Number of 

components; π = number of co-existing phases, and r = number of independent reactions that may 

occur between the system components. For a non-reactive system, the phase rule simplifies to:

2F N π= + −           ..(1.11) 

In the most general sense a thermodynamic system may be multiphase and multi-

component in nature. A phase is a form of matter that is homogeneous in chemical composition 

and physical state. Typical phases are solids, liquids and gases. For a multiphase system, 

interfaces typically demarcate the various phases, properties changing abruptly across such 

interfaces. Various phases can coexist, but they must be in equilibrium for the phase rule to 

apply. An example of a three-phase system at equilibrium is water at its triple point (~ 00C, and 

0.0061 bar), with ice, water and steam co-existing. A system involving one pure substance is an 

example of a single-component system. On the other hand mixtures of water and acetone have 

two chemically independent components.  



The intensive state of a system at equilibrium is established when its temperature, 

pressure, and the compositions of all phases are fixed. These are therefore, regarded as phase-rule 

variables; but they are not all independent. The degrees of freedom derivable from the phase rule 

gives the number of variables which must be specified to fix all other remaining phase-rule 

variables. Thus, F means the number of intensive properties (such as temperature or pressure), 

which are independent of other intensive variables. For example, for a pure component gaseous 

system, phase rule yields two degrees of freedom. This implies that if one specifies temperature 

and pressure, all other intensive properties are then uniquely determined these two variables. 

Similarly for a biphasic system of a pure component – say water and steam – there is only one 

degree of freedom, i.e., either temperature or pressure may be specified to fix all other intensive 

properties of the system. At the triple point the degrees of freedom is zero, i.e., any change from 

such a state causes at least one of the phases to disappear. 

 

1.6 Zeroth Law of Thermodynamics and Absolute Temperature 

Thermometers with liquid working fluids are usually used for measurement of temperature. 

When such a device is brought in contact with a body whose temperature is to be measured, the 

liquid column inside the thermometer expands due to heat conducted from the body. The 

expanded length can be said to represent the degree of hotness in a somewhat quantitative 

manner.   

The Zeroth Law of Thermodynamics states that if two bodies are in thermal equilibrium 

with a third body, then the two given bodies will be in thermal equilibrium with each other. The 

zeroth law of thermodynamics is used for measurement of temperature. In the Celsius 

temperature scale, two fixed points – ice point and steam point – are used to devise the scale. 

Thus, the freezing point of water (at standard atmospheric pressure) is assigned a value of zero, 

while the boiling point of pure water (at standard atmospheric pressure) denoted as 100.  

However for introducing detail, the distance between the two end points of the liquid column 

marks is arbitrarily divided into 100 equal spaces called degrees. This exercise can be extended 

both below zero and above 100 to expand the range of the thermometer.  

The entire exercise can be carried out with any other substance as the thermometric fluid.  

However, for any specific measured temperature the extent of expansion of the liquid column 



will vary with the thermometric fluid as each fluid would expand to different extent under the 

influence of temperature. To overcome this problem, the ideal gas (see next section) has been 

arbitrarily chosen as the thermometric fluid. Accordingly, the temperature scale of the SI system 

is then described by the Kelvin unit (T0K). Its relation to the Celsius (t0

0 0( ) 273.15 ( )T K t C= +

C) scale is given by:  

 

Thus the lower limit of temperature, called absolute zero on the Kelvin scale, occurs at                 

–273.150

PV RT=

C. 

 

1.7 The Ideal Gas 

In the foregoing discussions we have pointed out that a thermodynamic system typically encloses 

a fluid (pure gas, liquid or solid or a mixture) within its boundary. The simplest of the intensive 

variables that can be used to define its state are temperature, pressure and molar volume (or 

density), and composition (in case of mixtures). Let us consider for example a pure gas in a 

vessel. As mentioned above, by phase rule the system has two degrees of freedom. It is an 

experimentally observed phenomenon that in an equilibrium state the intensive variables such as 

pressure, temperature and volume obey a definitive inter-relationship, which in its simplest form 

is expressed mathematically by the Boyle’s and Charles’s laws. These laws are compositely 

expressed in the form of the following equation that is said to represent a behaviour termed as 

Ideal Gas Law:  

          ..(1.12) 

Where, P = system pressure (say, Pa = N/m2), T = system temperature (in 0K), V = gas molar 

volume (mol/m3 0( 8.314 / ).J mol K=) and, R = universal gas constant  The above relation is said 

to represent an equation of state, and may alternately be written as: 
tPV nRT=           ..(1.13) 

Where, Vt 

The equations (1.10) and (1.11) are also termed Equations of State (EOS) as they relate the 

variables that represent the thermodynamic state of a system in the simplest possible manner. It is 

= total system volume; n = total moles of gas in the system. Units of typical 

thermodynamic variables and that of the gas constant are provided in Appendix I.  



obvious that the EOS indicates that if one fixes temperature and pressure the molar volume is 

automatically fixed as well, i.e., the latter is not an independent property in such a case.  

The ideal gas law is a limiting law in the sense that it is valid primarily for gaseous 

systems at low pressure, strictly speaking at pressure far below the atmospheric. However, for 

practical purposes it is observed to remain valid at atmospheric pressures as well. As we shall see 

later, the ideal gas law serves as a very useful approximation as well as a datum for estimation of 

both the volumetric (chapter 2) as well as all other real fluid thermodynamic properties of 

practical interest (chapter 5, for example). 

 

1.8 State and Path Dependent Thermodynamic Variables  

Consider a gas at a certain temperature and a pressure within a piston-cylinder assembly (for 

example, fig. 1.2), which for arguments’ sake we may assume to be isolated. If the piston 

position is held fixed at this point the gas state is said to be characterized by the temperature and 

the pressure and its corresponding volume. In its simplest form the relationship between these 

intensive variables may be described by (say) eqn. 1.12. Consider next that the gas is compressed 

by application of an extra force on the piston so that it moves inwards into the cylinder. This 

motion will continue till it reaches a point when the internal gas pressure equals the externally 

applied pressure on the piston. If there is no further increase in the force applied to the piston, the 

gas will also attain a new equilibrium state wherein the pressure and temperature would attain a 

new set of values. If, on the other hand the extra applied pressure is removed and the gas reverts 

to the earlier state the original temperature and pressure (and, of course volume) is restored. 

Extending this argument, in general, if the gas is heated or cooled, compressed or expanded, and 

then returned to its initial temperature and pressure, its intensive properties are restored to their 

initial values. It is evident, therefore, that such properties do not depend on the past history of the 

fluid or on the path by which it reaches a given state. They depend only on present state, 

irrespective of how they are attained. Such quantities are thus defined as state variables. 

Mathematically, this idea may be expressed as follows: 
2 2 2

1 1 1
2 1 2 1 2 1; ;

T P V

T P V
dT T T T dP P P P dV V V V= − = ∆ = − = ∆ = − = ∆∫ ∫ ∫    ..(1.14) 

The changes in the above intensive properties depend only on the initial and final states of the 

system. They constitute point functions and their differentials are exact. 



Let us next consider the case of thermodynamic work as defined by eqn. 1.6. It may be readily 

evident that if one can depict the exact variation of pressure and volume during a change of state 

of a system on a two-dimensional P-V graph, the area under the curve between the initial and 

final volumes equal the work associated with process. This is illustrated in fig. 1.4. 

 

 

Fig. 1.4: Depiction of thermodynamic work on P-V plot 

As shown in the above figure the work associated with a thermodynamic process clearly in 

dependent on the path followed in terms of P and V. It follows that if one were to go from state 

‘1’ to ‘2’ by path X and then return to ‘1’ by path Y the work in the two processes would differ 

and so one would not be giving and taking work out of the system in equal measure. An entity 

such as P-V work is, therefore, described as a path variable, and therefore is not directly 

dependent on the state of the system. This is obviously distinctive from the case of state variables 

such as P and V (and T). Thus, for quantifying work, one cannot write an equation of the same 

type as (1.12). The more appropriate relation for such variables may be written as:  
2

121
W Wδ =∫           ..(1.15) 

It may be pointed out that the notation δ is used to depict differential quantum of work in order to 

distinguish it from the differential quantity of a state variable as in eqn. 1.14. We demonstrate in 

chapter 3 that, like P-V work, heat transferred between a system and the surrounding is also a 

path variable and so one may also write: 

 
2

121
Q Qδ =∫           ..(1.16) 



Heat and work are therefore quantities, and not properties; they account for the energy changes 

that occur in the system and surroundings and appear only when changes occur in a system. 

Although time is not a thermodynamic coordinate, the passage of time is inevitable whenever 

heat is transferred or work is accomplished.  

 

1.9 Reversible and Irreversible Thermodynamic Processes 

We have seen above that in absence of any gradients (or motive forces) a thermodynamic system 

continues to remain in a state of equilibrium. Obviously, if a disturbance (i.e., mechanical, 

thermal or chemical potential gradient) is impressed upon such a system it will transit from its 

initial state of equilibrium. However, as it moves away from its initial state the originally applied 

gradients will diminish progressively in time, and ultimately when they are reduced to 

infinitesimal levels the system will attain a new equilibrium state. A question arises here as to the 

nature of the process of change: if the initially impressed disturbances are reversed in direction 

(not magnitude) can the system return to its first equilibrium state back through the same 

intermediate states as it went through during the first phase of change? If that happens we depict 

the process as reversible, if not, then the process is termed irreversible.  

It is necessary to understand the concept of reversibility of thermodynamic process more deeply 

as it is an idealized form of process of change and without that consideration it is not possible to 

represent or understand real thermodynamic processes, which are generally irreversible in nature.  

What makes a thermodynamic process reversible? To answer the question let us again 

take the example of the simple gas-in-piston-and-cylinder system as shown in figure 1.5. 

 



Fig. 1.5 Illustration of Reversibility of Thermodynamic Process 

The system initially contains a pure gas whose pressure equals that exerted externally (due to 

piston weight), and its temperature is the same as that of the environment. Thus it is at 

equilibrium (say state ‘A’) as there are no mechanical, thermal or chemical concentration 

gradients in the system. Now a ball of a known weight is transferred on to the piston, whereupon 

the external pressure exceeds the gas pressure and the piston moves down to attain a new lower 

position at which point the gas has been compressed and its pressure once again equals that 

applied externally. At the same time if any differentials in temperature (within or across the 

system boundary) and internal concentration distribution of the gas molecules result due to the 

applied mechanical imbalance, heat and mass transfer will take place simultaneously until these 

gradients are also annulled and the system eventually comes to rest at a new equilibrium point 

(say, ‘B’). We say that the system has undergone a process due to which its state has changed 

from A to B. Note that this process can be continued as long as desires by sequentially 

transferring more and more balls individually onto the piston and impelling the system to change 

in steps till say the end point state ‘X’. The question that one may pose: is the process A-X 

reversible?  That is, if one reversed all the initial steps of sequentially moving each ball off the 

piston so as to reach from state ‘X’ back to ‘A’ would all the interim states of the system as 

defined by temperature, pressure and volume at any point be identical to those obtained during 

the process of going from A to X? 

To answer this question we need to understand the process occurring in the system a little 

more deeply. Consider first that a mass mo is suddenly moved onto the piston from a shelf (at the 

same level). The piston assembly accelerates downwards, reaching its maximum velocity at the 

point where the downward force on the piston just balanced by the pressure exerted by the gas in 

the cylinder. However, the initial momentum of the plunging piston would carry it to a somewhat 

lower level, at which point it reverses direction. If the piston were held in this position of 

maximum depression brought about by transfer of the mass m0, the decrease in its potential-

energy would very nearly equal the work done on the gas during the downward movement. 

However, if unrestrained, the piston assembly would oscillate, with progressively decreasing 

amplitude, and would eventually come to rest at a new equilibrium position at a level below its 

initial position. 



The oscillation of the piston assembly cease because it is opposed by the viscosity of the 

gas, leading to a gradual conversion of the work initially done by the piston into heat, which in 

turn is converted to internal energy of the gas.  

All processes carried out in finite time with real substances are accompanied in some 

degree by dissipative effects of one kind or another. However, one may conceive of processes 

that are free of dissipative effects. For the compression process depicted in Fig. 1.4, such effects 

issue from sudden addition of a finite mass to the piston. The resulting imbalance of forces acting 

on the piston causes its acceleration, and leads to its subsequent oscillation. The sudden addition 

of smaller mass increments may reduce but does not eliminate this dissipative effect. Even the 

addition of an infinitesimal mass leads to piston oscillations of infinitesimal amplitude and a 

consequent dissipative effect. However, one may conceive of an ideal process in which small 

mass increments are added one after another at a rate such that the piston movement downwards 

is continuous, with minute oscillation only at the end of the entire process. 

This idealized case derives if one imagines of the masses added to the piston as being 

infinitesimally small. In such a situation the piston moves down at a uniform but infinitesimally 

slow rate. Since the disturbance each time is infinitesimal, the system is always infinitesimally 

displaced from the equilibrium state both internally as well with respect to external surroundings. 

Such a process which occurs very slowly and with infinitesimal driving forces is called a quasi-

static process. To freeze ideas let us assume that the gas in the system follows the ideal gas law. 

Thus the pressure, temperature and volume at any point during the process are related by eqn. 

1.12 (or 1.13). Now imagine that the process of gradual compression is reversed by removing 

each infinitesimal mass from the piston just as they were added during the forward process. Since 

during the expansion process also the system will always be differentially removed from 

equilibrium state at each point, the pressure, temperature and volume will also be governed by the 

relation 1.12. Since the latter is an equilibrium relationship and hence a unique one, each interim 

state of the system would exactly converge during both forward and backward progress of system 

states.  Under such a condition the process of compression is said to be thermodynamically 

reversible.  Both the system and its surroundings are ultimately restored to their initial conditions. 

In summary, therefore, if both the system and its surroundings can be restored to their respective 



initial states by reversing the direction of the process, then the process is said to be reversible. If a 

process does not fulfill this criterion it is called an irreversible process. 

It need be emphasized that a reversible process need be a quasi-static process, and that the 

origin of irreversibility lie in the existence of dissipative forces in real systems, such as viscosity, 

mechanical friction. These forces degrade useful work irreversibly into heat which is not re-

convertible by simply reversing the direction of the process, since during a reverse process a 

fraction of useful work will again be lost in the form heat in overcoming the dissipative forces. 

Thus, in the above example system if there were no viscous or frictional forces opposing the 

motion of the piston the processes of compression and expansion would be reversible, provided 

of course all changes occur under infinitesimal gradients of force. The argument in the last 

sentence may be extended to state that if changes are brought about by finite gradients (in this 

case finite difference in force across the piston, associated with addition of finite mass to the 

piston), the process would necessarily be irreversible. This is because finite gradients will force 

the system to traverse through non-equlibrium interim states, during which the pressure, 

temperature and volume will not be constrained by a unique relationship such as eqn. 1.12, which 

holds for equilibrium states. Indeed, it would not be possible to define the non-equilibrium states 

in terms of a single temperature or pressure, as there would be internal gradients of these 

variables during processes induced by finite force imbalances across the system boundary. These 

very same considerations would apply for the reverse process of expansion as well, if it occurs 

under finite mechanical gradients. So in general during such processes it would not be possible to 

ascribe unique intensive properties to interim states during a change, and hence the forward and 

reverse “paths” would not coincide as they would if the process occurs under quasi-static 

conditions.          

An additional point that obtains from the above considerations is that only under 

reversible conditions can one calculate the thermodynamic work by integrating eqn. 1.6, since at 

all points during the process the variables P, V and T are always uniquely related by the eqn. 

1.12. Clearly if the process were occurring under irreversible conditions no such relation would 

hold and hence the calculation of the thermodynamic work would not be possible through a 

simple integration of eqn. 1.6.  



The foregoing discussion has used the example of a single-phase closed-system, where 

compression and expansion processes are induced by gradients of mechanical force across the 

system boundary.  There are, however, many processes which are occur due to potential gradients 

other than mechanical forces. For example, heat flow is induced by temperature differences, 

electromotive force gradients lead to flow of electricity, and chemical reactions take place as 

there is a difference between the chemical potential of reactants and products. In general, it may 

be shown that all such processes brought about by potential gradients of various kinds would tend 

to reversibility if the gradients are themselves infinitesimal. For example, heat transfer across the 

boundary of a thermodynamic system would be reversible if the difference across it is of a 

differential amount ‘dT’, and so on.  

1.10 Significance of Chemical Engineering Thermodynamics: Process Plant Schema 

Before we conclude the present chapter it would be appropriate to obtain a brief preview of the 

scope and utility of the principles of thermodynamics insofar as application to real world 

processes is concerned. Although based on relatively abstract principles, the laws of 

thermodynamics provide the fundamental constraints under which all real world process take 

place. The ultimate application of the knowledge of the core principles of chemical engineering is 

in the design of a chemical process plant. Engineering thermodynamics constitutes one of the 

principal elements of such knowledge. Typically such a plant converts a set of raw materials to a 

desired product through a variety of steps that are schematically represented by Fig. 1.6.       

 
Fig. 1.6 Chemical Process Plant Schema 



 

The raw materials most often are mixtures which need to be purified to obtain the right 

composition required for conversion to products A wide variety of separation processes are 

available for carrying out such purification; examples include distillation, liquid-liquid extraction, 

precipitation from solutions, crystallization, etc. Practically all such separation processes involve 

generation of two or more phases, in one of which the desired raw material components are 

preferentially concentrated, which is then used recover the substances in a relatively purer form. 

For a typical large scale chemical plant the separation process equipments may constitute more 

than half of the total capital investment.   

 The chemical reactor forms the “heart” of a chemical plant. It is here that once the feed 

materials are available in the right proportions (and compositions) they are reacted to yield the 

product. Obtaining the desired product requires an optimal choice of conditions under which the 

reactor may be operated. However, the product formed is very rarely obtained in a pure form. 

This is because typically the feed is never fully converted to product molecules and therefore the 

stream exiting the reactor is not a pure substance. In addition it is usually a common phenomenon 

that the intended chemical reaction is accompanied by often more than a single side reaction. The 

latter leads to the formation of side products, which results in “contamination” of the final 

product. Therefore, it is usually required to subject the reactor exit stream to another round of 

purification to obtain a product with the desired specifications of the product 

With regards to all such processes of purification and reaction, the laws of 

thermodynamics play a very fundamental role: they allow the calculation of the principal entities 

that form the basis of design and operation of process plants: 

1. The maximum degree of purification that is possible under a given set of processing 

conditions 

2. The maximum degree of conversion possible under the reaction conditions 

3. The optimal operating conditions for separation and reaction processes 

4. The total energy required to achieve the intended degree of separation and reaction, and 

therefore the plant energy load 

The calculation of the above parameters tends to constitute 50-70% of the computational load 

encountered during the stage of basic process plant design. Thus, the principles of chemical 



engineering thermodynamics is one of the mainstays of knowledge needed to realize the goal 

of plant design and operation. 



Chapter 2: Volumetric Properties of Real Fluids  

In the previous chapter we have introduced the concept of ideal gas and the corresponding 

equation of state (EOS). However, such a state obtains for a gas only at pressures around and 

below atmospheric (and at high temperatures), and, therefore, constitutes a limiting case. As we 

know, substances exist also in other forms: solids, liquids, etc.  Also more often than not, in 

practice (as in process plants) gases (as well as other phases) may exist at substantially higher 

pressures (up to several thousands of atmospheres). This necessitates the development of other 

EOSs not only for gases, but also for relating P-V-T behavior of liquids and solids. Such 

mathematical relations, if expressed in suitably generalized forms, provide the added advantage 

of being able to quantify P-V-T behaviour for a large number of individual substances.   

 Such volumetric properties form a group of macroscopic thermodynamic state variables 

which are most easily measured. As we will see in later chapters, all other intensive 

thermodynamic properties can be represented in terms of mathematical expressions which denote 

functions of volumetric and a number of other directly measurable state variables. In the last 

chapter we have already introduced the ideas of thermodynamic work which clearly can be 

calculated if the relation between P and V is known. In chapters 3-5 we will demonstrate that heat 

transfer occurring under reversible conditions, as well as a host of other intensive, state variables 

(internal energy, enthalpy, entropy, Gibbs free energy, etc) can also be calculated using 

volumetric properties of a substance in question. Since work and heat are two principal modes of 

energy transfer in most thermodynamic systems of practical interest, it follows that the 

knowledge of volumetric properties is fundamental to all such calculations. Finally, as part of 

process plant design one needs volumetric properties for the purpose of sizing of process 

pipelines and all major process equipments such as reactors, heat exchangers, distillation 

columns, and so on. These considerations underscore the precise significance of P-V-T behavior 

of substances in all plant design activity.  

In the following sections we first describe the general nature of the P-V-T behavior of 

pure substances: in gaseous, liquid and solid forms. The various EOSs available to quantify such 

real fluid behaviour are then considered. Lastly, generalized correlations to relate gas and liquid 

behaviour are presented. Such analytical EOSs and generalized correlations allow prediction of 



P-V-T values of real fluids and are, therefore, of great value as they can obviate the need for 

detailed experimental data. 

 

2.1 General P-V-T Behaviour of Real Fluids  

P-V Diagrams 

Fig. 2.1 represents the general pure component, real fluid phase behavior that typically obtains 

from experimental measurements. Consider first the fig. 2.1a. Let us take a substance at some 

temperature T1 and certain pressure P1 such that it is in a gaseous state A1. Keeping the 

temperature fixed at T1

 
(a) 

 if one pressurizes the gas (say in a piston-cylinder assembly as in fig. 1.2) 

its molar volume will decrease along the curve A-B. At point B, any further pressurization leads 

to commencement of condensation of the gas into a liquid from. Point ‘B’ is thus said to 

correspond to a state where the substance is in a saturated vapour state. Once condensation 

begins any attempt at reducing the volume by further  

. 

(b) 

Fig. 2.1 General P-V plots for real fluids 



pressurization more of the saturated vapour present at B progressively liquefies until a point X is 

reached where all the original gas (or saturated vapour) is fully converted to liquid state. Point X 

is described as a saturated liquid state. It follows that at all point between B and X the substance 

exists partitioned into two phases, i.e., part vapour and part liquid. As one transits from B to X, 

pressure and temperature both remain constant; the only change that occurs is that the fraction of 

the original gas at point A (or B) that is liquefied increases, until it is 1.0 at point X. The line B-X 

connecting the saturated vapour and liquid phases is called the tie-line. For a given T and P, the 

relative amounts of the phases determine the effective molar (or specific) volume at any point 

within the two-phase region. Any further attempt to pressurize the saturated liquid results in 

relatively very little compression, and this is captured by the steep slope of the curve X-Y, which 

signifies that the liquid state is far less compressible, compared to the gas state (i.e., points over 

A-B). Essentially points between X-Y (including Y itself) represent compressed liquid states.  

 An important point to re-emphasize is that on the two-phase line B-X, the pressure of the 

system remains constant at a fixed value. This pressure is termed the saturation pressure ( satP ) 

corresponding to the temperature T1. We recall your attention to the phase rule described in 

section 1.5, and eqn. 1.11.  By this eqn. the degrees of freedom is one, which is borne by the fact 

that if one fixes temperature the system pressure also becomes fixed. However, in both regions A-

B 

 In general, the same behviour as detailed above may repeat at another temperature 

T (>T

and X-Y the degrees of freedom is two, as pressure becomes fixed only if one defines both 

temperature and volume. 

1). One can on the one hand connect all the saturated vapour phase points at different 

temperatures and on the other connect all the points representing saturated liquid phase, the locus 

of such points give rise to the dome-shaped portion X-C-B of the P-V diagram which essentially 

signifies that at any pressure and volume combination within this dome, the state of the system is 

biphasic (part gas and part liquid). The region right of the dome B-C represents saturated gas 

phase while to the left (X-C) the state is saturated liquid. If one continues to conduct the 

pressurization at increasingly higher temperatures, one eventually arrives at a temperature for 

which the tie-line is reduced to a point and the P-V curve turns into an inflexion point to the two-

phase dome. The temperature which such a behavior obtains is called the critical temperature 

(TC), while the pressure at corresponding point of inflexion is termed the critical pressure (PC).  



The molar volume at the point is termed the critical volume, and the state itself the critical point. 

A fluid which is at a temperature and pressure above the critical point values is said to be in a 

supercritical state; this is indicated by the hatched region in fig. 2b. As has been shown for the P-

V curves for a T > TC

 
Fig. 2.2 Pressure-Temperature Diagram of a Pure Substance 

, there exists no liquid phase as the curve passes beyond the two-phase 

dome region. Thus, the critical temperature is a temperature above which a gas cannot be 

liquefied by compressing, as can be below it. Compilation of values of critical properties and ω 

for a large number of substances are available readily from several sources (see: 

http://srdata.nist.gov/gateway/gateway). Values of these parameters for some select substances 

are provided in Appendix II.     

 In fig. 2.1b the phase behavior depicted in fig. 2.1a is extended and more generalized to 

include solid phase as well. Accordingly, not only vapour-liquid region, other two phase regions, 

i.e., solid-vapour and solid-liquid regions are also displayed. The same arguments as made above 

for explaining the nature of co-existence of vapour and liquid phases apply to the other two 

biphasic regions.  

 

P-T Diagrams 

The phase behaviour described by fig. 2.1 can also be expressed in a more condensed manner by 

means of a pressure-temperature (P-T) diagram shown in fig 2.2. Just as P-V curves were 

depicted at constant temperature, the P-T diagram is obtained at a constant molar volume. The 

two phase regions which were areas in the P-V diagram are reduced to lines (or curves) in fig. 

2.2. The P-T curves shown by lines X-Y, Y-Z, and Y-C result from measurements of the vapour  



pressure of a pure substance, both as a solid and as a liquid. X-Y corresponds to the solid-vapour 

(sublimation) line; X-Y represents the co-existence of solid and liquid phases or the fusion line, 

while the curve Y-C displays the vapour-liquid equilibrium region. The pressure at each 

temperature on the Y-C curve corresponds to the equilibrium vapour pressure. (Similar 

considerations apply for P-T relation on the sublimation curve, X-Y). The terminal point C 

represents the critical point, while the hatched region corresponds to the supercritical region. It is 

of interest to note that the above three curves meet at the triple-point where all three phases, solid, 

liquid and vapour co-exist in equilibrium. By the phase rule (eqn. 1.11) the degrees of freedom at 

this state is zero. It may be noted that the triple point converts to a line in fig. 2.1b. As already 

noted, the two phases become indistinguishable at the critical point. Paths such as F to G lead 

from the liquid region to the gas region without crossing a phase boundary. In contrast, paths 

which cross phase boundary Z-Y include a vaporization step, where a sudden change from liquid 

to gas occurs. 

A substance in the compressed liquid state is also often termed as sub-cooled, while gas at 

a pressure lower than its saturation vapour pressure for a given temperature is said to be 

“superheated”. These descriptions may be understood with reference to fig. 2.2. Let us consider a 

compressed liquid at some temperature (T) and pressure (P). The saturation temperature for the 

pressure P would be expected to be above the given T. Hence the liquid is said to be sub-cooled 

with respect to its saturation temperature. Consider next a pure vapour at some temperature (T) 

and pressure (P). Clearly for the given pressure P the saturation temperature for the pressure P 

would be expected to be below the given T.  Hence with respect to the saturation temperature the 

vapour is superheated. 

The considerations for P-V and P-T diagrams may be extended to describe the complete 

P-V-T phase behaviour in the form of three dimensional diagrams as shown in fig. 2.3. Instead of 

two-dimensional plots in figs. 2.1 and 2.2 we obtain a P-V-T surface. The P-V plots are recovered 



 
Fig. 2.3 Generalized Three-dimensional P-V-T Surface for a Pure Substance 

if one takes a slice of the three dimensional surface for a given temperature, while the P-T curve 

obtains if one takes a cross-section at a fixed volume. As may be evident, depending on the 

volume at which the surface is cut the P-T diagram changes shape.  

Fig. 2.4 illustrates the phase diagram for the specific case of water. The data that is 

pictorially depicted so, is also available in the form of tables popularly known as the “steam 

table”.  The steam table (see http://www.steamtablesonline.com/) provides values of the following 

thermodynamic properties of water and 

 
Fig. 2.4 Three-dimensional P-V-T Plot for Water 

 



vapour as a function of temperature and pressure starting from its normal freezing point to the 

critical point: molar volume, internal energy, enthalpy and entropy (the last three properties are 

introduced and discussed in detail in chapters 3 and 4).  

The steam tables are available for saturated (two-phase), the compressed liquid and 

superheated vapour state properties. The first table presents the properties of saturated gas and 

liquid as a function of temperature (and in addition provides the saturation pressure). For the 

other two states the property values are tabulated in individual tables in terms of temperature and 

pressure, as the degree of freedom is two for a pure component, single state. For fixing the values 

of internal energy, enthalpy and entropy at any temperature and pressure those for the saturated 

liquid state at the triple point are arbitrarily assigned zero value.  The steam tables comprise the 

most comprehensive collection of properties for a pure substance.  

 

2.2 Origins of Deviation from Ideal Gas Behaviour 

The ideal gas EOS is given by eqn. 1.12. While this is a relationship between the macroscopic 

intensive properties there are two assumptions about the microscopic behaviour of molecules in 

an ideal gas state: 

i. The molecules have no extension in space (i.e., they posses zero volume) 

ii. The molecules do not interact with each other  

In particular, the second assumption is relatively more fundamental to explaining deviations from 

ideal gas behavior; and indeed for understanding thermodynamic behavior of real fluids (pure or 

mixtures) in general.  For this, one needs to understand the interaction forces that exist between 

molecules of any substance, typically at very short intermolecular separation distances (~ 5 – 20
0
A (where 1

0
A = 10-8

Uncharged molecules may either be polar or non-polar depending on both on their 

geometry as well as the electro-negativity of the constituent atoms. If the centre of total positive 

and negative charges in a molecule do not coincide (for example, for water), it results in a 

permanent dipole, which imparts a polarity to the molecule. Conversely, molecules for which the 

centres of positive and negative charge coincide (for example, methane) do not possess a 

permanent dipole and are termed non-polar. However, even a so-called non-polar molecule, may 

possess an instantaneous dipole for the following reason. At the atomic level as electrons 

m).  



oscillate about the positively charged central nucleus, at any point of time a dipole is set up. 

However, averaged over time, the net dipole moment is zero.  

When two polar molecules approach each other closely the electric fields of the dipoles 

overlap, resulting in their re-orientation in space such that there is a net attractive force between 

them. If on the other hand a polar molecule approaches a non-polar molecule, the former induces 

a dipole in the latter (due to displacement of the electrons from their normal position) resulting 

once again in a net attractive interaction between them. Lastly when two non-polar molecules are 

close enough their instantaneous dipoles interact resulting in an attractive force. Due to these 

three types of interactions (dipole-dipole, dipole-induced dipole, and induced dipole-induced 

dipole) molecules of any substance or a mixture are subjected to an attractive force as they 

approach each other to very short separation distances. 

However, intermolecular interactions are not only attractive. When molecules approach to 

distances even less than ~ 5
0
A  or so, a repulsive interaction force comes into play due to overlap 

of the electron clouds of each molecule, which results in a repulsive force field between them. 

Thus if one combines both the attractive and repulsive intermolecular interactions the overall 

interaction potential U resembles the schematic shown in fig. 2.5.   

 
Fig. 2.5 Schematic of Intermolecular potential energy U for a pair of uncharged molecules  

 

Many expressions have been proposed for the overall interaction potential U  [see, J.M. 

Prausnitz, R.N Lichtenthaler and E.G. Azevedo, Molecular Thermodynamics of Fluid Phase 

Equilibria, (3rd ed.), 1999, Prentice Hall, NJ (USA)]. These are essentially empirical, although 

their functional forms often are based on fundamental molecular theory of matter. The most 



widely used equation in this genre is the Lennard-Jones (LJ) 12/6 pair-potential function which 

is given by eqn. 2.1: 
12 6

( ) 4U LJ
r r
σ σε

    = −    
              ..(2.1) 

 

Where, r = intermolecular separation distance; ε, σ = characteristic L-J parameters for a 

substance.  

The 12r− term represents the repulsive interaction, whereas the 6r−  term corresponds to the 

attractive interaction potential. As already indicated, the domain of intermolecular interactions is 

limited to relatively low range of separation distances. In principle they are expected to be 

operative over 0 ;r = −∞ but for practical purposes they reduce to insignificant magnitudes for 

separations exceeding about 10 times the molecular diameter.  

The L-J parameters ε, σ are representative of the molecular interaction and size 

respectively. Typical values of the L-J equation parameters for various substances may be found 

elsewhere (G. Maitland, M. Rigby and W. Wakeham, 1981, Intermolecular Forces: Their Origin 

and Determination, Oxford, Oxford University Press.)  

Since gases behave ideally at low pressures, intermolecular separation distances therein 

are typically much higher than the range over which intermolecular interactions are significant. 

This is the reason why such interactions are negligible in case of ideal gas, which essentially is 

one of the assumptions behind the definition of ideal gas state. Indeed while the ideal gas EOS is 

expressed in macroscopic terms in eqn. 1.12, the same equation may be derived from microscopic 

(thermodynamic) theory of matter.  

The root of non-ideal gas behavior, which typically obtains at higher pressure, thus is due 

to the fact that at elevated pressures, the intermolecular separations tend to lie within the 

interactive range and hence the ideal gas assumption is no longer valid. Thus, the ideal gas EOS 

is insufficient to describe the phase behavior of gases under such conditions.  

Intermolecular interactions also help explain the behavior of fluids in other states. Gases 

can condense when compressed, as molecules are then brought within the separations where the 

attractive forces constrain the molecules to remain within distances typical of liquid phase. It 

follows that a pure component liquid phase cannot be ideal in the same sense as a gas phase can 

be. Further, the fact that liquids are far less compressible also is due to the repulsive forces that 



operate at close intermolecular distances. Obviously these phenomena would not be observed 

unless there were interactions between molecules. Thus, it follows that while properties of the 

ideal gas depend only on those of isolated, non-interacting moleclues, those of real fluids depends 

additionally on the intermolecular potential. Properties which are determined by the 

intermolecular interaction are known as configurational properties, an example of which is the 

energy required for vapourization; this is because during the process of vapourization energy has 

to be provided so as to overcome the intermolecular attractive force between molecules in the 

liquid phase and achieve the gas state where the seprations are relatively larger. 

 

2.3 Equations of State for Real Fluids 

The generic form of an equation of state (EOS) is: ( , , ) 0f P V T =  

However, as we have already seen by the phase rule, for a single phase pure component the 

degrees of freedom are two. This may be expressed in the form of an EOS equation as follows:  

( , )V V T P=

 
It follows that: 

P T

V VdV dT dP
T P
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       ..(2.2) 

Defining 1Volume Expansivity as   
P

V
V T

β ∂ ≡  ∂ 
     ..(2.3) 

Isothermal compressibility as 
TP

V
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
∂
∂

≡
V
1  κ      ..(2.4) 

The generic EOS (2.2) may be written as: 

dV dT kdP
V

β= −          ..(2.5) 

2.3.1 EOS for Liquids 

For liquids, which are relatively incompressible, the factors β and κ are generally show an weak 

dependence on T and P and hence averaged values of these parameters may be used for 



estimating the liquid volume at any temperature using the following integrated form of the 

equation (2.5):  

2
2 1 2 1

1

ln ( ) ( )V T T k P P
V

β= − − −         ..(2.6) 

For liquids the usual datum volume (i.e., V1 

( )0.28571 ; / .   rTsat
c c r CV V Z where T T T reduced temperture−= = =

in eqn.2.6) can be the saturated volume at a given 

temperature, which may be obtained from the Rackett equation (H. G. Rackett, J. Chem. Eng. 

Data, 1970, vol. 15, pp. 514-517); i.e.,:  

  ..(2.7) 

Where ZC is the critical compressibility factor (see below). 

-------------------------------------------------------------------------------------------------------------------- 

Example 2.1  

For a liquid ‘A’ at 350K and 1 bar, κ = 50x10-6 bar-1

21 ...PV B C
RT V V

= + + +

. (i) To what pressure must water be 

compressed at 350 K to change its density by 0.5%? Assume that κ is independent of P.  

(Click for solution) 

-------------------------------------------------------------------------------------------------------------------- 

2.3.2 EOS for Gases 

In contrast to liquids, gases are relatively far more compressible, and so volume is strongly 

dependant on temperature and pressure. Consequently eqn. 2.6 cannot be used easily to estimate 

volume at a given T & P, as both β and κ are strong functions of T and P. Thus, various EOSs 

have been proposed to describe gas phase volumetric properties. The next section presents select 

EOSs that are typically used for the gas phase, ranging from those applicable to moderate 

pressure to others which are more accurate at high pressures.  

Virial EOS: 

Generally applicable to moderate deviations from ideal gas behavior, the virial EOS is given by 

two alternate forms: 

         ..(2.8)  



Where B, C = second and third virial coefficients  

Or: 21 ...PV B P C P
RT

′ ′= + + +         ..(2..9) 

It may be shown that the following relations hold further: 

2

2; and C =
( )

B C BB
RT RT
′ −′=         ..(2.10) 

As may be evident, the second and third terms on the right side of eqns. 2.8 and 2.9 constitute 

corrections for the non-ideal behavior of a gas. The virial coefficients are essentially dependent of 

temperature. The more the number of virial coefficients used in the equation the better is the 

prediction of gas molar volume. While the estimation of the second virial coefficient is relatively 

straightforward, that of the third virial coefficient is generally far more complex, and there is 

scant data in the literature on its value for different substances. Because of this the virial EOS is 

most commonly used in the truncated form, and applies to moderate deviations from ideal gas 

behavior:  

1PV B
RT V

= +           ..(2.11)  

Alternately, 1 1 c r

c r

BP PBPZ
RT RT T

 
= + = +  

 
      ..(2.12) 

Where, and r rP T are reduced pressure and temperature respectively, given by: 

/ ; /r C r CP P P T T T= =  

A set of generalized correlations have been proposed by Pitzer and co-workers (K. S. Pitzer, 

Thermodynamics, 3d ed., App. 3, McGraw-Hill, New York, 1995) for computing the second 

virial coefficients whereby: 

0 1c

c

BP B B
RT

ω
 

= + 
 

         ..(2.13) 

The terms 0 1and  B B are given by: 

0
1.6

0.4220.083
r

B
T

= −          ..(2.14) 



1
4.2

0.1720.139
r

B
T

= −          ..(2.15) 

The parameter ,ω discussed in a later section, is the acentric factor, which is a fundamental 

thermodynamic property of a substance, and is a measure of asphericity of molecular shape (see 

Appendix II for values of acentric factor for select substances). The value of acentric factor may 

be obtained from the following expression from experimental vapour pressure data of a pure 

substance (K. S. Pitzer, Thermodynamics, 3d ed., App. 3, McGraw-Hill, New York, 1995):  

10 0.71.0 log ( )
r

sat
r TPω =≡ − −          ..(2.16) 

0.7( )
r

sat
r TP = = reduced saturation vapour pressure at a reduced temperature equalling 0.7. 

Since the virial EOS applies to only moderate deviations from ideal behaviour several complex 

extensions of it have been proposed for increasing accuracy of prediction at higher pressures; an 

example of such an EOS is the so-called Benedict-Webb-Rubin (BWR) EOS (G.B.Benedict, G. 

B. Webb, and L. C. Rubin, J. Chem. Phys., vol. 8, pp. 334-345, 1940) used in the petroleum and 

natural-gas industries: 
2

0 0 0
2 3 6 3 2 2 2

/ 1 expB RT A C TRT bRT a a cP
V V V V V T V V

α γ γ− − − −    = + + + + + −   
   

 ..(2.17) 

where A0, B0, Co γ, a, b, c, and  are all constant for a given fluid.  

-------------------------------------------------------------------------------------------------------------------- 

425.1 ; 37.96 ; 0.2.C CT K P bar ω= = =

Example 2.2 

Calculate the molar volume for butane at 2.5bar and 298 K using the truncated virial EOS using 

the following data:   

(Click for Solution) 

-------------------------------------------------------------------------------------------------------------------- 

2.3.3 Cubic EOS for Gases 

While the truncated virial EOS applies to moderate pressures, it is often necessary to obtain 

volumetric properties of gases at relatively much higher pressures. It has generally proved to be 

computationally unwieldy to use extensions of the virial EOS at higher pressure. To obviate this 

problem an entire range of alternate EOSs, termed cubic EOS, have been proposed by various 

workers. The term “cubic equation of state” implies an equation which, if expanded, would 



contain the volume terms raised to the first, second, or third power. Such an EOS provides two 

distinct advantages over many other more complex EOS found in the literature; they allow: 

• Prediction of both gas and liquid (saturated) phase molar volumes 

• Provide a trade-off between complexity and accuracy of prediction 

The first of such cubic EOS was proposed by the Dutch physicist Johannes Diderik van der 

Waals in 1873, and has the following form: 

2

RT aP
V b V

= −
−

           ..(2.18) 

Where, a and b are characteristic constants for a pure substance. For example, for nitrogen the 

values of a and b are 6 2 5 30.1368 . / and 3.864x10 / respectively.Pa m mol m mol− Values of these 

parameters for other substances may be found in the literature (see, for example: S.I. Sandler, 

Chemical, Biochemical and Engineering Thermodynamics, 4th edition, Wiley India, 2006). 

 Once can take advantage of the phase P-V behaviour at the critical point (see fig. 2.1) to 

determine the expressions for a and b. Since the P-V curve offers a point of inflection at the 

critical point one may write:   

( / ) 0
CTP V∂ ∂ =          ..(2.19)

2 2( / ) 0
CTP V∂ ∂ =          ..(2.20) 

On applying eqns. (2.19) and (2.20) on 2.18 two independent equations obtain, which may solved 

simultaneously to show that for the vdW EOS: 

 2 2(27 / 64) /C Ca R T P=  

(1/ 8) /C Cb RT P=  

(3 / 8) /C CV RT P=  
It follows that the critical compressibility factor is then given by: 

/ 3 / 8 0.375C C C CZ P V RT= = =  
The vdW EOS suggests that for all pure substances the critical compressibility factor is a 

constant (= 0.375). This, however, is contrary to experience. Indeed, although similar in 

magnitude, the value of ZC is specific to a pure substance. For example, for methane it is 0.286, 

while for helium 0.302. This indicates that although an improvement over ideal gas EOS, the 



vdW EOS does not reflect the specificity needed to predict the behaviour of all substances at high 

pressures.   

To bridge this gap several other cubic EOS of higher accuracy have been advanced, the three 

most widely used of which are: 

• Redlich-Kwong (RK) EOS (Otto Redlich and J. N. S. Kwong, Chem. Rev.,vol. 44, pp. 

233-244, 1949) 

• Soave-Redlich-Kwong (SRK) EOS (G. Soave, Chem. Eng. Sci., vol. 27, pp. 1197-1203, 

1972.) 

• Peng-Robinson (PR) EOS (D. Y. Peng and D. B. Robinson, Ind. Eng. Chem. Fundam., 

vol. 15, pp. 59-64, 1976.) 

All the above EOSs including that due to van der Waals may be expressed by a single equation of 

the following form:  

2 2

RT aP
V b V ubV wb

= −
− + +

       ..(2.21) 

As part of a generalized approach to representing non-ideal gas behavior parameter Z, termed the 

compressibility factor, may be defined. This is discussed further in the following section. 

However, here we provide the expression for it: 

Z = PV/RT          ..(2.22) 

Using eqn. 2.20, eqn. 2.19 may be rewritten as:  
3 2 0Z Z Zα β γ+ + + =         ..(2.23) 

Where: 

    

 
2

2 2

2 3

/ ( )
/

1

Expressions for all the above parameters for each EOS are provided in Table 2.1 below.

A aP RT
B bP RT

B uB
A wB uB uB
AB wB wB

α
β
γ

=
=
= − − +
= + − −
= − − −

 

  



Table 2.1 Values of , , , , for various cubic EOSsu w α β γ  

EOS u w α  β  γ  a b 

vdW 0 0 – 1 – B A – AB 2 227
64

C

C

R T
P

 
8

C

C

RT
P

 

RK 1 0 – 1 A – B – B – AB 2 2 20.42748 C RK

C

R T
P

α  0.08664 C

C

RT
P

 

SRK 1 0 – 1 A – B – B – AB 2 2 20.42748 C SRK

C

R T
P

α  0.08664 C

C

RT
P

 

PR 2 – 1 – 1 + B A – 2B – 3B – AB + B2 2 +B 2 20.45724 C PR

C

R T
P

α
3 

 
0.07779 C

C

RT
P

 

The parameters , andRK SRK PRα α α given by:  

1/2

2 1/2 2

2 1/2 2

[1 (0.48 1.574 0.176 )(1 )]

[1 (0.37464 1.5422 0.62992 )(1 )]

RK r

SRK r

PR r

T

T

T

α

α ω ω

α ω ω

−=

= + + − −

= + + − −

 

As may be evident from table 2.1 all the parameters are determinable from the critical properties, 

ω  and the temperature at which the molar volume or pressure needs to be calculated. Once these 

are computed the eqn. 2.21 may be solved to yield the value of Z, which in turn may be used to 

obtain the molar volume. Eqn. 2.21 may be solved using a suitable iterative algorithm or more 

readily by the general analytical solution for cubic algebraic equations, which is outlined below.  

______________________________________________________________________________ 



3

2

2

2 3

For solving eqn. 2.21, substitute, ( / 3) which gives:
0

where:
( / 3)

(2 / 27) ( / 3)
Now, let ( / 4) ( / 27)
Then the roots of eqn. (2.21) are as follows:

1:
If 0, then only one real root exists:

2

Z X
X pX q

p
q

D q p

Case
D

qZ D

α

β α
α αβ γ

= −
+ + =

= −
= − +

= +

>

= − +
1/3 1/3

1/3 1/3

1 2 3

2 3
2 :

If 0, then there are three real roots, of which two are equal:

2 ;
2 3 2 3

q D

Case
D

q qZ Z Z

α

α α

   + − − −   
   

=

   = − − = = −   
   

 

1/3

1

1/3

2

1/3

3

1/2

3

3

3 :
If 0, then there are three unequal real roots:

2 cos( / 3)
3

22 cos
3 3

42 cos
3 3

27where: cos
2

27

Case
D

Z r

Z r

Z r

q
p

pr

αθ

π θ α

π θ α

θ

<

= −

+ = − 
 

+ = − 
 

 
= − − 

 

−
=  

______________________________________________________________________________ 

The true advantage of use of cubic EOS derives from the fact that not only can it provide gas 

phase molar volumes, but also that of saturated liquid at a given temperature (note that this is not 

feasible by use of virial EOS). To understand this point we refer to fig. 2.6, which is a simplified  



 
Figure 2.6 P-V plots at constant temperatures (as obtained from a cubic equation of state) 

version of fig. 2.1.  

For given values of V and T one can calculate P (using any cubic EOS) as a function of V 

for various values of T. Figure 2.4 is a schematic P-V curves for three different temperatures. The 

variations shown by T = TC and T > TC have already been discussed in section 2.1. We draw 

your attention here to the plot at T < TC. In this case the pressure decreases rapidly in the 

subcooled liquid region with increasing V; after crossing the saturated-liquid line, it goes through 

a minimum (1-2-3), rises to a maximum (3-4-5), and then decreases, crossing the saturated-vapor 

line and continuing downward into the superheated-vapor region. However, experimentally 

obtained plots of this kind (at T < TC

Nevertheless, the P-V behavior that obtains in the two-phase region using the cubic EOS 

is not entirely unrealistic. Indeed the two points of intersection of the analytical P-V curve (at a 

given temperature) with the boundary of the dome occurs (approximately) at the points where the 

experimental saturated vapour and liquid state volumes obtain (i.e., points 1 and 5). Cubic 

equations of state have three volume roots, of which two may often be complex conjugates. 

) do not show this manner of transition from saturated liquid 

to saturated vapor. As already discussed in section 2.1, in the two phase region within the dome, 

the curve connecting the saturated vapor and liquid states constitutes a tie-line. Along this 

horizontal segment the two phases coexist in varying proportions at the saturation vapor pressure. 

Clearly then the true behavior of the substance cannot be exactly reproduced by an analytical 

cubic EOS in the two phase region.  



Physically relevant values of V are always real, positive, and greater than constant b which 

appears in the cubic EOSs. For T > TC, at any pressure the solution for eqn. 2.21 yields one real 

root. This is also true at any pressure on the T = TC curve, except for P = PC; at the latter 

condition three real roots obtain all equal to VC. For T < TC, in general there could be one or 

three real roots. If the pressure is different from the saturation vapour pressure (Psat, at the given 

temperature) the roots are not realistic. If, however, the pressure is taken to be Psat, three real 

roots are found. The highest amongst these correspond to the saturated vapour phase volume, 

while the lowest one approximates the saturated liquid phase volume; the third root, however, is 

not physically meaningful.  

-------------------------------------------------------------------------------------------------------------------- 

Example 2.3  

For methane at 298K and 2 MPa compute the molar volume using SRK equation. For methane, 

Tc= 190.7 K, Pc

and .r rP T

= 46.41 bar, ω = 0.011. 

(Click for solution) 

-------------------------------------------------------------------------------------------------------------------- 

2.3.4 Principle of Corresponding States 

The compressibility factor Z has already been defined in eqn. 2.20. A typical plot of Z as a 

function of T & P for methane is shown in fig.2.7. Experimentally measured values of Z for 

different fluids display similar dependence on reduced temperature and pressures, i.e.,  

 



Fig. 2.7 Variation of Compressibility-factor with pressure and temperature (Source: J.M. Smith, 

H.C. Van Ness and M.M. Abbott, Introduction to Chemical Engineering Thermodynamics, 6th ed., 

McGraw-Hill, 2001) 

 

This observation has been generalized to formulate the two-parameter theorem of corresponding 

states which is stated as follows: “All fluids at the same reduced temperature and reduced 

pressure have approximately the same compressibility factor, and all deviate from ideal-gas 

behavior to about the same degree.” Fig. 2.8 presents select experimental data which support this 

observation. 

 

Fig. 2.8 Experimental compressibility factors for different fluids as a function of the reduced 
temperature and pressure. [Source: H. C.Van Ness and M.M Abbott (1982) based on data from 

G.-J. Su (1946). Ind. Engr. Chem. 38, p 803.] 
 

 

While this theorem applies fairly reliably to the simple fluids (argon, krypton, and xenon), 

for more complex fluids the deviations are significant. To address this gap Pitzer and coworkers 

introduced a third corresponding-states parameter, characteristic of molecular structure, more 

particularly the “degree of sphericity” of the molecule; the most widely used one is acentric 

factor ‘ω’ (already utilized in eqn. 2.13 and for computation for cubic EOS parameters in table 

2.1) (K. S. Pitzer, Thermodynamics, 3d ed., App. 3, McGraw-Hill, New York, 1995).  The 



expression for ω was provided in eqn. 2.16. As is evident, it can be computed for any substance 

using critical properties and a single vapor-pressure measurement made at Tr

0 1Z Z Zω= +

 = 0.7.   

By definition ω (see J.M. Smith, H.C. Van Ness and M.M. Abbott, Introduction to 

Chemical Engineering Thermodynamics, 6th ed., McGraw-Hill, 2001) is zero for the simple 

fluids argon, krypton, and xenon, which are generally regarded as spherical molecules. For other 

substances, the greater the deviation molecular sphericity, the larger is the departure of its 

corresponding ω from zero. For example for methane it is 0.012, while for butane it is 0.2, and so 

on. Experimentally determined values of Z for the three simply fluids coincide if measured at 

identical reduced temperature and pressures.  This observation forms the basis for extending the 

two-parameter theorem (stated above) to the three-parameter theorem of corresponding states: 

“The compressibility factor for all fluids with the same value of ω, when compared at the same 

reduced temperature and pressure are approximately the same, and hence the deviation from 

ideal-gas behavior is nearly the same.” 

This theorem leads to vary convenient approach involving generalized correlations for 

computing not only the volumetric properties but for estimating a wide variety of other 

thermodynamic properties.   

 

Generalized Compressibility factor Approach to EOS:  Pitzer Correlations 

For prediction of volumetric properties (using the compressibility factor Z or the second virial 

coefficient) the most commonly used correlations are those due to Pitzer and coworkers (op. cit.). 

According to this approach, compressibility factor is decomposed as follows: 

         ..(2.24) 

Where 0 1and Z Z are both functions of andr rT P only. When ω = 0, as for the simple fluids, 

0.71.0 log( )
r

sat
r TPω == − −

the 

second term disappears. Thus the second term generally accounts for relatively small contribution 

to the overall Z due to the asphericity of a molecule. As noted earlier, the value of ω may be 

computed using the following equation: 

        ..(2.16) 

Fig. 2.9 shows a plot of reduced vapor pressures for select substances as a function of reduced 

temperature.  At a value of about ~ 0.7 for the reduced temperature (Tr) of the typical simple 

fluids (argon, krypton, xenon) the logarithm of reduced pressure is – 1. For other molecules the 



greater the departure from sphericity of the structure the lesser is the value of reduced pressure at 

0.7.rT = This is indicative of lower volatility of the substance, which suggests relatively stronger 

intermolecular interactions in the condensed phase. Stronger interactions result from higher 

polarity of molecules, which is in turn originates from the asymmetry of the molecular structure. 

Equation 2.16 indicates that the difference between the reduced pressures at the common reduced 

temperature ( 0.7)rT = is the measure for the acentric factor. 

Based on the Pitzer-type correlations, Lee-Kesler (B.I. Lee and M. G. Kesler, AIChE J., 

vol. 21, pp. 510-527,1975) has developed generalized correlations using a variant of the BWR-

EOS (eqn. 2.17) for computing 0 1and Z Z as function of and .r rT P  The values of  0 1and Z Z  are  

 

Fig. 2.9 Plot of Pr vs. Tr for select substances of varying polarity (Source: J.W. Tester and M. 
Modell, Thermodynamics and its Applications, 3rd ed., Prentice Hall, 1999). 

 

available in the form of tables from where their values may be read off after due interpolation 

wherever necessary, or in the form of figures (see figs 2.10a and 2.10b).  The method is presented 

in the detail in Appendix1.1 of this chapter.  



 
(a) 

 

(b) 

Fig. 2.10a & 2.10b  Z0 and Z1 contributions to generalized corresponding states correlation 
developed by Pitzer and coworkers (1955) [Source: Petroleum Refiner, April 1958, Gulf 

Publishing Co]. 
 

-------------------------------------------------------------------------------------------------------------------- 



Example 2.4 

A rigid 0.5-m3 vessel at 25oC and 2500kPa holds ethane; compute the number of moles of ethane 

in the vessel. For ethane: Tc = 305 K; Pc = 48.72 bar, ω = 0.1 

(Click for solution) 

-------------------------------------------------------------------------------------------------------------------- 

Example 2.5 

Compute the saturate liquid phase molar volume for methane at 150K. For methane Tc= 190.7 K, 

Pc= 46.41 bar, VC = 98.6cm3/mol, ZC

1 BPZ
RT

= +

 = 0.286, ω = 0.011. 

(Click for solution) 

-------------------------------------------------------------------------------------------------------------------- 

2.4 Volumetric Properties of Mixtures  

The EOSs discussed in the preceding sections may be applied to mixtures as well, through use of 

what are called “mixing rules”. Such rules help re-define the fundamental parameters of each 

type of EOS in terms of those corresponding to pure species and overall composition. The 

principle behind these rules is that the mixture parameters are equivalent to those of a 

“hypothetical” pure species, which would display the same behaviour as the mixture.  They are 

essentially semi-empirical in nature, in that they contain parameters which although grounded in 

molecular theory are difficult to predict fully. Nevertheless, such rules have proved reasonably 

reliable for prediction of mixture properties for most practical, engineering applications.  

 

Virial EOS 

For a gas mixture the virial EOS is exactly the same as for a pure species (eqn. 2.12):  

      

However, for the mixture the second virial coefficient ‘B’ is dependent not only on temperature 

but also on the mixture composition. Its exact composition dependence is derivable from the 

relations provided by statistical mechanics, and takes the following form:  

m i j ij
i j

B y y B=∑∑      ..(2.26) 



Where, yi = mole fractions in a gas mixture. The indices i and j identify species, and both run 

over all species present in the mixture. The virial coefficient Bij characterizes a bimolecular 

interaction between molecule i and molecule j, and therefore Bij = Bji

2 2
1 11 1 2 12 2 222B y B y y B y B= + +

. The summation in eqn. 

2.26 accounts for all possible bimolecular interactions. For a binary mixture i = 2 and j = 2; the 

expansion of eqn.2.23 yields: 

        ..(2.27) 

Since they correspond to pure species, the calculation of the parameters B11 and B22 can be made 

directly employing eqns. 2.13 – 2.15. For any cross-coefficient Bij  

1/2
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k
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Now T T T

B

ω ω ω= +

= −

= − +

=

= +

= +

=

= − 1.6 1 4.222 / ); 0.139 (0.172 / )rij ij rijT B T= −

(where i and j are not same) 

pseudo-critical” parameters need to be employed in general as shown below: 

 

Finally: 0 1[( ) / ][ ]ij cij cij ij ij ijB RT P B Bω= +        ..(2.28)  

Next Bm is computed by eqn. 2.26, which is used in eqn. 2.12 for computing the mixture molar 

volume.       

-------------------------------------------------------------------------------------------------------------------- 

 

Example 2.6  

Estimate the second virial coefficient for an equimolar mixture of propane and n-pentane at 500K 

and 10 bar. 

Tc P (K) c V ( 

bar) 
c x 103 (m3 Z/mol) ω c yi 

Propane (1) 369.9 42.57 0.2 0.271 0.153 0.5 



Pentane (2)  469.8 33.75 0.311 0.269 0.269 0.5 

 

(Click for solution) 

-------------------------------------------------------------------------------------------------------------------- 

Cubic EOS: 

The parameters in all cubic EOSs are principally: a, b and ω. It follows that for computing the 

molar volume of a mixture these parameters need to be re-defined using mixing rules. For a 

binary mixture they are: 

For a binary mixture (m):  
2 1/ 2 2
1 1 1 2 1 2 2 22 ( )ma y a y y a a y a= + +        ..(2.29) 

1 1 2 2mb y b y b= +          ..(2.30) 

1 1 2 2m y yω ω ω= +          ..(2.31) 

The values of each parameters can be computed after those of the individual species are 

calculated using the expressions that apply to each type of cubic EOS (see table 2.1).  

 

Generalized Correlations 

Generalized correlations presented above for pure species may also be conveniently extended to 

prediction of volumetric properties of gas phase mixtures as well. For the mixture, the apparent 

critical properties are computed using the following set of linear relations:   

, ,C m i C i
i

T y T=∑ ; , ,C m i C i
i

P y P=∑
 

m i i
i

yω ω=∑     ..(2.32) 

The subscript ‘i’ runs over all the species present in the mixture ‘m’. The above properties are 

designated as “pseudo-critical” as they do not represent the true critical properties of a mixture; 

indeed the latter are most often difficult to obtain.   

The pseudo-reduced temperature and pressure, are then determined by: , ,/r m C mT T T= ; 

, ,/ .r m C mP P P=  As for pure components, the compressibility factor for the mixture is next 

obtained using standard functions of 0 1( , ) ( , ),r r r rZ T P and Z T P  which are then used in the 

following equation:  0 1
m m mZ Z Zω= +       ..(2.33)  

 



 

 

-------------------------------------------------------------------------------------------------------------------- 

 

Example 2.7 

Calculate the molar volume of an ethylene and propylene mixture comprising 70 mole percent 

ethylene and 30 mole percent propylene at 600 K and 60 bar. Assume that the mixture follows 

the Redlich-Kwong equation of state. 

Tc P (K) c ( bar) 

Ethylene (1) 283.1 51.17 

Propylene (2) 365.1 46.0 

 

(Click for solution) 

-------------------------------------------------------------------------------------------------------------------- 

2.5 Property Representation of 2-phase systems: 

Consider a system consisting of liquid and vapor phases of a pure component coexisting in 

equilibrium. The total value of any extensive property of the two-phase system is the sum of the 

total properties of the phases. Let the total volume of the system be Vt; nL = mass (or moles) of 

liq, nV

/
/

1
(1 )

Let Any Molar Thermodynamic Property

t L L V V

L V

L L

V V

L V

L L V V V L V V L V LV

LV V L

V nV n V n V
n n n
x n n
x n n
x x
V x V x V x V x V V x V
V V V

M

= = +

= +

=

=

+ =

= + = − + = +

= −
=

 = mass (or moles of vapour.  

Then: 

  
Thus, one may write: L V LVM M x M= +        ..(2.34) 

Where, –LV V LM M M=         ..(2.35)  



It may be noted that M is not a state variable, but an effective molar property of the system. The 

actual phase rule state variables are MV and ML Vx. The parameter – the mass fraction of vapour 

phase – in the system if called the ‘quality’. 

-------------------------------------------------------------------------------------------------------------------- 

Example 2.8 

Find the molar volume and internal energy of a system containing water and steam at 50% 

quality at 2000

( )vap

nH∆

C. 

(Click for solution) 

-------------------------------------------------------------------------------------------------------------------- 

2.6 Heat Effects of Phase Change 

A change of phase is generally accompanied by heat release or absorption. The heat effect during 

the change of phase from liquid to gas, for example, is called the latent heat (or enthalpy of 

vapourization), while for a transition from soild to liquid the effect is termed heat of fusion. Such 

enthalpy changes typically quantify the amount of heat need to change the phase of one mole of a 

substance and are usually obtained experimentally. However, correlations have been developed 

for their prediction as well. The Reidel equation (L. Riedel, Chem. Ing. Tech., vol. 26, pp. 679-

683, 1954) provides a suitable expression for the enthalpy of vapourization at the normal boling 

point of a pure substance:  

1.092(ln 1.013)
(0.093 )

vap

n C

n rn

H P
T T

∆ −
=

−
         ..(2.36) 

Where, n = normal boiling point, PC 

0.38

2 2

1 1

1 ;
1

vap
vapr
i ivap

r

H T H Heat of vapourization at T
H T

 ∆ −
= ∆ = ∆ − 

(bar). 

The Watson equation may be used (K. M. Watson, Ind. Eng. Chem., vol. 35, pp. 398-406, 1943) 

for computing the enthalpy of vaporization of a pure liquid at any temperature using its value at a 

chosen datum temperature: 

     ..(2.37) 

-------------------------------------------------------------------------------------------------------------------- 

Example 9  



Using Riedel’s correlation, estimate the enthalpy of vaporization of water at its normal boiling 

point and compare the result with that given in steam tables. 

(Click for solution) 

-------------------------------------------------------------------------------------------------------------------- 

Example 2.10 

The enthalpy of vaporization of water at 100oC is 2256.94 kJ/kg. Determine the value at 150o

ω

C, 

and compare the value with that listed in the steam tables. 

(Click for solution) 

-------------------------------------------------------------------------------------------------------------------- 

 

Appendix: Lee-Kesler and Pitzer Methods 

Lee Kesler Method: 

The method used a modified Bendict-Webb-Rubin equation using Pitzer’s acentric factor ( ). 

The compressibility factor of a real fluid is related to the properties of a simple fluid (ω= 0) and 

those of a reference fluid; for the latter n-Octane is used... The compressibility factor Z for the 

fluid is given by: 

( )0 0R
RZ Z Z Zω

ω
= + −          (A.2.1) 

Where Z = compressibility factor for the fluid 

Z0 = compressibility factor for the simple fluid 

ZR= compressibility factor for the reference fluid 

ω = acentric factor for the fluid  

ωR

According to the theory of corresponding states ω = 0, for “simple fluids”: i.e. whose molecules 

are considered spherical; examples include noble gases, such as argon, krypton and xenon. 

Sphericity of a molecule tends to reduce its polarity, as the centre of negative and positive 

 = acentric factor for the reference fluid (n-octane) = 0.3978. 

 



charges approach each other, leading to low dipole moments. This is also true for relatively linear 

but symmetric molecule. For example, carbon dioxide has virtually no dipole moment; however, 

it possesses a quadrupole moment. The acentric factor, therefore, is an indirect measure of the 

dipole moment of a molecule, and hence of the deviation of the intermolecular potential of real 

fluids from that of simple fluids.    

The compressibility factors for the simple fluid (Z0) and the reference fluid (ZR

( ) ( ) ( ) ( ) ( )
0

0 4
2 5 2 2 20 0 0 3 0 0 0

1 expr r

r r r r r r r r

PV CB C DZ
T V V V T V V V

γ γβ
   
   = = + + + + + −
   
   

) are 

generated from the following equation which is a variant for the BWR EOS (eqn. 2.17): 

  ..(A.2.2) 

( ) ( ) ( ) ( ) ( )
4

2 5 2 2 23
1 exp

R
R r r

R R R R R R
r r r r r r r r

PV CB C DZ
T V V V T V V V

γ γβ
   
   = = + + + + + −
   
   

 ..(A.2.3) 

Where 32 4
1 2 3

r r r

bb bB b
T T T

= − − −         ..(A.2.4) 

 32
1 3

r r

ccC c
T T

= − +         ..(A.2.5) 

 2
1  

r

dD d
T

= +          ..(A.2.6) 

Where Pr and Tr

0 0 /r c cV PV RT=

 are the reduced pressure and temperature, respectively, at which the volume of 

the real fluid is required.  

Further,          ..(A.2.7) 

Where, V0 = molar volume of the simple fluid (at the given T & P). The Lee-Kesler constants for 

the simple fluid and the reference fluid to be used with Eqns. 2-6 are enumerated in Table A.1.1 

below. 

Table A.1.1 Lee-Kesler Constants for use with Eqns.A.2.2-A.2.6 

Constant Simple 

fluid 

Reference 

fluid 

Constant Simple 

fluid 

Reference 

fluid 

b1 0.1181193 0.2026579 c3 0.0 0.016901 

b2 0.265728 0.331511 C 0.042724 0.041577 



b3 0.154790 0.027655 d1 x 104 0.155488 048736 

b4 0.030323 0.203488 d2 x 10 0.623689 4 0.0740336 

c1 0.0236744 0.0313385 β 0.65392 1.226 

c2 0.0186984 0.0503618 γ 0.060167 0.03754 

 

The method of calculating the volume at a given Tr and Pr

• Step 1: using the critical properties of the real fluid find

 is as follows:  
0

rV by eqn. A.2.7  

• Step 2: using 0
rV , calculate Z0

• Step 3: using the given values of T

 by eqn. A.2.1 

r and Pr

0
rV

, Eqn.A.2.2 is solved again, but with reference 

fluid constants from above table. The solution obtained for  is now called R
rV   

• Step 4: ZR

 

, the compressibility for the reference fluid, is next computed with: given by 

/R R
r r rZ PV T=          (A.2.8) 

• Step 5: With the above values of Z0 and ZR

The Generalized Lee-Kesler Charts essentially present the values of Z

, the compressibility factor Z for the fluid in 

question can be calculated from Eqn.A.2.1.  
0 and Z1 obtained by the 

above procedure as function of Tr and Pr

( )
1

1 2 1
2 1

R
R R R

R RZ Z Z Zω ω
ω ω

−
= + −

−

 (as). A variety of other thermodynamic variables can 

also be computed in an identical manner. Examples include residual enthalpy and entropy, and 

gas fugacity. These properties are presented either in the form of figures or charts (see, for 

example, Appendix E of J.M. Smith, H.C. Van Ness and M.M. Abbott, Introduction to Chemical 

Engineering Thermodynamics, 6th ed., McGraw-Hill, 2001). 

 

Pitzer Method: 

The Pitzer method is nearly identical to that of Lee-Kesler; it assumes that the compressibility 

factor is linearly dependent on the acentric factor. Thus, eqn. A.2.1 is reformulated using the 

compressibility factors of both the simple (1) and reference fluid (2), whence: 

       ..(A.2.9) 



Any two fluids may be used as the reference fluids. The method of computing the values of 
2 1 and R RZ Z  and hence, Z for the fluid of interest follows the same procedure described above 

for Lee-Kesler. 

-------------------------------------------------------------------------------------------------------------------- 

Assignment-Chapter 2 
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CHAPTER 3: First Law of Thermodynamics 

3.1 Concept of Internal Energy 

We have noted in chapter 1 that the two most common modes of energy exchanged by a 

thermodynamic system and its surroundings are work and heat. The interconvertibility between 

these two forms of energy was first demonstrated by the British scientist James P. Joule during 

1840s by a series of carefully executed experiments. The experimental setup he used is shown as 

a schematic in fig. 3.1.  Known quantities of a set of fluids (water, oil, and mercury) were placed 

in an 

 
Fig. 3.1 Schematic of Joule’s Experimental System 

insulated, rigid vessel and stirred by means of rotating shaft provided with vanes. The amounts of 

work done on the fluid by the stirrer were measured in terms that needed to lower or raise a 

weight, and the resultant change in the temperature of the fluid was recorded. The key 

observation made by Joule was that for each fluid a fixed amount of work was required per unit 

mass for every degree of temperature rise caused by the rotating paddle wheel. Further, the 

experiments showed that the temperature of the fluid could be restored to its initial value by the 

transfer of heat by bringing it in contact with a cooler object. These experimental findings 

demonstrated for the first time that inter-convertibility exists between work and heat, and 

therefore the latter was also a form of energy.   

Joule’s observation also provided the basis for postulation of the concept of internal 

energy (introduced briefly in section 1.3). Since work are heat are distinctly different forms of 

energy how is it possible to convert one into another? The question can be answered if one 

assumes that although these two types of energies are distinct in transit across a thermodynamic 

system boundary, they must eventually be stored within a thermodynamic system in a common 
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form. That common form is the so-called internal energy. As we have already discussed in 

section 1.3, such a form of energy can only repose at the microscopic level of atoms and 

molecules, essentially in the form of translational, vibrational and rotational energies. To this 

may be added the potential energy of intermolecular interactions (as introduced in section 2.2).  

On a sub-molecular scale energy is associated with the electrons and nuclei of atoms, and with 

bond energy resulting from the forces holding atoms together as molecules. With these 

considerations one is in a position to rationalize the observation that while a system may receive 

energy in the form of work done on it, it may part with it also in the form of heat to another body 

or surroundings and be restored to its state prior to receipt of work. This is possible as in the 

interim between these two processes all energy may be stored in the form of internal energy. 

As may be evident from the foregoing discussion, the addition of heat or work from an 

external source can lead to enhancement of the microscopic form of systemic (internal) energy. 

As also noted in chapter 1 the terminology “internal” is applied mainly to distinguish it from the 

mechanical potential and kinetic energies that a thermodynamic system may also possess by 

virtue of its position and velocity with respect to a datum. The latter two may then be thought of 

as “external” forms of energy. 

It is important to note that like other intensive, macroscopic variables such as pressure, 

temperature, mass or volume, internal energy is a state variable as it is wholly dependent on the 

energy states that its atoms / molecules. Thus any change in the (say, specific) internal energy 

due to a process would only depend on the initial and final states, and not on the path followed 

during the change. Thus as for changes in P, V or T, one may write:  
2

1
2 1

U

U
dU U U U= ∆ = −∫  

However, unlike P, V, T or mass, U is not a directly measurable property. Besides, in common 

with potential and kinetic energies, no absolute values of internal energy are possible. However, 

this is not of particular significance as in thermodynamic processes one is always interested in 

changes in energies rather than their absolute values  
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3.2 The First Law of Thermodynamics 

The empirical conclusion that heat and internal energy belong to the general category of energies, 

help extending the law of conservation of mechanical energy, which states that potential and 

kinetic energies are fully inter-convertible. As already discussed in chapter 1, a thermodynamic 

system may possess any other forms of energy such as surface energy, electrical energy, and 

magnetic energy, etc. Thus one may arrive at an extended postulate that all forms are energies are 

inter-convertible. This constitutes the basis of the First Law of Thermodynamics, which may be 

stated as follows: 

 

Energy can neither be destroyed nor created, when it disappears in one form it must re-appear at 

the same time in other forms.  

 

It must be said that there is no formal proof of the first law (or indeed of other laws of 

thermodynamics) is possible, but that no evidence have been found to date that violates the 

principle enunciated by it.  

 For any thermodynamic process, in general one needs to account for changes occurring 

both within a system as well as its surroundings. Since the two together forms the “universe” in 

thermodynamic terms, the application of the first law to a process leads to the following 

mathematical form: 

(  e    ) = 0Total nergy of the universe∆  

(  e    s )  (  e    )  0Total nergy of the ystem Total nergy of the surroundings∆ + ∆ =  

Where Δ ≡ finite change occurring during the thermodynamic process 

 

3.2 Application of the First Law to Closed Systems 

In general, a thermodynamic system in its most complex form may be multi-component as well 

as multiphase in nature, and may contain species which react chemically with each other. 

Thermodynamic analysis tends to focus dominantly on the energy changes occurring within such 

a thermodynamic system due to change of state (or vice versa), and therefore it is often 

convenient to formulate the first law specifically for the system in question. Here we focus on 

closed systems, i.e., one that does not allow transfer of mass across its boundary. As already 
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pointed out work and heat may enter or leave such a system across its boundary (to and fro with 

respect to the surrounding) and also be stored in the common form of internal energy. Since in a 

system may also possess potential and kinetic energies, one may reframe the first law as follows.  

Using the notations , ,  for specific internal, kinetic and potential energies, respectively:K PU E E

 

[       ] = Total energy input to system in all formstotal total total
kinetic potential systemU E E∆ + +

   

If the energy transfer across the system boundary takes place only the form of work and heat:

 

[       ]  (  )  (  )total total total total total
kinetic potential systemU E E Q heat input W work input∆ + + = +

 

 

The above relation may be written per unit mass / mole of closed system, i.e.,:
         K PU E E Q W∆ + ∆ + ∆ = +

  

The above equation may also be written in a differential form: 

K PdU dE dE Q Wδ δ+ + = +          ..(3.1) 

If there is no change in potential and kinetic energies for the system or it is negligible – as is 

usually true for most thermodynamic systems of practical interest – the above equation reduces 

to:  

dU Q Wδ δ= +           ..(3.2) 

One of the great strengths of the mathematical statement of the first law as codified by eqn. 3.2 is 

that it equates a state variable (U) with two path variables (Q, W). As a differentiator we use the 

symbol δ to indicate infinitesimal work and heat transfer (as opposed to d used state variables).  

The last equation potentially allows the calculation of work and heat energies required for a 

process, by simply computing the change in internal energy. As we shall see later (chapters. 4 & 

5) changes in internal energy can be conveniently expressed as functions of changes in state 

properties such as T, P and V. 

 In the above equation the term δW represents any form of work transfer to or from the 

system. In many situations of practical interest the thermodynamic work for closed systems is 

typically the PdV work (eqn. 1.6). Hence in such cases one may reframe eqn. 3.2 as follows: 
2

1

V

V

dU Q W Q PdVδ δ δ= + = − ∫           ..(3.3)  

In keeping with the definition of work above, we adopt the following convention: 
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0, if work is done on system
0, if work is done by system

Q > 0, for heat addition to system
0, for heat removal from system

W
W

Q

>
<

<

  

The process of change in a thermodynamic system may occur under various types of constraints, 

which are enlisted below: 

• Constant pressure (isobaric) 

• Constant volume (isochoric) 

• Constant temperature (isothermal) 

• Without heat transfer (adiabatic) 

The mathematical treatment of each of these processes is presented below.  

For a constant pressure process (fig. 3.2), we may write:  

( )
( )

where, 

Q dU PdV
Q d Ud PV
Q d U PV

or Q dH
H U PV

δ
δ
δ

δ

= +
= +
= +

=
= +  

The term H is termed enthalpy. It follows that like U, H is also a state variable. On integrating the 

differential form of the equation above one obtains for the process: 

 
2 2

1 1
Q dHδ =∫ ∫  

Or: Q H= ∆            ..(3.4) 

 
Fig. 3.2 Schematic of an Isobaric Path 
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On the other hand if the process occurs under isochoric (const. V) conditions (shown in fig. 3.3) 

the first law leads to:  

 
Fig. 3.3 Schematic of an Isochoric Path 

Q dUδ =  

2 2

1 1
Q dHδ =∫ ∫  

 Q U= ∆            ..(3.5) 

We have already seen that a body can retain heat in the form of internal energy. This gives rise to 

the concept of heat capacity C and is mathematically defined as: 

QC
dT
δ

≡  

It follows that using eqns. 3.4 and 3.5 two types of heat capacity may be defined: 

• Constant pressure heat capacity such that:PC  

P
P

Q HC
dT T
δ ∂ = =  ∂ 

         ..(3.6) 

• Constant volume heat capacity such that:VC  

V
V

Q UC
dT T
δ ∂ = =  ∂ 

         ..(3.7) 

Thus, using eqns. (3.6) and (3.7) one may rewrite eqns. (3.4) and (3.5) as follows: 
2

1

T

PT
Q H C dT= ∆ = ∫  (At const P.)        ..(3.8) 
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2

1

T

VT
Q U C dT= ∆ = ∫  (At const V.)        ..(3.9) 

With the addition of heat to a system, the translation, vibrational and rotational (as well as 

subatomic) energies of the molecules are enhanced and so it may be expected that the specific 

heats would be dependent on temperature. On the other hand when substances are compressed 

intermolecular interactions begin to contribute to internal energy (as hence to enthalpy) and 

therefore specific heats are rendered pressure dependent. For the case of ideal gases, however, the 

specific heats are independent of pressure as there are no intermolecular interactions; they are 

only temperature dependent. Values of specific heats of ideal gases (ig), say at constant pressure, 

are available from experimental measurements and are typically expressed in the form of 

polynomials such as: 

2
2

ig
PC DA BT CT

R T
= + + +

         ..(3.10) 

Where, A, B, C and D are characteristic constants for a substance, and R is the universal gas 

constant. Values of the constants in eqn. (3.10) are readily available for a large number of pure 

substances (see Appendix III for values of select gases). Fig. 3.4 shows typical dependence of 

const, pressure specific heat for select substances with temperature. 

 
Fig. 3.4 Variation of CP

ig/R vs. Temperature (Source: J. M Smith, H.C. Van Ness, M.M. Abbott, 

Introduction to Chemical Engineering Thermodynamics, 6th ed., McGraw-Hill, 

2001)
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Values of the coefficients of similar specific heat capacity polynomials for liquids and solids are 

available elsewhere (see for example, J.M. Smith, H.C. Van Ness and M.M. Abbott, Introduction 

to Chemical Engineering Thermodynamics, 6th ed., McGraw-Hill, 2001). 

  

Applications to Ideal Gases
 

The other two types of thermodynamic processes – isothermal and adiabatic – in closed systems 

are conveniently understood by applying the first law to a system comprised of an ideal gas. For 

such a case the relationship between U and H may be rewritten using the EOS: 

H U PV U RT= + = +  

Or: H U RT− =  

Since both H and U are only temperature dependent for ideal gases we write: 

dH dU R
dT dT

− =  

Now using eqns. 3.6 and 3.7 it follows that:
 

P VC C R− =            ..(3.11) 

(It may be noted that since the molar volume V is relatively small for both liquids and solids, one 

may write: ;H U≈ hence: ).P VC C  
Let us now consider the relationships that obtain for an isothermal process for an ideal gas. Using 

eqn. 3.2, since dU= 0: 

Q Wδ δ= −  
Or, Q = – W 

If we consider only P-V work, the work term is calculable if the process is carried out reversibly, 

as the ideal gas EOS relate the P and V at all points of change, hence:

2 2

1 1

1 2

2 1

ln ln
V V

V V

V PRTW PdV dV RT RT
V V P

 = − = − = = 
 ∫ ∫       ..(3.12) 

Thus:  

 

2 1

1 2

ln lnV PQ RT RT
V P

= =
         ..(3.13) 

-------------------------------------------------------------------------------------------------------------------- 
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Example 3.1 

A gas initially at 1 MPa, 500°C is contained in a piston-cylinder arrangement of initial volume of 

0.1 m3

2

1
2 1 2 1For isobaric process:  ; ( ) ( )

V

P V
Q H C dT W PdV P V V R T T= ∆ = = − = − − = − −∫ ∫

. The gas expanded isothermally to a final pressure of 100 kPa. Determine the work.  

(Click for solution) 

-------------------------------------------------------------------------------------------------------------------- 

  ..(3.14)
 

 
For  process 0adiabatic dQ =

 Hence : 

Or :  V

dU W
RTC dT PdV dV
V

δ=

= − = −  

v

dT R dV
T C V

= −
          ..(3.15)  

The ratio of heat capacities is defined as:  

/P VC Cγ =
 

Or:
     

1V

V V

C R R
C C

γ +
= = +

          ..(3.16) 
On integrating eqn. 3.15 and using the relationship provided by eqn. 3.16, the following set of 
results may be derived easily:

         

1

2 1

1 2

T V
T V

γ −
 

=  
             ..(3.17)

 

 
( 1)/

2 2

1 1

T P
T P

γ γ−
 

=  
             ..(3.18)

 

and  1 1 2 2 .PV PV PV constγ γ γ= = =         ..(3.19) 

      
Further:  VdW dU C dT= =  

Or    VW dU C dT= =  

Since, W PdV= −∫  
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Using eqn. 3.19 in the expression for work in the last equation:      

    

2 2 1 1

1
PV PVW
γ
−

=
−           ..(3.20) 

Or: 
         

( 1)/ ( 1)/

1 1 2 1 2

1 1

1 1
1 1

PV P RT PW
P P

γ γ γ γ

γ γ

− −      
   = − = −   − −         

       ..(3.21) 

All the above processes discussed can be captured in the form of a single P-V relation, which is 

termed a polytropic equation as it can be reduced to yield all forms of processes. The polytropic 

relations are written by generalizing eqns. 3.17 – 3.19, as follows:  

constantPV δ =           ..(3.22) 
1 constantTV δ − =           ..(3.23) 

(1 )/ constantTP δ δ− =           ..(3.24) 

The schematic of polytropic process is shown in fig. 3.5. 
 

 
Fig. 3.5 Schematic of Polytropic Processes 

 

As may be seen the various values of δ reproduce the isothermal, isochoric, isobaric and adiabatic 

processes. In line with eqn. 3.21, for such the generalized expressions for work and heat transfer 

may be shown to be: 
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( 1)/

1 2

1

1
1

RT PW
P

δ δ

δ

−  
 = − −              ..(3.25) 

Further:
        

( )
( )( )

( 1)/
1 2

1

1
1 1

RT PQ
P

δ δ
δ γ
δ γ

− −  
 = − − −             ..(3.26) 

 

-------------------------------------------------------------------------------------------------------------------- 

Example 3.2 

Helium gas expands from 125 kPa, 350 K and 0.25 m3 to 100 kPa in a polytropic process with δ 

= 1.667. How much work does it give out? 

(Click for solution)  

-------------------------------------------------------------------------------------------------------------------- 

3.3 Application of the First Law to Open Systems 

While the last section addressed processes occurring in closed systems, the wider application of 

the first law involves formulating the energy balance differently in order to accommodate the fact 

that most thermodynamic systems, i.e., equipments, in continuous process plants are essentially 

open systems: they allow mass transfer across their boundaries (i.e., through inlet and outlet).  

Examples include pumps, compressors, reactors, distillation columns, heat exchangers etc. Since 

such open systems admit both material and energy transfer across their boundaries the 

thermodynamic analysis necessarily involves both mass and energy balances to be carried out 

together. Also such systems may in general operate under both steady (during normal plant 

operation) and unsteady states (say during startup and shutdown). As we will see the former state 

is a limiting case of the more general situation of unsteady state behavior. 

 

Mass Balance for Open Systems: 

For generality consider an open system with which has multiple inlets (1, 2) and outlets (3, 4). 

The volume enclosed by the physical boundary is the control volume (CV). The general mass 

balance equation for such a system may be written as:   
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Fig. 3.6 Schematic of an open system 

 
cv

inlet outlet

dm m m
dt

• •

= −∑ ∑           ..(3.27) 

The mass flow rate  m
•

 is given by: 

m uAρ
•

=            ..(3.28) 

Where, fluid density;ρ =   fluid velocity; and u =  aperture cross-sectional areaA =  
The first term on the left side of the eqn. (3.27) denotes sum of all flow rates over all inlets, while 

the second term corresponds to the summation over all outlet flow rates. For the system shown in 

fig. 3.5 the eqn. 3.27 may be written as: 

1 2 3 4
cvdm m m m m

dt

• • • •

= + − −          ..(3.28)  

The last equation may be reframed in a general way as follows:
  

( ) 0cv
fs

dm m
dt

•

+ ∆ =           ..(3.29) 

Where the symbol oulet-inlet; and the subscript  stands for "flow streams".fs∆ ≡   

Equation 3.29 may be recast as:  

( ) 0cv
fs

dm uA
dt

ρ+ ∆ =           ..(3.30) 

The above equation simplifies under steady flow conditions as the accumulation term for the 

control volume, i.e., 0cvdm
dt

=  
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In such a case for the simplest case of a system with one inlet and outlet (say: 1 and 2 

respectively), which typically represents the majority of process plant equipments, the mass 

balance equation reduces to: 
•

1 1 1 2 2 2 1 1 1 2 2 2

constant 
Or: / /
m

u A u A u A V u A Vρ ρ
=

= → =
       ..(3.31) 

Where V = specific volume     

 

Energy Balance for Open Systems: 

Consider the schematic of an open system as shown in fig. 3.7. For simplicity we assume one  

 
Fig. 3.7 Schematic of an open system showing flow and energy interactions 

 

inlet and one exit ports to the control volume. The thermodynamic states at the inlet i and exit e 

are defined by the P, V, T, u (average fluid velocity across the cross section of the port), and Z, 

the height of the port above a datum plane. A fluid element (consider an unit mole or mass) enters 

the CV carrying internal energy, kinetic and potential energies at the inlet conditions (Pi, Ti, with 

molar volume as Vi) and leaves values of these energies at the exit state conditions (Pe, Te, with 

molar volume as Ve

2

.
2

uU gZ+ +

). Thus the total specific energy of the fluid at the two ports corresponds to 

the sum of specific internal, potential and kinetic energies, given by:  In addition, 

the CV exchanges heat with the surroundings at the rate Q
•

, and say a total work (in one or more 

forms) at the rate of totalW
•
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 In the schematic we, however, have shown a specific work form, shaft work, that is 

delivered to or by the system by means of rotatory motion of a paddle wheel which, as we will 

see later in the section, is implicated in many typical process plant units.  As with material 

balance one may write a total energy balance equation for the control volume as follows: 

2 2( ) 1 1( ) ) ( ) )
2 2

cv
total

i e

d mU U u zg m U u zg m Q W
dt

• • • •      = + + − + + + +               

Or:  

2( ) 1 ( ) )
2

cv
total

fs

d mU U u zg m Q W
dt

• • •  + ∆ + + = +           ..(3.32)
 

The general total work term should include all forms of work. We draw the reader’s attention to 

the fact that the total work interaction also should include that needed to push fluid into the CV as 

well as that implicated in pushing it out of CV.  The fluid state at the inlet or exit is characterized 

by a set of state properties, U, V, H, etc. Consider a unit mass (or mole) of fluid entering the CV. 

This fluid element obviously needs to be “pushed” by another that follows it so as to make the 

formed enter the CV. In essence a fluid element of (specific) volume V is pushed into the CV at a 

pressure P. This is akin to a P-V form of work (as in the case of a piston-in-a-cylinder system) 

that is done on the CV and so may be quantified as – PiVi. The same considerations apply at the 

exit in which case in pushing out a similar fluid element at exit conditions, i.e., – PeVe

2( ) 1 ( ) ) [ ] [ ]
2

cv
i e

fs

d mU U u zg m Q W PV m PV m
dt

• • •  + ∆ + + = + − +    

 

. Thus, 

eqn. 3.32 may be rewritten as follows: 

     ..(3.33) 

Where, [ ] [ ]total i eW W PV m PV m
• •

= − +
 

 

The term W
•

represents sum of all other forms of work associated with the process occurring 

within the CV. This residual work term may include the shaft work, P-V work resulting from 

expansion or contraction of the CV, electrical work, and so on. As the last two work terms on the 

left side of the eqn. 3.33 are associated with the flow streams we may rewrite the equation as 

follows:  
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2( ) 1 ( ) ) [ ]
2

cv
fs

fs

d mU U u zg m Q W PV m
dt

• • •  + ∆ + + = + −∆    



      ..(3.34) 

On rearranging:  

( )
2( )

2
cv

fs

d mU uU PV zg m Q W
dt

• • •  
+ ∆ + + + = +  

  
       ..(3.35) 

    

Or: 
2( )

2
cv

fs

d mU uH zg m Q W
dt

• • •  
+ ∆ + + = +  

  
       ..(3.36) 

It may be noted that eqn. 3.34 assumes that the CV is fixed in space and therefore no overall 

potential of kinetic energy terms depicting these mechanical energies for the control volume is 

included. This, of course, is valid for all process plant applications.  In addition, For many cases 

of practical importance (though not all) in a chemical plant the kinetic and potential energy 

changes between the inlet and exit streams may not be significant, whence the last equation may 

be simplified as: an equipment may be neglected; hence: 

( )cv

fs

d mU H m Q W
dt

• • • + ∆ = +           ..(3.37) 

Further, for the special case where the only shaft work is involved, the above equation may be 

simplified to:  

( )cv
s

fs

d mU H m Q W
dt

• • • + ∆ = +           ..(3.38) 

For steady state applications the eqn. 3.34 reduces to: 
2

2
fs

uH zg m Q W
• • •  

∆ + + = +  
           ..(3.39) 

Further, if the kinetic and potential energy changes associated with the flow streams are 

insignificant, it follows that:
  

fs

H m Q W
• • • ∆ = +  

          ..(3.40) 

Since under steady state m
•

is constant we may write: 
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ΔH = Q + W           ..(3.41) 

Where Q and W denote the work and heat interactions per unit mass of mole of fluid flowing 

through the system flowing through system. Once again if Ws is the only form of work 

interaction between the system and the surrounding then:  

ΔH = Q + Ws           ..(3.42) 

Examples of process plant units to which eqn. 3.42 applies are: pumps, compressors, turbines, 

fans, blowers, etc. In all cases a rotatory part is used exchange work between the system and 

surrounding. 

-------------------------------------------------------------------------------------------------------------------- 

Example 3.3 

A chiller cools liquid water (Sp. Ht = 4.2 J/gmK) for air-conditioning purposes. Assume 2.5 kg/s 

water at 20oC and 100 kPa is cooled to 5oC in a chiller. How much heat transfer (kW) is needed?  

(Click for solution) 

-------------------------------------------------------------------------------------------------------------------- 

Example 3.4 

A piston-cylinder assembly contains 0.1 kg wet steam of quality 0.75 at 100 kPa. If 150 kJ of 

energy is added as heat while the pressure of the steam is held constant determine the final state 

of steam.  

(Click for solution) 

-------------------------------------------------------------------------------------------------------------------- 

Example 3.5 

An adiabatic compressor operating under steady-state conditions receives air (ideal gas) at 0.1 

MPa and 300 K and discharges at 1 MPa. If the flow rate of air through the compressor is 2 

mol/s, determine the power consumption of the compressor. Constant pressure specific heat for 

air = 1kJ/kg. 

(Click for solution) 

-------------------------------------------------------------------------------------------------------------------- 

An insulated piston-cylinder system has air at 400kPa & 600K. Through an inlet pipe to the 

cylinder air at certain temperature T(K)  and pressure P (kPa) is supplied reversibly into the 

Example 3.6 
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cylinder till the volume of the air in the cylinder is 4 times the initial volume. The expansion 

occurs isobarically at 400kPa. At the end of the process the air temperature inside the cylinder is 

450K. Assume ideal gas behaviour compute the temperature of the air supplied through the inlet 

pipe.  

(Click for solution) 

-------------------------------------------------------------------------------------------------------------------- 

3.4 Measurement of Enthalpy and Internal Energy using Flow Calorimeter 

The use of the first law for open or closed systems necessitates the experimental determination 

(or, estimation from thermodynamic relations) of internal energy and enthalpy, both being state 

properties.  The flow calorimeter (fig. 3.8), readily allows measurement of enthalpy, which in 

turn can be used to compute the internal energy at the same conditions of (say) temperature and 

pressure. The fluid whose properties are to be measured is pumped through a constant 

temperature bath so that it attains a desired temperature (say T1) prior to entry into the vessel 

provided with an electric heater. The corresponding pressure (P1) may also be recorded. Heat is 

next provided to the passing fluid at a pre-determined and fixed rate over a period of time until 

the temperature and pressure at the exit of the vessel attains steady values (say, T2, & P2).  At 

such a condition the calorimeter is under steady state, hence eqn. 3.41 may be applied to the 

heating vessel. Since there is no work transfer of any kind, the resultant energy balance yields:   

ΔH = Q           ..(3.40) 

Or: H2 – H1 = Q 

So: H2 = H1

 

 + Q          ..(3.41) 
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Fig. 3.8 A schematic of a flow calorimeter 

 

Clearly, if we chose the enthalpy H1 to be a datum state and arbitrarily assign it a zero value, 

then: 

H2 = Q           

 ..(3.42) 

The last equation then allows one to uniquely determine the value of H2 at any condition 

achieved at state 2 by applying a known quantity of heat through the electric heating system. The 

internal energy at the same state can next be determined using the relation: 

U = H – PV           ..(3.42) 

Further we can measure the density (in terms of mass or mole) at the same state, and one may 

rewrite the last equation as: U = H – P/ρ        ..(3.43) 

Thus using the above relations, U and H may be obtained experimentally at any P, T (and/or V) 

for any substance. The steam tables discussed at the concluding portion of section 2.1 constitutes 

such a tabulation of values of standard thermodynamic properties (saturation vapour pressure, 

internal energy, enthalpy (and entropy) of water obtained empirically over a wide range 

temperature and pressure.  

--------------------------------------------------------------------------------------------------------------------- 

Assignment-Chapter 3 
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Chapter 4: Second Law of Thermodynamics  
4.1 Heat Engines and Second Law Statements 

The First Law provides a constraint on the total energy contained in a system and its 

surroundings. If it disappears in one form from the system during any thermodynamic process of 

change, it must reappear in another form either within the system or in the surroundings. 

However, a pertinent question that one may often need to answer is: Is the process of change 

aimed at feasible? As may be evident, the first law provides no constraint on the possible 

direction a process may take place. Nevertheless, in the real world such constraints do exist. For 

example, heat always flows from a high temperature body to one at a lower temperature. 

Momentum flow is always prompted in the direction of a pressure gradient, and molecules 

always migrate from a region of higher to lower chemical potential. These observations clearly 

are indicative of the existence of a constraint on natural processes, which have never been found 

to be violated.  

 Further, it is common observation that work is readily transformed into other forms of 

energy, including heat.  But all efforts to develop a device that may work in a continuous manner 

and convert heat completely into work or any other form of energy have proved impossible. 

Experimental observations show that typically no more than 40-50% of the total heat available 

may be converted to work or other energy forms. This finding has led to the conclusion that heat 

is a lower form of energy in that while it may be feasible to “degrade” work to heat, it is 

impossible to “upgrade” heat completely into work.  

Heat may be seen as a more primitive form of energy, as it always has to be made 

available from matter (say by combustion) and subsequently converted to work for carrying out 

activities useful to humans. In this sense one never derives work directly from the energy locked 

in matter as enthalpy. This prompts the natural question: what determines the efficiency of such a 

conversion of heat to work? Evidently one needs a limiting principle that may help answer this 

question. These considerations provide the basis for formulating the Second Law of 

Thermodynamics.  
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2.1 Second Law Statements 

It need be mentioned that the second law is a product of experiential observations involving heat 

engines that powered the Industrial Revolution of the 19th

• Step 1: Liquid water at ambient temperature is pumped into a boiler operating at high 

pressure 

 century. A heat engine is a machine 

that produces work from heat through a cyclic process. An example is a steam power plant in 

which the working fluid (steam) periodically goes through a series of steps in a cyclic manner as 

follows:  

• Step 2: Heat released by burning a fossil fuel is transferred in the boiler to the water, 

converting it to steam at high-temperature and pressure 

• Step 3: The energy contained in the steam is then transferred as shaft work to a turbine; 

during this process steam temperature and pressure are reduced. 

• Step 4: Steam exiting the turbine is converted to water by cooling it and transferring the 

heat released to the surroundings. The water is then returned to step 1.  

 

Like the steam power plant all heat engines absorb heat at a higher temperature body (source) 

and release a fraction of it to a low temperature body (sink), the difference between the two 

quantities constitutes the net work delivered during the cycle. The schematic of a heat engine (for 

example: steam / gas power plant, automotive engines, etc) is shown in fig. 4.1. As in the case of 

the steam cycle, a series of heat and work exchanges takes place, in each case a specific hot 

source and a cold sink are implicated. A schematic of such processes is suggested inside the      

 
Fig. 4.1 Schematic of Heat Engine 
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yellow circle between the hot and cold sources. The opposite of a heat engine is called the heat 

pump (refrigerators being an example of such device) is shown in fig. 4.2. There are indeed a 

large number other types of practical heat engines and power cycles. Select examples include: 

Ericsson Cycle, Stirling cycle, Otto cycle (e.g. Gasoline/Petrol engine, high-speed diesel engine), 

Diesel cycle (e.g. low-speed diesel engine), etc. The Rankine cycle most closely reproduces the 

functioning of heat engines that use steam as the process fluid function (fig. 4.3); such heat 

engines are most commonly found in power generation plants. In such plants typically heat is 

derived from nuclear fission or the combustion of fossil fuels such as coal, natural gas, and oil. 

Detailed thermodynamic analysis of the various heat engine cycles may be found in a number of 

textbooks (for example: J.W. Tester and M. Modell, Thermodynamics and its Applications, 3rd 

ed., Prentice Hall, 1999). 

 
Fig. 4.2 Comparison of Heat Engine and Heat Pump 

http://en.wikipedia.org/wiki/Ericsson_Cycle�
http://en.wikipedia.org/wiki/Stirling_cycle�
http://en.wikipedia.org/wiki/Otto_cycle�
http://en.wikipedia.org/wiki/Gasoline/Petrol_engine�
http://en.wikipedia.org/w/index.php?title=High-speed_diesel_engine&action=edit&redlink=1�
http://en.wikipedia.org/wiki/Diesel_cycle�
http://en.wikipedia.org/wiki/Diesel_engine�
http://en.wikipedia.org/wiki/Heat_engine�
http://en.wikipedia.org/wiki/Power_station�
http://en.wikipedia.org/wiki/Nuclear_power�
http://en.wikipedia.org/wiki/Coal�
http://en.wikipedia.org/wiki/Natural_gas�
http://en.wikipedia.org/wiki/Fuel_oil�
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Fig. 4.3 Schematic of a Power Plant (Rankine) Cycle 

As evident, the operation of practical heat engines requires two bodies at constant differential 

temperature levels. These bodies are termed heat reservoirs; they essentially are bodies with – 

theoretically speaking – infinite thermal mass (i.e., PmC →∞ ) which therefore do not undergo a 

change of temperature due to either release or absorption of heat. The above considerations may 

be converted to a set of statements that are equivalent descriptors of the second law (R. Balzheiser, 

M. Samuels, and J. Eliassen, Chemical Engineering Thermodynamics, Prentice Hall, 1972): 

 

Kelvin-Planck Statement: It is impossible to devise a cyclically operating device, the sole 

effect of which is to absorb energy in the form of heat from a single thermal reservoir and to 

deliver an equivalent amount of work.  

 

Clausius Statement:  It is impossible to devise a cyclically operating device, the sole effect of 

which is to transfer energy in the form of heat from a low temperature body to a high temperature 

body. 

2.2 Carnot Heat Engine Cycle and the 2nd

HQ

 Law 

In theory we may say that a heat engine absorbs a quantity of heat from a high temperature 

reservoir at TH CQ and rejects amount of heat to a colder reservoir at TH. It follows that the net 

work W delivered by the engine is given by: 
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H CW Q Q= −           ..(4.1) 

Hence the efficiency of the engine is: 

H C

H H

Q QW
Q Q

η
−

= =           ..(4.2) 

1 C

H

Q
Q

η = −            ..(4.3) 

Of the various forms of heat engines ideated, the Carnot engine proposed in 1824 by the French 

engineer Nicholas Leonard Sadi Carnot (1796-1832), provides a fundamental reference concept 

in the development of the second law. The so-called Carnot cycle (depicted in fig. 4.4) is a series 

of reversible steps executed as follows:  

• Step 1: A system at the temperature of a cold reservoir TC undergoes a reversible 

adiabatic compression which raises it temperature to that of a hot reservoir at TH

• Step 2: While in contact with the hot reservoir the system absorbs 

. 

HQ  amount of heat 

through an isothermal process during which its temperature remains at TH

• Step 3: The system next undergoes a reversible adiabatic process in a direction reverse of 

step 1 during which its temperature drops back to T

.   

C

• Step 4: A reversible isothermal process of expansion at T

. 

C CQ transfers amount of heat 

to the cold reservoir and the system state returns to that at the commencement of step 1. 

 

Fig. 4.4 Carnot Cycle Processes 
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The Carnot engine, therefore, operates between two heat reservoirs in such a way that all heat 

exchanges with heat reservoirs occur under isothermal conditions for the system and at the 

temperatures corresponding to those of the reservoirs. This implies that the heat transfer occurs 

under infinitesimal temperature gradients across the system boundary, and hence these processes 

are reversible (see last paragraph of section 1.9). If in addition the isothermal and adiabatic 

processes are also carried out under mechanically reversible (quasi-static) conditions the cycle 

operates in a fully reversible manner. It follows that any other heat engine operating on a 

different cycle (between two heat reservoirs) must necessarily transfer heat across finite 

temperature differences and therefore cannot be thermally reversible. As we have argued in 

section that irreversibility also derives from the existence of dissipative forces in nature, which 

essentially leads to waste of useful energy in the conversion of work to heat. It follows therefore 

the Carnot cycle (which also comprises mechanically reversible processes) offers the maximum 

efficiency possible as defined by eqn. 4.3. This conclusion may also be proved more formally 

(see K. Denbigh, Principles of Chemical Equilibrium, 4th ed., Cambridge University Press, 

1981). 

 We next derive an expression of Carnot cycle efficiency in terms of macroscopic state 

properties.  Consider that for the Carnot cycle shown in fig. 4.4 the process fluid in the engine is 

an ideal gas. Applying the eqn. 3.13 the heat interactions during the isothermal process may be 

shown to be:  

ln x
H H

w

VQ RT
V

=           ..(4.4) 

And ln y
C C

z

V
Q RT

V
=           ..(4.5) 

Further for the adiabatic paths xy and zw using eqn. 3.17 one may easily derive the following 

equality: 

ln ln yx

w z

VV
V V

=            ..(4.6) 

Using eqns. 4.4 – 4.5 we may write:  
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ln

ln

x
H

H w

yC
C

z

VT
Q V

VQ T
V

=           ..(4.7)  

Finally applying eqn. (4.6) on obtains: 

H H

C C

Q T
Q T

=            ..(4.8) 

Hence, using eqn. 4.3: 1 C

H

T
T

η = −         ..(4.9) 

Also, H CW Q Q= −           ..(4.10) 

Eqn. (4.8) may be recast as: 

H C

H C

Q Q
T T

=            ..(4.10) 

As heat QH enters the system it is positive, while QC

CH

H C

QQ
T T

= −

 leaves the system, which makes it negative 

in value. Thus, removing the modulus use, eqn. 4.10 may be written as: 

             ..(4.11)  

Or: 0CH

H C

QQ
T T

+ =           ..(4.12) 

         

Or: 0Q
T
=∑            ..(4.13) 

Consider now eqn. 4.9. For the Carnot efficiency to approach unity (i.e., 100%) the following 

conditions are needed: T ; or T 0.H C→∞ →  Obviously neither situation are practicable, which 

suggests that the efficiency must always be less than unity. In practice, the naturally occurring 

bodies that approximate a cold reservoir are: atmospheres, rivers, oceans, etc, for which a 

representative temperature TC is ~ 3000K. The hot reservoirs, on the other hand are typically 

furnaces for which TH ~ 6000K. Thus the Carnot efficiency is ~ 0.5. However, in practice, due to 

mechanical irreversibilities associated with real processes heat engine efficiencies never exceed 

40%.  
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-------------------------------------------------------------------------------------------------------------------- 

Q
T

Example 4.1 

An inventor claims to have devised a cyclic engine which exchanges heat with reservoirs at 27°C 

and 327°C, and which produces 0.6 kJ of work for each kJ of heat extracted from the hot 

reservoir. Is the claim believable? If instead he claimed that the delivered work would be 0.25kJ / 

kJ of extracted heat, would the engine be feasible? 

(Click for solution) 

------------------------------------------------------------------------------------------------------------------- 

  

It is interesting to note that the final step of thermodynamic analysis of Carnot cycle (i.e., eqn. 

4.13) leads to the conclusion that there exists a quantity  which add up to zero for the complete 

cycle. Let us explore extending the idea to any general reversible cycle (as illustrated in fig.4.5) 

run by any working fluid in the heat engine.  

.   

Fig. 4.5 Illustration of an arbitrary cycle decomposed into a series of small Carnot cycles 

The complete cycle may, in principle, be divided into a number of Carnot cycles (shown by 

dotted cycles) in series. Each such Carnot cycle would be situated between two heat reservoirs. In 

the limit that each cycle becomes infinitesimal in nature and so the number of such cycles 

infinity, the original, finite cycle is reproduced. Thus for each infinitesimal cycle the heat 

absorbed and released in a reversible manner by the system fluid may be written as HQδ and 

CQδ respectively. Thus, now invoking eqn. 4.12 for each cycle: 
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0CH

H C

QQ
T T

δδ
+ =           ..(4.14) 

Hence, applying eqn. 4.13 to sum up the effects of series of all the infinitesimal cycles, we arrive 

at the following relation for the entire original cycle: 

0revQ
T

δ
=∫            ..(4.15) 

Clearly, the relation expressed by eqn. 4.15 suggests the existence of a state variable of the form 

revQ
T

δ  as its sum over a cycle is zero. This state variable is termed as “Entropy” (S) such that: 

revQdS
T

δ
=            ..(4.16) 

Thus: 0dS =∫  

Thus, for a reversible process:     revdQ TdS=       ..(4.17) 

If applied to a perfectly reversible adiabatic process eqn. 4.16 leads to the following result:

0.dS = Thus, such a process is alternately termed as isentropic.  

Since entropy is a state property (just as internal energy or enthalpy), even for irreversible 

process occurring between two states, the change in entropy would be given by eqn. 4.16. 

However since entropy is calculable directly by this equation one necessarily needs to construct a 

reversible process by which the system may transit between the same two states. Finite changes 

of entropy for irreversible processes cannot be calculated by a simple integration of eqn. 4.17. 

However, this difficulty is circumvented by applying the concept that regardless of the nature of 

the process, the entropy change is identical if the initial and final states are the same for each type 

of process. This is equally true for any change of state brought about by irreversible heat transfer 

due to finite temperature gradients across the system and the surroundings. The same 

consideration holds even for mechanically irreversibly processes.   

With the introduction of the definition of entropy the Carnot engine cycle may be redrawn 

on a temperature-entropy diagram as shown in fig. 4.6.  
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Fig. 4.6 Representation of Carnot cycle on T-S diagram 

2.3 Entropy Calculations for Ideal Gases 

For a closed system, the first law provides:  

dU dQ dW= +            

If the process of change occurs under reversible conditions then the above equation becomes: 

( )d H PV TdS PdV− = −  

dH PdV VdP TdS PdV− − = −         ..(4.18) 

However for an ideal gas:
ig
PdH C dT=        ..(4.19) 

Thus combining eqns. 4.18 and 4.19: 

ig
PC dT TdS VdP= +  

Or: ln
ig
PCdS dT d P

R R T
= −          ..(4.20) 

Integrating between an initial (T0, P0

0 0

ln
T ig

P

T

CS dT P
R R T P
∆

= −∫

) and any final (T, P): 

   

Or: 
0

0 0

ln
T

P ig
PP

T

dT PS C R
T P

∆ = −∫         ..(4.21) 
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The last equation provides a direct expression for computing entropy change between two states 
for an ideal gas.  

For the special case of a reversible adiabatic dQ = 0; hence dS= 0. Thus:  

0 0

ln 0
T ig

P

T

CS dT P
R R T P
∆

= − =∫    

For constant ig
PC , it follows that: / ( 1) /

0 0 0/ ( / ) ( / )
ig
PR CT T P P P P γ γ−= =    ..(4.22) 

One may note that eqn. 4.22 provides the same relation as obtained by the Fist Law analysis as in 

eqn. 3.18. 

 

2.4 Mathematical Statement of the 2nd

.revdQ TdS=

 Law: 

Consider a mechanically irreversible adiabatic between two equilibrium states X and Y. In fig. 

4.7 this path is reproduced as a broken line between points. Next the fluid is returned to the 

original state by means two sequential processes: (i) a mechanically reversible adiabatic process 

Y-Z, and then (ii) a reversible isobaric compression Z-X. Assuming that the mechanically 

irreversible process X-Y leads to an entropy change, heat transfer must occur during process Z-X 

(since none occurs on Y-Z). This is because for the reversible return path the same entropy 

change must occur as between X to Y. Since the return path is reversible we must get 

 Thus, integrating this expression for the return path: 

 
4.7 Cycle containing an irreversible adiabatic process A to B 
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X Xt t t t rev
X YY Y

dQS dS S S
T

∆ = = − =∫ ∫         ..(4.23) 

For the entire cycle we must have 0.tU∆ =  Thus, net total work during the cycle may be written 

as: t
revW Q= − . However, since (as depicted by the P-V diagram) a net work would need to be 

done on the system over the cycle, it follows that 0; hence 0.t
revW Q> < Therefore, using eqn. 

4.23, it follows that: 0,
Xt t rev

X Y Y

dQS S
T

− = <∫  that is: .t t
X YS S< This implies that the entropy 

change for the original irreversible step A to B, we have: 0.t t t
Y XS S S∆ = − >  Therefore, we 

conclude that the original irreversible step is accompanied by a positive change of entropy. It may 

be additionally shown that if the original process occurred through irreversible heat transfer 

process an increase of entropy would result likewise.  

It may be pointed out during the return reversible process, since the heat transfer (during 

the isobaric path) occurs under reversible conditions it must occur under infinitesimal 

temperature gradient between the system and surrounding. Thus for the system and the 

surrounding the net entropy change (gives by: /revQ T ) is equal and opposite. Consequently the 

total entropy change of the universe (system + surrounding) is zero during this step. During the 

initial irreversible path X to Y, while entropy increases for the system, for the surrounding there 

is no change. Nevertheless, for the universe as such there is a positive change in entropy.  

Since the above conclusion is not premised on any specific internal nature of the system, 

the above result may be generalized: all irreversible processes are accompanied by a positive 

change of entropy of the universe. This leads to a mathematical statement of the second law: 

0.tS∆ ≥            ..(4.24) 

At this point we can revert to the question that was stated at the beginning of this chapter: 

what change in a system is thermodynamically feasible? The second law provides answer to this, 

i.e., a process can only proceed in a direction that results in a positive change in the total entropy 

of the universe, the limiting value of zero being attained only by a fully reversible process. The 

corollary to this is: no process is possible for which the total entropy of the universe decreases. 

--------------------------------------------------------------------------------------------------------------------- 

Example 4.2 
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A rigid vessel of 0.06 m3 volume contains an ideal gas, CV = (5/2)R, at 500 K and 1 bar. (a) If 15 

kJ of heat is transferred to the gas, determine its entropy change. (b) If the vessel is fitted with a 

stirrer that is rotated by a shaft so that work in the amount of 15 kJ is done on the gas, what is the 

entropy change of the gas if the process is adiabatic? What is ΔStotal? 

(Click for solution) 

--------------------------------------------------------------------------------------------------------------------- 

Example 4.3 

An ideal gas, Cp = (7/2)R, is heated in a steady-flow heat exchanger from 70°C to 190°C by 

another stream of the same ideal gas which enters at 320°C. The flow rates of the two streams are 

the same, and heat losses from the exchanger are negligible. Calculate the molar entropy changes 

of the two gas streams for both parallel and countercurrent flow in the exchanger. What is ΔStotal

GS
•

 

in each case? 

Click for solution 

--------------------------------------------------------------------------------------------------------------------- 

2.5 Entropy Balance for Open Systems 

As with energy balance for open systems, once can extend the equation 4.24 to a generalized 

entropy balance equation that may be written for the system shown in fig. 3.6.  There is, however, 

an important point of departure from the first law. Unlike energy, entropy is not a conserved 

quantity for real world processes in which both mechanical and thermal irreversibilities are 

inevitable. Hence for such processes are attended by a positive entropy generation rate, . This 

conclusion may be expressed in mathematical terms as follows:  
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( )( ) 0
t

CV surr
Gfs

d mS dSS m S
dt dt

• •

∆ + + = ≥        ..(4.25) 

As with eqn. 4.24, for eqn. 4.25 too, the left side reduces to zero if the processes occurring in the 

open system are totally reversible; that is, both with respect to the system as well to the 

surroundings. Or else there is a net entropy generation.  

A process is said to be internally reversible if all the processes occurring within the 

system are mechanically reversible, that is they are not subject to dissipative forces.  External 

reversibility, on the other hand, signifies that all heat transfer between the system and 

surrounding occur under infinitesimal gradients and are therefore thermally reversible. In 

principle reversible heat transfer is possible if the surroundings have heat reservoirs with 

temperatures equal to those of the control surface or if reversible Carnot engines operate between 

the control-surface temperatures and the heat-reservoir temperatures.  

We next expand eqn. 4.25 to a further level of detail.  Let there be heat transfer at the rate 

jQ
•

at a particular part of the control surface of the open system where the surrounding 

temperature is given by , .jTσ  

Thus: 
,

t
jsurr

j j

QdS
dt Tσ

•

= −∑          ..(4.26) 

Here, j runs over all the heat reservoirs associated with the system. The negative sign is used for 

the entropy term for the surroundings as heat transfer terms by convention are associated with the 

system.  
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Putting eqn. 4.26 in eqn. 4.25 one obtains: 

,

( )( ) 0jCV
Gfs

j j

Qd mSS m S
dt Tσ

•
• •

∆ + − = ≥∑        ..(4.27) 

For steady flows through the control volume eqn. 4.27 reduces to: 

,

( ) 0j
Gfs

j j

Q
S m S

Tσ

•
• •

∆ − = ≥∑          ..(4.28) 

Further, for the simplest case of one inlet and exit, and one surrounding temperature: 

( ) 0Gfs
Qm S S
Tσ

•
• •

∆ − = ≥          ..(4.29)
 

--------------------------------------------------------------------------------------------------------------------- 

Example 4.4  

Ten kmol per hour of air is throttled from upstream conditions of 25°C and 10 bar to a 

downstream pressure of 1.2 bar. Assume air to be an ideal gas with CP

We next derive the expressions for work exchange between system and surroundings for an open 

system operating under steady state by incorporating the idea of irreversibility. As we have 

discussed earlier, mechanical irreversibilities lead to loss of work due to dissipative conversion to 

heat. Thus, if work is to be delivered by an open system the maximum work obtains when the 

processes are mechanically reversible, we call that ideal work. Conversely, when work is done on 

the system the ideal work provides the minimum work needed to change the fluid state between 

the inlet and the exit. This is because an extra work would need to be provided beyond the ideal 

work against mechanical dissipative forces.  From the considerations in the last section it may be 

 = (7/2)R. (a) What is the 

downstream temperature? (b) What is the entropy change of the air in J/molK? (c) What is the 

rate of entropy generation in W/K? (d) If the surroundings are at 20°C, what is the lost work?  

Click for solution 

--------------------------------------------------------------------------------------------------------------------- 

 

 

2.6 Ideal and Lost Work for Flow Systems 
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evident that ideal work obtains when the processes associated with the open system are both 

internally and externally reversible. For such a case one may write eqn. 4.29 as follows:  

( ) 0Gfs
Qm S S
Tσ

•
• •

∆ − = =          ..(4.30) 

Thus: ( ) fsQ T m Sσ

• •

= ∆           ..(4.31) 

From the 1st

21 ( / ) ( / )
2

idealc c
fs

H u g z g g m Q W
• • •  ∆ + + = +    

 Law applied to the ideal case: 

:       ..(4.32) 

Putting eqn. 4.31 into 4.32 and simplifying (assuming negligible kinetic and potential energy 

changes): ( )ideal fs
fs

W H m T S mσ

• • • = ∆ − ∆  
       ..(4.33) 

Or: [ ]ideal fsW m H T Sσ

• •

= ∆ − ∆
         ..(4.34)

 

In real processes however, actual work involved will depend on the extent of associated 

irreversibilities; hence we define lost work as follows: 

lost actual idealW W W
• • •

= −           ..(4.35) 

Now from eqn. 4.32 for the simplest case where kinetic and potential energy changes are 

negligible:  

actualactual
fs

H m Q W
• • • ∆ = +  

          ..(4.36) 

Using eqns. 4.34 and 4.35:  

( )lost fs actualW T S m Qσ

• •

= ∆ −          ..(4.37) 

Applying eqn. 4.30, to a real process: ( ) actual
Gfs

Qm S S
Tσ

•
• •

∆ − =
    ..(4.38)

 

Or: ( ) fs GactualQ T m S T Sσ σ

• • •

= ∆ −         ..(4.39)  

Thus from eqns. 4.37 and 4.39 it follows that: 
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lost GW T Sσ

• •

=            ..(4.40) 

Eqn. 4.40 suggests that greater the entropy generation rate GS
•

 due to process irreversibility, 

greater is the lost work. Since irreversibilities implicit in a process cannot be calculated 

theoretically, it is indirectly expressed by a process efficiency factor, η . The expression for such 

efficiency is as follows.  

For work done by system, /actual idealW Wη
• •

=     .   .(4.41) 

For work done on a system, /ideal actualW Wη
• •

=       ..(4.42) 

--------------------------------------------------------------------------------------------------------------------- 

Example 4.5 

A steady-flow adiabatic turbine (expander) accepts gas at conditions T1 = 500 K, P1 = 6 bar, and 

discharges at conditions T2 = 371 K, P2 = 1.2 bar. Assuming ideal gases, determine (per mole of 

gas) Wactual, Wideal, Wlost, and entropy generation rate. Tsurr = 300 K, CP

As with internal energy the concept of entropy may be provided a microscopic, molecular 

interpretation. However, it may be noted that unlike internal energy, molecules do not possess 

entropy. Entropy is purely a measure thermodynamic probability associated with the distribution 

of various positional and energy states that molecules of a substance may exist under given 

conditions of temperature and pressure.  To understand this, consider a simple system comprised 

of a rigid, insulated vessel divided into two compartments of equal volume by a partition (of 

/R = 7/2.  

Click for solution 

--------------------------------------------------------------------------------------------------------------------- 

Example 4.6 

A steam turbine operates adiabatically at a power level of 3500 kW. Steam enters the turbine at 

2400 kPa and 500°C and exhausts from the turbine at 20 kPa. What is the steam rate through the 

turbine, and what is the turbine efficiency? 

Click for solution 

------------------------------------------------------------------------------------------------------------------- 

Appendix: 4.1  

Entropy: A Statistical Thermodynamic Interpretation 
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negligible volume, fig. A.4.1). Initially, the left compartment contains gas at a temperature 1T  and 

pressure 1,P  and the volume of each compartment is 1
tV ; the right compartment is fully evacuated. 

The system is at equilibrium under the above conditions, and is described by the ideal  

 

 

Fig. A.4.1 Ideal Gas Expansion into an evacuated chamber 

gas EOS. At a certain point of time the partition is ruptured and the gas contained in the left 

compartment allowed to fill the entire system volume. Eventually the gas would reach a new 

equilibrium state (2) that is characterized by a pressure 1 / 2P throughout. For the above process, 

applying the first law: 

But : 0
U Q W

Q W
∆ = +

= =
 

Hence, 0U∆ =          ..(A.4.1.1) 

This implies that for the gas initially on the left side: 2 10; orT T T∆ = =  

The entropy change per mole of the gas then is given by eqn. 4.21: 

Thus, P

dT dP dPS C R R
T P P

∆ = − = −  

2 2

1 1

ln ln ln 2P VS R R R
P V

∆ = − = =        ..(A.4.1.2) 

From a microscopic point of view the molecular state variables are: position and energy. Since 

there is no change of temperature during the expansion process, the internal energy of each 

molecule does not change. There, is, however, a possible change in the position occupied a 

molecule. After the expansion a molecule may be located either on the left half or in the right half 

of the compartment at any point of time. We may say, in a simplified sense, there are two 

possible positions that it may have. Considering one mole of gas as basis, if there are, in general, 

j such states (either of position or energy) that a molecule may exist in, the total number of ways 
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that an Avogadro number of molecules  23( 6.023 10 )AN x=  may be distributed over all the 

available states is given by (with nj molecules in the jth

1 2

1 2

!   ; ...
( !)( !)...( !)

A
A j

j

N N n n n
n n n

Ω = = + + +

 state): 

     ..(A.4.1.3) 

The notation used for the right side of the above equation, Ω  is called the thermodynamic 

probability. Thus for the system in question, in the initial state all the molecules are located in the 

left half of the compartment, so there is only ‘one’ positional state; thus:     

1

! 1
( !)(0!)

A

A

N
N

Ω = =         ..(A.4.1.4) 

However, in the final state as there are two possible positional states, the corresponding maximum 

thermodynamic probability is: 

2

!
[( / 2)!][( / 2)!]

A

A A

N
N N

Ω =        ..(A.4.1.5) 

The description ‘maximum’ is important, as the exact number of molecules that may be 

distributed between the two compartments at any point of time need not be as the same, as 

assumed in eqn. A.4.1.5. In general there could be many possible bifurcations of the total number 

molecules into the two compartments, each characterized by a corresponding thermodynamic 

probability. However, simple calculations suggest that 2Ω has the highest possible value if each 

compartment contains equal number of molecules, i.e., NA

  lnS k= Ω

/2. Indeed, intuitively speaking, one 

would expect that to be the most likely distribution in the second equilibrium state. This implies 

that the system would tend to move to an equilibrium state that has the highest of all the possible 

values of the thermodynamic probability that one may attribute to the system. It was Ludwig 

Eduard Boltzmann (1844–1906) the Austrian physicist, who is credited with the development of 

the statistical concept of nature (now known as statistical mechanics), first proposed the relation 

between entropy and thermodynamic probability:   

         ..(A.4.1.6) 

 Ak = Boltzmann constant = R / N  

If one applies the equation to the expansion process, one obtains the following relation: 

2
2 1 2 1

1

= ln ln lnS S S k k k Ω
∆ = − Ω − Ω =

Ω
     ..(A.4.1.7) 
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Thus: ! ln
[( / 2)!][( / 2)!]

A

A A

NS k
N N

 
∆ =  

 
       

Or: [ ] ln ! 2 ln( / 2)!A AS k N N∆ = −        ..(A.4.1.8) 

By the well-known Stirling’s formula, or large values of an integer N, one has: 

ln ! lnN N N N= −         ..(A.4.1.9) 

On applying eqn. A.4.1.9 in A.4.1.8 and simplifying the following result obtains: 

ln ln 2 ln 2
/ 2
A

A A

A

NS kN kN R
N

 
∆ = = = 

 
     ..(A.4.1.10) 

Thus we see that the results of both eqns. A.4.1.2 and A.4.1.10 are identical. There is thus a 

convergence between the macroscopic and microscopic description of the concept of entropy.  

It is particularly significant that the above result obtains if one assumes the highest value 

of 2Ω  as its most likely value. It may be argued that the highest value of 2Ω corresponds to the 

most disordered state at the molecular level. Indeed extending the argument, since 1 1Ω = the 

initial state is more ordered than state 2, as in the former all molecules are characterized by a 

single position coordinate, and therefore the probability of finding a molecule in that position is 

unity; in other words one has complete (or ‘certain’) information about position of any molecule. 

In contrast in the second state the probability of finding a molecule at any one position is half. 

This obtains if each compartment contains exactly half the total number of molecules. Any other 

distribution would be less disordered than this state, and also less probable! This is the reasoning 

which lies at the root of the popular description of entropy as a measure of disorder at the 

molecular level. It follows that a system at non-equilibrium state (say, at the point of rupture of 

the partition) always tends to the most disordered molecular state when it attains a new 

equilibrium. Since one has less microscopic information about a system with a greater degree of 

disorder, ‘information’ is also described as negentropy.  

-------------------------------------------------------------------------------------------------------------------  

Assignment- Chapter 4 
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Chapter 5 Thermodynamic Properties of Real Fluids 

It has already been demonstrated through the first and second laws, that the work and heat 

interactions between a system and its surroundings may be related to the state variables such as 

internal energy, enthalpy and entropy. So far we have illustrated the calculations of energy and 

entropy primarily for pure (component) ideal gas systems. However, in practice this is an 

exception rather than a rule as one has to deal with not only gases removed from ideal gas state, 

but also with liquids and solids. In addition, mixtures rather than pure components are far more 

common in chemical process plants. Therefore, computation of work and heat interactions for 

system comprised of real fluids requires more complex thermodynamic formulations. This 

chapter is devoted to development of such relations that can help calculate energy requirements 

for given changes of state for real systems. As in the case of ideal gases the goal is to correlate 

the energy and entropy changes for real fluids in terms of their volumetric and other easily 

measurable macroscopic properties.  

 

5.1 Thermodynamic Property Relations for Single Phase Systems 

Apart from internal energy and enthalpy, two other ones that are particularly useful in depiction 

of thermodynamic equilibrium are Helmholtz free energy (A) and Gibbs free energy (G). We 

defer expanding upon the concept of these two types of energies to chapter 6; however, we state 

their definition at this point as they are instrumental in the development of property correlations 

for real fluids. 

• Specific Helmholtz free energy: A U TS= −       ..(5.1) 

• Specific Gibbs free energy:G H TS= −        ..(5.2) 

For a reversible process in a closed system the first law gives: 

dU dQ dW= +  

Or: 

dU TdS PdV= −           ..(5.3) 

Using H U PV= +  and taking a total differential of both sides:  
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dH dU PdV VdP= + +          ..(5.4) 

Putting eqn. 5.3 in 5.4 we get:  

dH TdS VdP= +           ..(5.5) 

In the same manner as above one may easily show that the following two relations obtain: 

dA SdT PdV= − −           ..(5.6) 

dG VdP SdT= −           ..(5.7) 

Equations 5.3 to 5.7 comprise the fundamental energy relations for thermodynamic systems 

where there is a single phase with constant composition. In principle, they may be integrated to 

compute the energy changes for a system transiting from one equilibrium state to another.  

5.2 Maxwell Relations 

All the four types of energy relations above satisfy the mathematical condition of being 

continuous variables, as they are themselves functions of state variables. One can thus apply of 

the criterion of exact differential for these functions. 

For a function of the form ( , )P P X Y=  one can write the following total differential: 

Y X

P PdP dX dY MdX NdY
X Y
∂ ∂   = + = +   ∂ ∂   

       ..(5.8)  

Where: 
Y X

P PM and N
X Y
∂ ∂   = =   ∂ ∂   

       ..(5.9) 

2 2

Further, 
X Y

M P N Pand
Y Y X X X Y

∂ ∂ ∂ ∂       = =       ∂ ∂ ∂ ∂ ∂ ∂       
     ..(5.10) 

It follows: 
X Y

M N
Y X

∂ ∂   =   ∂ ∂   
         ..(5.11) 

Applying eqn. 5.11 to 5.3, 5.5, 5.6 and 5.7 one may derive the following relationships termed 

Maxwell relations: 

S V

T P
V S
∂ ∂   = −   ∂ ∂   

          ..(5.12) 

S P

T V
P S
∂ ∂   =   ∂ ∂   

          ..(5.13) 
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V T

P S
T V
∂ ∂   =   ∂ ∂   

          ..(5.14) 

P T

V S
T P
∂ ∂   = −   ∂ ∂   

          ..(5.15) 

 

5.4 Relations for Enthalpy, Entropy and Internal Energy 

One may conveniently employ the general energy relations and Maxwell equations to obtain 

expressions for change in enthalpy and entropy and internal energy for any process, which in turn 

may be used for computing the associated heat and work interactions. 

Let ( , )H H T P=  

Then:
P T

H HdH dT dP
T P

∂ ∂   = +   ∂ ∂   
 

But P
P

H C
T

∂  = ∂ 
 

Thus: P
T

HdH C dT dP
P

∂ = +  ∂ 
        ..(5.16) 

Using 
T T

H SdH TdS VdP T V
P P

∂ ∂   = + ⇒ = +   ∂ ∂   
      ..(5.17) 

From Maxwell relations as in eqn. 5.15:
T P

S V
P T
∂ ∂   = −   ∂ ∂   

    ..(5.18) 

Thus using eqns. 5.17 and 5.18 in 5.16 we get: 

P
P

VdH C dT V T dP
T

 ∂ = + −   ∂  
        ..(5.20) 

In the same manner starting from the general function: ( , ) an d ( , )  U U T V S S T P= =  and 

applying appropriate Maxwell relations one may derive the following general expressions for 

differential changes in internal energy and entropy. 

 V
V

PdU C dT T P dV
T

 ∂ = + −  ∂  
        ..(5.21) 
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P
P

dT VdS C dP
T T

∂ = −  ∂ 
         ..(5.22) 

Or, alternately: V
V

dT PdS C dV
T T

∂ = +  ∂ 
       ..(5.23) 

Thus, eqns. 5.20 to 5.23 provide convenient general relations for computing enthalpy, internal 

energy and entropy changes as function of volumetric properties and specific heats. If a fluid is 

described by a suitable EOS, these equations may be conveniently integrated to obtain analytical 

expressions for energy and entropy changes.    

--------------------------------------------------------------------------------------------------------------------- 

( )P V b RT− =

Example 5.1 

Derive an expression for enthalpy change of a gas during an isothermal process assuming using the 

following EOS:  
(Click here for solution) 

--------------------------------------------------------------------------------------------------------------------- 

5.5 Residual Property Relations 

An alternate method of computing energy and entropy changes for real gases involves the 

definition of residual property. The specific residual property RM is defined as follows: 

 ( , ) ( , )R igM M T P M T P= −          ..(5.24) 

Where, ( , )M T P  is the specific property of a real gas at a given T & P, and ( , )igM T P is the 

value of the same property if the gas were to behave ideally at the same T & P. Thus for example: 
R igV V V= −  

Using the generalized compressibility factor ‘Z’: 

( / ) ( / )RV ZRT P RT P= −  

( 1) /RV Z RT P= −           ..(5.25) 

The residual properties are usually used for gases only. Using such a property for a liquid (or 

solid) is inconvenient as then it would also include the property change of vapourization (and 

solidification) which generally are large in magnitude. This detracts from the advantage of 

working with the residual property as a measure of small corrections to ideal gas behaviour. Thus 

the use of residual functions is restricted to prediction of real gas behaviour only. To exploit the 
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concept of residual properties we take advantage of the Gibbs free energy as it can be used as a 

generating function for other thermodynamic properties.  

Derivation of Residual functions: 

We start from the generic equation:G H TS= −       ..(5.2) 

And dG VdP SdT= −           ..(5.7) 

Taking the total differential for the function /G RT : 

2

1G Gd dG dT
RT RT RT

  = − 
 

         ..(5.26) 

Substituting eqn. 5.2 and 5.7 in 5.26 we get: 

2

G V Hd dP dT
RT RT RT

  = − 
 

         ..(5.27) 

One may write the same equation specifically for an ideal gas, whence: 

2

ig ig igG V Hd dP dT
RT RT RT

  = − 
 

         ..(5.28) 

Subtracting eqn. 5.28 from 5.27:  

2

R R RG V Hd dP dT
RT RT RT

  = − 
 

         ..(5.29) 

Thus we may write the following further generative relations: 

( / )R R

T

V G RT
RT P

∂ =  ∂ 
          ..(5.30) 

( / )R R

P

H G RTT
RT T

∂ = −  ∂ 
         ..(5.31) 

And further:
R R RS H G

RT RT RT
= −          ..(5.32) 

P

0
0

From eqn. 5.29: 
R R R

P P

G G Gd
RT RT RT =

  = − 
 ∫ ; but 

0

0
R

P

G
RT =

=  
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P

0
Thus: 

R RG V dP
RT RT

= ∫          ..(5.33) 

P

0
Putting eqn. 5.25 in 5.33: ( 1)

RG dPZ
RT P

= −∫       ..(5.34) 

Differentiating eqn. 5.34 w.r.t T in accordance with 5.31 gives: 

P

0

R

P

H Z dPT
RT T P

∂ = −  ∂ ∫          ..(5.35) 

Finally using eqns 5.32, 5.34, and 5.35:  

P P

0 0
( 1)

R

P

S Z dP dPT Z
R T P P

∂ = − − − ∂ ∫ ∫         ..(5.36) 

The last two equations may be expressed in alternative forms in terms of reduced temperature and 
pressure: 

2

0

r

r

R P r
r

C r rP

dPH ZT
RT T P

 ∂
= −  ∂ 

∫          ..(5.37) 

0 0
( 1)r r

r

R P Pr r
r

r r rP

dP dPS ZT Z
R T P P

 ∂
= − − − ∂ 

∫ ∫        ..(5.38) 

--------------------------------------------------------------------------------------------------------------------- 

Example 5.2 

Derive an expression for enthalpy change of a gas during an isothermal process assuming using 

the following EOS: Z = 1 + APr / T

RH P B dB
RT R T dT

 = − 
 

r 

(Click here for solution) 

--------------------------------------------------------------------------------------------------------------------- 

5.6 Residual Property Calculation from EOS 

From Virial EOS: 

Using 5.35 and 2.12 one obtains: 

          ..(5.39) 
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Next, on substituting eqns. 2.13 – 2.15 in 5.37 the following relations result: 

1.6 4.2

1.097 0.8940.083 0.139
R

r
C r r

H P
RT T T

ω
    

= − + −    
    

      ..(5.40) 

Similarly using 5.36 and 2.12 we get: 

RS P dB
R R dT

 = −  
 

          ..(5.40) 

Finally employing eqns. 2.13 – 2.15 in 5.38: 

1.6 4.2

0.675 0.722R

r
r r

S P
R T T

ω
    

= − +    
    

        ..(5.41) 

 

From Cubic EOS: 

One may use the following form of the cubic EOS presented in chapter 2: 

2 2

RT aP
V b V ubV wb

= −
− + +

         ..(2.21) 

3 2Or equivalently: 0Z Z Zα β γ+ + + =        ..(2.23) 

While the eqns. 5.35 and 5.36 are useful for volume explicit EOS, they are unsuitable for cubic 

EOS which are pressure explicit. For the latter type of EOS one may show that the appropriate 

equations for residual enthalpy and entropy are (see S.I. Sandler, Chemical, Biochemical and 

Engineering Thermodynamics, ch. 6, 4th Edition, Wiley India, 2006):  

11
R V

V
V

H PZ T P dV
RT RT T=∞

 ∂ = − + −  ∂  
∫        ..(5.42) 

1ln
R V

V
V

S P RZ dV
R R T V=∞

 ∂ = + −  ∂  
∫         ..(5.43) 

The above relations may be applied to the various cubic EOSs to obtain the necessary residual 

property relations. The final results are shown below. 

From RK-EOS: 
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3( 1) ln
2

RH a Z BZ
RT bRT Z

+ = − −  
 

        ..(5.44) 

ln( ) ln
2

RS a Z BZ B
R bRT Z

+ = − −  
 

        ..(5.47) 

2 2

1/2

0.42748 ( ) 0.08664, ;

( )

C RK r C

C C

RK r r

R T T RTwhere a b
P P

T T

α

α −

= =

=

 

For SRK-EOS:  

1( 1) ln
R

aT a
H Z BTZ
RT RT bRT Z

∂  −  +∂   = − + −  
 

       (5.48) 

1ln( ) ln
RS a Z BZ B

R bRT T Z
∂ + = − −  ∂  

       ..(5.49) 

2(0.48 1.574 0.176 )
( )SRK r C

a a
T T TT

ω ω
α

∂  = − + − ∂
      ..(5.51) 

2 2

2 1/2 2

0.42748 ( ) 0.08664, ;

, ( ) [1 (0.48 1.574 0.176 )(1 )]

C SRK r C

C C

SRK r r

R T T RTwhere a b
P P

and T T

α

α ω ω

= =

= + + − −

 

 

For PR-EOS: 

(1 2)( 1) ln
2 2 (1 2)

R
aT a
TH Z BZ

RT bRT Z B

 ∂  −    ∂ + +  = − +  
+ − 

      ..(5.52) 

1 (1 2)ln( ) ln
2 2 (1 2)

RS a Z BZ B
R TbRT Z B

 ∂ + +
= − −  ∂ + − 

      ..(5.53) 

2(0.37464 1.5422 0.62992 )
( )PR r C

a a
T T TT

ω ω
α

∂  = − + − ∂
     ..(5.54) 
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2 2

2 1/2 2

0.45724 ( ) 0.07779, ;

, ( ) [1 (0.37464 1.5422 0.62992 )(1 )]

C PR r C

C C

PR r r

R T T RTwhere a b
P P

and T T

α

α ω ω

= =

= + + − −  

As part of computing the residual enthalpy or entropy (and internal energy) at any set of 

temperature and pressure, the molar volume or correspondingly Zvap needs to be first computed 

employing the usual algorithm for solving cubic EOS described in section 2.3.3.  

--------------------------------------------------------------------------------------------------------------------- 

Example 5.3 

Derive expressions for HR, SR

dH and dS

 from RK-EOS. 

(Click here for solution) 

-------------------------------------------------------------------------------------------------------------------- 

5.7 Generalized Correlations for computing for a real gas: 

The approach based on the use of the compressibility factors can be applied to the present 

instance to evolve generalized correlations for computing enthalpy and entropy changes for 

gases. We start with the Pitzer-type expression for the compressibility factor:  
0 1Z Z Zω= +            ..(2.25) 

Differentiating with respect to the reduced temperature we get: 

0 1

r r r
r r rP P P

Z Z Z
T T T

ω
     ∂ ∂ ∂

= +     ∂ ∂ ∂     
        ..(5.55) 

Thus using eqn. 5.54 we may recast eqns. 5.37 and 5.38 as follows:  

0 1
2 2

0 0

r r

r r

P PR
r

r r
c r r rP P

dPH Z ZT T
RT T T P

ω
   ∂ ∂

= − −   ∂ ∂   
∫ ∫        ..(5.56) 

And:  
0 1

0 1

0 0

1
Pr r

r r

PR
r r

r
r r r rP P

dP dPS Z ZT Z Z
R T P T P

ω
      ∂ ∂   = − + − − +   ∂ ∂         
∫ ∫     ..(5.57) 

Both the above equations may be rewritten individually as follows:  
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( )
c

R

c

R

c

R

RT
H

RT
H

RT
H 10 )(ω+=          ..(5.58) 

Where, 
( )0

0
2

0

r

r

R P

r
c r P

H ZT
RT T

 ∂
= −  ∂ 

∫
                  ..(5.59a) 

And: 

 

1 1
2

0

( ) r

r

PR
r

r
c r rP

dPH ZT
RT T P

 ∂
= −  ∂ 

∫
                  ..(5.59b) 

Similarly:  

( )0
1( )

RR RSS S
R R R

ω= +          ..(5.60) 

 

( )0
0

0

0

1
Pr

r

R
r

r
r rP

S dPZT Z
R T P

  ∂ = − + − ∂   
∫                  ..(5.61a) 

( )1 1
1

0

r

r

R P
r

r rP

S dPZ Z
R T P

  ∂ = − + ∂   
∫                  ..(5.61b)

 

The term 
( )0R

c

H
RT

 in eqn. 5.59a constitutes the first order enthalpy departure, and 
1( )R

c

H
RT

 (in eqn. 

5.59b) the second order (with respect to simple fluids) enthalpy departure at specified Tr and Pr

The evaluation of the integrals in eqns. 5.59 to 5.62 may be carried out assuming an EOS. 

The most widely used approach is that of Lee and Kesler who employed a modified form of the 

BWR EOS (eqn. 2.17) to extend their generalized correlation to residual property estimation. 

Figs. 5.1 and 5.2 respectively provide values of 

. 

The same is true for the corresponding entropic terms provided by eqns. 5.61a and 5.61b. 

0 1( ) / , an d( ) /R R
C CH RT H RT  respectively. 

Similar plots for the entropy terms 0 1( ) / , an d( ) /R RS R S R are also available; however, here the 

plot of the entire entropy term ( )RS−  as function of Tr and Pr is shown in fig. 5.3. Table of 
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values of all the above (eqns. 5.59 to 5.62) are also available as functions of Tr and Pr

 

Fig. 5.1 Correlation of 

 at discrete 

intervals (see for example: J.M. Smith, H.C. Van Ness and M.M. Abbott, Introduction to 

Chemical Engineering Thermodynamics, 6th ed., McGraw-Hill, 2001. 

 

0
R CH RT− drawn from tables of Lee-Kesler (Source: AIChE  J., pp. 510-527, 

1975)  
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Fig. 5.2 Correlation of 1
R CH RT− drawn from tables of Lee-Kesler (Source: AIChE  J., pp. 510-527, 

1975) 
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Figure 5.3 Generalized entropy departure functions using corresponding states. 
[Source: O.A. Hougen, K.M. Watson, and R.A. Ragatz, Chemical Process 

Principles Charts, 2nd ed., John Wiley & Sons, New York, 1960] 
 
 

5.8 Computation of ΔH and ΔS for a Gas using Generalized Departure Functions 

The residual function equations presented in the last section are particularly useful for estimating 

finite changes in enthalpy and entropy for real gases undergoing change in either closed or open 

system processes. We consider that a pure fluid changes state from 1 1 2 2( , ) to ( , );T P T P  shown 

schematically in fig. 5.4.  
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Fig. 5.4 Schematic of a General Thermodynamic Process on P – T co-ordinates 

Since the departure functions  andR RH S capture deviations from ideal gas behaviour at the same 

temperature as the real gas, one can conceive of the pathway between states ‘1’ and ‘2’ to be 

decomposed into following steps (see fig 5.5): 

a) Real gas state at 1 1( , )T P  to ideal gas state (ig) at 1 1( , )T P  

b) Ideal gas state at 1 1( , )T P  to ideal gas state at 2 2( , )T P  

c) Ideal gas state at 2 2( , )T P to real gas state at 2 2( , )T P  

 

5.5 Pathway for calculating ΔH and ΔS for Real Gases 

• For step ‘a’ the change of enthalpy is given by: 1 1 1
ig RH H H− = −  

• For step ‘b’ the change of enthalpy is given by: 2 1
ig ig igH H H− = ∆    

• For step ‘c’ the change of enthalpy is given by: 2 2 2
ig RH H H− =  
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Therefore, the overall change of enthalpy is given by: 
2

1
2 1 2 1

TR R ig ig
pT

H H H H H H C dT∆ = − = − + ∆ ∫   

Using eqn. 3.8: 2

1
2 1 2 1

TR R ig
pT

H H H H C dT− = − + ∫        ..(5.63) 

The same considerations apply for computing the change of entropy between the two states:  

2 1 2 1
R R igS S S S S S∆ = − = − + ∆   

Using eqn. 4.21: 2

1
2 1 2 1 2 1/ ln( / )

TR R ig
pT

S S S S C dT T R P P− = − + −∫       ..(5.64)            

Generalized residual property relations may be used for calculation of change in internal energy 

i.e. 2 1U U− for a process in the following manner: 

 2 1 2 2 2 1 1 1( ) ( )U U H PV H PV− = − − −  

Or: 2 1 2 1 2 2 1 1( ) ( )U U H H PV PV− = − − −                 ..(5.65) 

The term 2 1( )H H− can be calculated using eqn. 5.63, while the term 2 2 1 1( )PV PV−  may be 

computed after obtaining 1 2and V V  applying the generalized compressibility factor approach.  

One may, however, also use the generalized residual property charts for internal energy for the 

same purpose (fig. 5.6).  

--------------------------------------------------------------------------------------------------------------------- 

Example 5.5 

Estimate the final temperature and the work required when 1 mol of n-butane is compressed 

isentropically in a steady-flow process from 1 bar and 50oC to 7.8 bar.  

(Click here for solution) 

--------------------------------------------------------------------------------------------------------------------- 
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Figure 5.6 Generalized internal energy departure functions using corresponding states 
[Source: O.A. Hougen, K.M. Watson, and R.A. Ragatz (1960), Chemical Process 

Principles Charts, 2nd ed., John Wiley & Sons, New York] 
 

5.9 Extension to Gas Mixtures 

The generalized equations developed for and SH∆ ∆ in the last section may be extended to 

compute corresponding changes for a real gaseous mixture. The method used is the same as that 
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developed in section 2.4 through the definition of pseudo-critical mixture properties using linear 

mixing rules:  

, ,C m i C i
i

T y T=∑    , ,C m i C i
i

P y P=∑    m i i
i

yω ω=∑   ..(2.32) 

Using the above equations pseudo-reduced properties are computed: 

, ,/r m C mT T T=   and , ,/r m C mP P P=      

Further calculations of changes in internal energy, enthalpy, and entropy follow the same 

principles developed in the last section.  

--------------------------------------------------------------------------------------------------------------------- 

3 6 2 9 3
1 4.196 154.565 10 81.076 10 16.813 10ig

pC x T x T x T− − −= + − +

Example 5.6 

Calculate the changes in enthalpy and entropy per mole when a mixture of 70 mole % ethylene 

(1) and 30 mole% propylene (2) at 323K and 10 bar is taken to 60 bar and 600 K using the 

generalized compressibility factor approach. 

 ; 

 3 6 2 9 3
2 3.305 235.821 10 117.58 10 22.673 10ig

pC x T x T x T− − −= + − +  
(Click here for solution) 

--------------------------------------------------------------------------------------------------------------------- 

5.10 Relations for ΔH and ΔS for Liquids 

One starts with the generic equations for dH and dS developed in section 5.4. 

P
T

VdH C dT V T dP
P

 ∂ = + −  ∂  
        ..(5.20) 

P
P

dT VdS C dP
T T

∂ = −  ∂ 
         ..(5.22) 

As discussed in section 2.3, for liquids it is often simpler to use volume expansivity and 

isothermal compressibility parameters for computing thermodynamic properties of interest.  Thus 

from eqn. 2.3:  

1  ,   
P

VVolume Expansivity
V T

β ∂ ≡  ∂ 
       

Using eqn. 2.3 in 5.20 and 5.22 the following relations obtain:  
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[ ]1PdH C dT T dPβ= + −          ..(5.66) 

P
dTdS C VdP
T

β= −           ..(5.67) 

The above equations may also be used to compute the properties of a compressed liquid state. 

Since the volumetric properties of liquids are very weakly dependent of pressure one can often 

use the saturated liquid phase properties as reference points and integrate the eqns. 5.66 to 5.67 

(at constant temperature) to obtain enthalpy and entropy respectively. The relevant equations are: 

(1 )
sat

i

Psat
i i i iP

H H V T dPβ= + −∫          ..(5.68) 

sat
i

Psat
i i i iP

S S V dPβ= − ∫           ..(5.69) 

In the last two equations, the molar volume Vi ( .)sat
iV liq may be set equal to , and the volume 

expansivity approximated to that at the saturated liquid point at the given temperature. 

 

5.11 Applications to real fluid processes in process plant equipments 

In a typical process plant one encounters a variety of flow devices such pumps, compressors, 

turbines, nozzles, diffusers, etc. Such devices are not subject to heat transfer by design as are heat 

exchangers, condensers, evaporators, reactors, etc. However, the flow devices typically are 

subject to mechanical irreversibility owing to existence of dissipative forces such as fluid 

viscosity and mechanical friction, which results in reduction of their efficiency. In addition such 

devices may be subject to thermal irreversibility as their operation may not be truly adiabatic. 

Therefore, it is necessary to compute the efficiency of such devices in relation to a perfectly 

reversible (isentropic) process between their inlet and outlet.   

The performance of a flow device is expressed in terms of isentropic efficiency in which 

the actual performance of the device is compared with that of an isentropic device for the same 

inlet conditions and exit pressure. For example, the isentropic efficiency Tη of a turbine (which 

essentially converts fluid enthalpy to shaft work, fig. 5.7) is defined as: 

i e
T s

i e

H HPower output of  the actual turbineη =
Power out put of  the turbine,if  it were isentropic H H

−
=

−
    ..(5.69) 
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Fig.5.7 Schematic of a Turbine 

Where, Hi = enthalpy of the fluid at the inlet of the turbine, He

s
eH

 = enthalpy of the fluid at the exit 

of the actual turbine,  = enthalpy of the fluid at the exit of the turbine, if it were isentropic.        

 Similarly, the isentropic efficiency cη  of a compressor (fig. 5.8) or a pump pη  (which 

convert applied shaft work to fluid enthalpy) is given by:  

( )
( )

( ) 
s s

s e i
c P

s e i

W H Hor
W H H

η η −
= =

−
        ..(5.70) 

Where, iH = enthalpy of the fluid at the inlet to the compressor (or pump), eH = enthalpy of the 

fluid at the exit of the actual compressor (pump), and s
eH  = enthalpy of the fluid at the exit of an 

isentropic compressor (or pump), and sW represents the shaft work per mole (or mass) of fluid in 

the two situations. 

 
Fig.5.8 Schematic of a Turbine 
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The isentropic efficiencyηN

2
2
2

2

( ) / 2
( ) / 2 ,

       
          N s

V Kinetic energy of gas leaving the actual nozzle
V Kinetic energy of gas leaving the nozzle if it were isentropic

η = =

 of a nozzle, which is used to achieve high fluid velocity at 

exit (by conversion of enthalpy to kinetic energy) is given by: 

   ..(5.71)  

--------------------------------------------------------------------------------------------------------------------- 

Example 5.7 

A certain gas is compressed adiabatically from 293 K and 135 KPa to 550 KPa. What is the work 

needed? What is the final T2? Assume ideal gas behavior. Compressor η = 0.8. 

For the gas: Cp
ig = 1.65 + 8.9 x 10-3T – 2.2 x 10-6 T2 

--------------------------------------------------------------------------------------------------------------------- 

Assignment - Chapter 5 

 



Chapter 6: Solution Thermodynamics and Principles of Phase Equilibria 
In all the preceding chapters we have focused primarily on thermodynamic systems comprising pure 

substances. However, in all of nature, mixtures are ubiquitous. In chemical process plants – the 

ultimate domain of application of the principles of chemical engineering thermodynamics – matter is 

dominantly processed in the form of mixtures. Process streams are typically comprised of multiple 

components, very often distributed over multiple phases. Separation or mixing processes necessitate 

the use of multiple phases in order to preferentially concentrate the desired materials in one of the 

phases. Reactors very often bring together various reactants that exist in different phases. It follows 

that during mixing, separation, inter-phase transfer, and reaction processes occurring in chemical 

plants multi-component gases or liquids undergo composition changes. Thus, in the thermodynamic 

description of such systems, in addition to pressure and temperature, composition plays a key role.  

 Further, whenever multiple phases are present in a system, material and energy transfer occurs 

between till the phases are in equilibrium with each other, i.e., the system tends to a state wherein the 

all thermal, mechanical and chemical potential (introduced earlier in section 1.4) gradients within and 

across all phases cease to exist.  

The present chapter constitutes a systematic development of the concept of a new class of 

properties essential to description of real mixtures, as well of the idea of the chemical potential 

necessary for deriving the criterion of phase and chemical reaction equilibrium. Such properties 

facilitate the application of the first and second law principles to quantitatively describe changes of 

internal, energy, enthalpy and entropy of multi-component and multiphase systems. 

Of the separate class of properties relevant to multi-component and multi-phase systems, the 

partial molar property and the chemical potential are particularly important. The former is used for 

describing behaviour of homogeneous multi-component systems, while the latter forms the fundament 

to description equilibrium in multi-phase, as well as reactive systems. 

As in the case of pure gases, the ideal gas mixture acts as a datum for estimating the properties 

of real gas mixtures. The comparison of the properties of the real and ideal gas mixtures leads to the 

introduction of the concept of fugacity, a property that is further related to the chemical potential. 

Fugacity may also be expressed as a function of volumetric properties of fluids. As we will see, the 

functional equivalence of fugacity and the chemical potential provides a convenient pathway for 

relating the temperature, pressure and phase composition of a system under equilibrium.    



In the last chapter it was demonstrated that residual properties provide very suitable means of 

estimating real gas properties. But as pointed out its usage for description of liquid states is not 

convenient. This difficulty is overcome by the formulation of a concept of ideal solution behaviour, 

which serves as a datum for estimating properties of real liquid solutions. The departure of the 

property of a real solution from that of an ideal one is termed as excess property. In other words, the 

excess property plays a role similar to that of residual property. In the description of solution behaviour 

at low to moderate pressures, we employ yet another property, the activity coefficient; which originates 

from the concept of fugacity. The activity coefficient may also be related to the excess Gibbs energy. It 

is useful not only as a measure of the extent of non-ideality of a real solution but also, more 

significantly in describing phase equilibria at low to moderate pressures.     

 

6.1 Partial Molar Property 

We consider first the case of a homogenous (single-phase), open system that can interchange matter 

with its surroundings and hence undergo a change of composition. Therefore, the total value of any 

extensive property tM ( , , , , , )M V U H S A G≡   is not only a function of T and P, but also of the actual 

number of moles of each species present in the system. Thus, we may write the following general 

property relation:  

( )1 2, , , .. . t
i NM nM M T P n n n n= = … …        ..(6.1) 

Where total number of  chemical species in the systemN ≡  

total number of  moles in the system
N

i
i

n n= =∑       ..(6.2) 

Taking the total derivative for both sides of eqn. 6.1:  

( )
, , , ,

( ) ( ) ( ) 
j i

i
T n P n i T P n

nM nM nMd nM dP dT dn
P T n

≠

 ∂ ∂ ∂   = + +     ∂ ∂ ∂     
    ..(6.2) 

Where, subscript n indicates that all mole numbers are held constant and subscript j in ≠  that all mole 

numbers except ni are held constant. This equation has the simpler form: 

( )
, ,

i i
iT x T x

M Md nM n dP n dT M dn
P T

∂ ∂   = + +   ∂ ∂   
∑       ..(6.3) 

(the subscript x denotes differential at constant composition) 



Where:
, ,

( )

j i

i
i P T n

nMM
n

≠

 ∂
=  ∂ 

         ..(6.4) 

Eqn. 6.4 defines the partial molar property iM of species i in solution. It represents the change of total 

property ‘nM’ of a mixture resulting from addition at constant T and P of a differential amount of 

species ‘i’ to a finite amount of solution. In other words it also signifies the value of the property per 

mole of the specific species when it exists in solution. In general, the partial molar property of a 

substance differs from the molar property of the same substance in a pure state at the same temperature 

and pressure as the mixture or solution.  This owing to the fact that while in a pure state the molecules 

interact with its own species, in a solution it may be subjected to different interaction potential with 

dissimilar molecules. This may render the value of a molar property different in mixed and pure states.   

Now, ;      i i i i in x n dn x dn n dx= = +  

Or :     i i idn x dn n dx= +          ..(6.5) 

Also: ( )d nM ndM Mdn= +          ..(6.6) 

Substituting eqns. 6.5 and 6.6 in eqn. 6.3 leads to:  

, ,

( )     i i i
iT x T x

M MndM Mdn n dP n dT M x dn n dx
P T

∂ ∂   + = + + +   ∂ ∂   
∑    ..(6.7) 

On re-arranging: 

, ,

0i i i i
i iT x T x

M MdM dP dT M dx n M M x dn
P T

 ∂ ∂     − − + + − =      ∂ ∂      
∑ ∑    ..(6.8) 

While deriving eqn. 6.8 no specific constraints on the values of either orn dn have been applied. This 

suggests that the equation is valid for any arbitrary values of these two variables. Thus n and dn are 

independent of each other. Therefore, eqn. 6.8 can only be valid if the coefficients of these two 

variables are identically zero. On putting the coefficients to zero the following equations obtain: 

, ,
i i

iT x T x

M MdM dP dT M dx
P T

∂ ∂   = − +   ∂ ∂   
∑

       ..(6.9) 

( )&i i
i

at constant Px TM M=∑     
       ..(6.10) 

 

  



From eqn. 6.10, it follows, that   i i
i

xn n MM = ∑       …(6.11) 

And also:  i i i i
i i

x dM M xdM d+=∑ ∑       …(6.12) 

Equating (6.19) and (6.21) yields the well-known Gibbs-Duhem equation (GDE): 

, ,

0i i
iT x T x

M MdP dT x dM
P T

∂ ∂   − − =   ∂ ∂   
∑

       ..(6.13)
 

The GDE must be satisfied for all changes in P, T, and in iM caused by changes of state in a 

homogeneous phase. For the important special case of changes at constant T and P, it simplifies to: 

0i i
i

x dM =∑            ..(6.14)     

Or, taking any arbitrary species ‘j’: 0i
i

i j

dMx
dx

=∑   (at const T, P)    ..(6.15) 

Equations (6.14 and 6.15) implies that the partial molar properties of the various species ( 'iM s are not 

independent. Some key properties of partial molar properties are defined as follows: 

1

1

lim

lim

lim

i

i

i

i ix o

i ix

ix

M M

M M

M M

∞

→

→

→

=

=

=
 

Select additional relations among partial properties are demonstrated in the Appendix 6.1. 

Based on the foregoing considerations one may define an isothermal molar property change of mixing

mixM∆ as follows: 

( , ) ( , ) ( , )mix i iM T P M T P x M T P∆ = −Σ
    

   ..(6.16) 

Or: ( )mix i i i i i i i i iM M x M x M x M x M M∆ = −Σ = Σ −Σ = Σ −
 

    ..(6.17) 
          
(M can be = V, U, H, S, A, G) 

Typical examples of molar volume change of mixing for a number of binary solutions are shown in 

figs. 6.1 and 6.2. Clearly then there can be substantial variation of this property depending upon the 

nature of the constituent molecules. 

 
 



 
Fig. 6.1 Molar volume change of mixing for solutions of cyclohexane (1) with some other C6 

hydrocarbons (Source: H.C Van Ness and M. M. Abbott, Perry’s Chemical Engineer’s Handbook (7th 
ed.), McGraw Hill, 1997. 

 
-------------------------------------------------------------------------------------------------------------------------- 
Example 6.1  

Consider a solution of two species S1/S2 at 25oC such that x1 = 0.4. If 1V = 40 x 10-6 m3/mol, find 2V . 

The solution specific gravity is = 0.90, and the molecular weights of the species are 32 and 18 

respectively. 

(Click for solution) 

------------------------------------------------------------------------------------------------------------------------- 



 
Fig. 6.2 Property changes of mixing at 50°C for 6 binary liquid systems: (a) chloroform(1)/n-

heptane(2); (b) acetone(1)/methanol(2); (c) acetone(1)/chloroform(2); (d) ethanol(1)/n-heptane(2); 
(e) ethanol(1)/chloroform(2); ( f) ethanol(1)/water(2). (Source: H.C Van Ness and M. M. Abbott, 

Perry’s Chemical Engineer’s Handbook (7th ed.), McGraw Hill, 1997. 
 

6.2 Partial Properties for Binary Solutions 

The partial property is generally not amenable to ab initio computation from theory, but may be 

conveniently determined by suitably designed experiments that help obtain isothermal molar property 

of mixing (eqn. 6.17). Here we illustrate a set of results that derive for a binary mixture, and which 

may be applied to compute the relevant partial molar properties at any composition. Applying eqn. 

6.10: 

( )1 1 2 2 &at constantM M M x T Px= +            ..(6.18)      

Or: 1 1 1 1 2 2 2 2) ( )(x dM M dx x dM ddM M x= + + +
 

     ..(6.19)  

Applying the Gibbs-Duhem equation (6.14) gives: 

1 1 2 2 0x dM x dM+ =           ..(6.20) 

Now, since 1 2 1 21,  –x x dx dx+ = =         ..(6.21) 

Using Eqns. 6.19 – 6.21: 

1 1 2 1d dx xM M M d−=           ..(6.22) 

Or: 1 2
1

M
x

d M
d
M

= −           ..(6.23) 



On solving eqns. 6.22 and 6.23 simultaneously: 

1 2
1

dM M x
x
M

d
= +

          ..(6.24) 

2 1
1

dM M x
x
M

d
= −           ..(6.25)        

If the molar property of the mixture M is available either from experiments or in analytical form, the 

partial molar properties may be estimated by applying the last two equations. Alternately, the 

experimental values of the mixture molar property (at a given T & P) may be plotted as a function of 

1x  as shown in fig.6.3.  

 

Fig. 6.3. Graphical method of determination of partial molar properties for a binary solution 

 

For determining the partial molar properties at a given concentration one may draw a tangent to the M 

vs. x1 curve, and 1M and 2M obtain as the right and left intercepts on the y-axis. This may be evident on 

comparing with the equations 6.24 and 6.25. 

Using eqn. 6.17, the molar property M of a mixture is also written as: 

i i mixM x M M= + ∆∑           ..(6.26) 

In general the most common form of analytical relation (obtained by fitting a polynomial to the 

experimentally determined values of isothermal mixM∆ as a function of composition) is the well-known 

Redlich-Kister equation, which for a binary solution is given by:  
2

1 2 2 1 2 1[ ( ) ( ) ...]mixM x x A B x x C x x∆ = + − + − +       ..(6.27) 



Where, A, B, C are temperature dependent and are determined from experimental measurements of 

.mixM∆  For many practical applications the above equation is usually truncated to include only the 

terms corresponding to the parameters A and B. Fig. 6.4 shows the relation between the mixture 

enthalpy, the enthalpy change of mixing, the pure component and the partial molar enthalpies for a 

representative binary system.  

 

Fig. 6.4. Schematic showing pure component and partial molar enthalpies for a binary solution 
 
-------------------------------------------------------------------------------------------------------------------------- 
Example 6.2 

The molar enthalpy of a binary solution is given by:  

V = 500 x1 + 1000 x2 + x1x2 (50 x1+40x2) cm3/mol. Find the expressions for: 1 1, and .V V ∞

 
(Click for solution) 

--------------------------------------------------------------------------------------------------------------------------- 
 
6.3 Criteria of Thermodynamic Equilibrium 

The nature of thermodynamic equilibrium has been introduced in section 1.4. As we know, it involves 

simultaneous thermal and mechanical equilibrium within a system. Apart from these constraints, the 

system must also be in a state of chemical equilibrium. In the most general sense, chemical equilibrium 

subsumes the following restrictions: (i) the various phases that may exist within the system are in 

equilibrium with each other in that there is no mass transfer of any chemical species between the 

phases; (ii) all reactions occurring in the system are also equilibrated, i.e., there is no further progress 

of the reaction in terms of conversion of the reactants to products. The last two criteria are better 



understood in terms of the property called chemical potential, which we shall introduce in the 

following section. Here we focus on the overall, general criterion that must be in obeyed for any 

chemical system in equilibrium regardless of whatever species, phases or reactions that defines it. 

Consider a closed system, which can be either homogeneous or heterogeneous, and which 

exists in a state of thermal and mechanical equilibrium with its surroundings. However, we assume that 

it is not under equilibrium with respect to possible inter-phase transfer of the chemical species or 

reactions between them. If the latter conditions prevail, all inter-phase transfer processes or reactive 

transformation of species must continue to occur till the point when the system is also at chemical 

equilibrium. In all real systems such changes are induced by finite gradients and are therefore are 

irreversible in nature. Applying the first law equation for all such changes for the system:  
tdU dQ dW= +           ..(6.28) 

We next consider that the system is under thermal and mechanical equilibrium with the surroundings 

(surr). Under such a situation: 
tdW PdV= −            ..(6.29) 

And also: surr

surr

t

surr

dQ dQdS
T T

= = −  (note that 
surr

tdQ dQ= −  for system)   ..(6.30) 

But by the second law: 0t
surrdS dS+ ≥        ..(6.31) 

On combining eqns. 6.30 and 6.31 we get: 
t tdQ TdS≤            ..(6.32) 

Combining eqns. 6.28, 6.29 and 6.32: 

0t t tdU PdV TdS+ − ≤          ..(6.33) 

It follows that for all incremental changes within the system, which take it closer to the final 

thermodynamic equilibrium, the property changes must satisfy the constraint imposed by eqn. 6.33. If 

the changes internal to the system occur under reversible conditions, the equality sign is valid; on the 

other hand, for irreversible processes the inequality condition holds.  

 Equation 6.33 can be used to generate alternate criteria of thermodynamic equilibrium, namely: 

,
( ) 0t t

t
V S

dU ≤            ..(6.34)

,
( ) 0t t

t
U V

dS ≤            ..(6.35) 



The other two criteria which are most apt in relation to thermodynamics of phase equilibria involve the 

use of Helmholtz and Gibbs free energy. If a process takes place under the constraints of constant 

temperature and volume then: 

,
( ) 0t

t t
T V

dU d TS − ≤   
Or: 

,
( ) 0t

t t
T V

d U TS − ≤   

,
( ) 0t

t
T V

dA ≤
           ..(6.36a)

 

And, if the process occurs under constant temperature and pressure one may write: 

,
( ) ( ) 0t t t

T P
dU d PV d TS + − ≤   

Or:
,

0t
T P

dG  ≤            ..(6.36b) 

Equation 6.36b provides the most practical of the three versions of general criteria of approach to 

equilibrium, as temperature and pressure are the most easily measurable of all the thermodynamic 

properties. As we have argued at the early part of this section at total thermodynamic equilibrium not 

only are thermal and mechanical gradients non-existent, there can be no further change in either the 

composition of any of the phases, or that of the reactive species. If there are any such incremental, 

infinitesimal changes of composition variables at the state of complete equilibrium the system once 

again must return to its stable state. This is exactly akin to the concept of equilibrium for mechanical 

systems presented in section 1.4. Therefore one may write the following equation to characterize 

thermodynamic equilibrium: 

,
0t

T P
dG  =            ..(6.37) 

In summary, therefore, eqn. 6.37 constitutes a generalized description of thermodynamic equilibrium, 

which may be stated as follows: 

 

“The equilibrium state of a closed system is that state for which the total Gibbs energy is a minimum 

with respect to all possible changes at the given T and P”. 

 

This criterion of equilibrium can be employed for determination of equilibrium states of a system in 

terms of its T, P and compositions. In principle, one first expresses Gt (at a given temperature and 



pressure) as a function of the numbers of moles of each chemical species present in the various phases. 

Next one makes a partial differential operation on Gt with respect to moles of each species in the 

phases, and sets each such differential to zero to obtain the set of values for the mole numbers that 

minimizes Gt, subject to the constraints of conservation of mass. This procedure can be applied to 

problems of phase, chemical-reaction equilibria; and, of course, the most complex of chemical 

thermodynamic problems, where the criteria of phase and chemical-reaction equilibrium are valid 

simultaneously. As we will see, eqn. 6.37 forms the foundation for developing more specific criteria 

that can help describe both phase (section 6.3) and chemical reaction equilibria (section 8.3). 

 

6.3 The Chemical Potential 

In this section we focus on the properties of partial molar Gibbs free energy, which as we observed at 

the beginning of the chapter, is used for the description of phase and chemical reaction equlibria. The 

application of eqn. 6.3 to the molar Gibbs free energy of a mixture gives: 

( )
, ,

i i
iT x T x

G Gd nG n dP n dT G dn
P T
∂ ∂   = + +   ∂ ∂   

∑       ..(6.38) 

By definition the partial molar Gibbs free energy is termed the chemical potential of species i in the 

mixture, i.e.,: 

, ,

( )

i
j i

i

T P n

nG
n

µ
≠

∂
=

∂
          ..(6.39)     

Or: i iGµ =            ..(6.40)  

Using the result in eqn. 5.7 the first two partial derivatives in eqn. 6.28, may be replaced by 

( ) ( ) and –nV nS .  Eqn. 6.38 then becomes:  

( ) ( ) ( )– i i
i

d nG nV dP nS dndT µ= +∑        ..(6.41) 

With  =1 , and so  ,i in n x=  eqn. 6.41 becomes: 

– i i
i

dG VdP SdT dxµ= +∑          ..(6.42) 

We next consider the use of chemical potential for obtaining a general criterion of thermodynamic 

equilibrium. Consider a closed system consisting of two phases andα β which are in equilibrium with 

each other. These phases could be vapour and liquid, solid and liquid, solid and vapour etc. Each phase 



in the system may be treated as an open system, the interface between the two phases acting as the 

boundary across which material may be transferred. Thus we can apply 6.41 to both phases 

individually: 

( ) ( ) ( )– i i
i

d nG nV dP nS ddT nβ β β β βµ= +∑        ..(6.43) 

( ) ( ) ( )– i i
i

d nG nV dP nS ddT nα α α α αµ= +∑        ..(6.44) 

In general we should denote the temperature and pressure of each phase also with the superscript in 

order to distinguish them. However, for the present purpose we assume thermal and mechanical 

equilibrium to prevail, i.e.       

T T
α β=

 
P P

α β=
 The total Gibbs free energy of the system changes with mass transfer between the two phases. The 

change in the total Gibbs energy of the two-phase system is the sum of the changes in each phase. The 

total volume and entropy of each phase is expressed by the following equations. 
 

( ) ( )   nV nV nVα β= +           ..(6.45) 

And ( ) ( )   nS nS nSα β= +          ..(6.46) 

Summing eqns. 6.43 and 6.44 and using eqns. 6.55 and 6.46 we get: 

( ) ( ) ( )– i i i i
i i

d nG nV dP nS d dn dnT α α β βµ µ= ++∑ ∑ = 0     ..(6.47) 

Since the mass transfer of each species takes place between the two phases in question, their change of 

mass in each phase must be equal and opposite: i idn dnα β= −  

In which case eqn. 6.47 becomes: 

( ) ( ) ( )– ( ) 0i i i
i

d nG nV dP nS dT dnα β αµ µ= −+ =∑       ..(6.48) 

If the system is considered to be already under thermal and mechanical equilibrium no changes in 

temperature and pressure may occur, then the last equation simplifies to:  

          ..(6.49) 0)( =−∑
i

iii dnαβα µµ



We note that in the above sequence of equations no explicit constraint has been placed on the 

individual ,idnα which then are independent of each other. Thus for eqn. 6.49 to have general validity 

the coefficient of each idnα has to be identically zero. Thus:  

βα µµ ii =  (i = 1, 2, …N).         ..(6.50) 

The above proof has been simplified by assuming identical temperature and pressure for each phase. 

However, a more rigorous mathematical derivation of the phase equilibrium criterion leads to the result 

that if a system is under thermodynamic equilibrium, the temperature and pressures of all the phases 

are the same. If there is third phase ψ in the system we have considered, a second equation of the type 

(6.50) obtains: 

i i
α ψµ µ=            ..(6.51) 

Thus, if there are a total of δ phases in the system, one can generalize the result as follows: 

By considering successive pairs of phases, we may readily generalize to more than two phases the 

equality of chemical potentials; thus for δ  phases: 

...i i i
α ψ δµ µ µ= = =  (i = 1, 2, ..N)        ..(6.52) 

The above result allows us to advance a more general statement of the phase equilibrium criterion:  

 

For a system under thermodynamic equilibrium, along with equality of the temperature and pressures 

of all phases, the chemical potential of each species is identical across all the phases.  

 

6.4 Ideal Gas Mixtures and Liquid Solutions 

We next explore the development of a quantitative definition of the chemical potential in terms of the 

volumetric properties and composition of mixtures. We have observed earlier that just as ideal gas state 

is a reference for real gas properties, ideal gas mixtures play the same role with respect to real gas 

mixtures. Therefore, it is instructive to establish the property relations for ideal gas mixture first.  

Consider the constitution of an ideal gas mixture (containing N species) at a given temperature 

(T) and pressure (P). To obtain n moles of the total mixture we need to bring together ni moles of each 

species ( )
N

i
i

n n=∑ at temperature T but at a pressure pi which corresponds to the partial pressure that 

each species would exert in the final mixture. If Vt is the total volume of the mixture, the following set 

of relations hold.  



/ /
/ /

t t
i i

i i i

P nRT V p n RT V
Or p P n n y
= ⇒ =
⇒ = =

 

, ,

: 1
j i

i j
j i T P n

nn n n Hence
n

≠

 ∂
= + ⇒ = ∂ 

∑  

, , , , , ,

( ) ( / ) ( / ) /

But the molar volume of the  species /
j i j i j i

ig
ig

i
i i iT P n T P n T P n

th ig

nV nRT P nV RT P RT P
n n n

i V RT P
≠ ≠ ≠

     ∂ ∂ ∂
= = = =     ∂ ∂ ∂     

=

  ..(6.53) 

Hence it follows: 
ig ig

iV V=            ..(6.54)  
 
The last result indicates that the molar volume for a species does not change between its pure state and 

in an ideal gas mixture at the same T & P.  It may then be concluded that for an ideal gas mixture the 

properties of each species are independent of that of the other ones. This may be easy to appreciate as 

the concept of an ideal gas is premised on the idea that the intermolecular interaction is non-existent in 

such a state. This conclusion leads to the well-known Gibbs theorem: 

 

“Except for volume all other partial molar property of a species in an ideal-gas mixture is equal to the 

corresponding molar property of the species as a pure ideal gas at a temperature same as that of the 

mixture, but at a pressure equal to its partial pressure in the mixture.” 

 

In mathematical terms : ( , ) ( , )ig ig
i i iM T P M T p=       ..(6.55) 

 As an example let us consider  the case of enthalpy of an ideal gas mixture. By Gibbs theorem:

( , ) ( , )ig ig
i i iH T P H T p=          ..(6.56) 

But, as the enthalpy of an ideal gas is independent of pressure it follows that: 

( , ) ( , )ig ig
i i iH T p H T P=          ..(6.57) 

It follows: ( , ) ( , )ig ig
i iH T P H T P=         ..(6.58) 

By the standard definition, the enthalpy of the mixture is: 

( , ) ( , )ig ig
mix i i

i
H T P y H T P=∑          ..(6.59) 

Thus, using eqns. 6.56 – 6.59 we get:  



( , ) ( , )ig ig
mix i i

i
H T P y H T P=∑          ..(6.60)

It follows: 0ig ig ig
mix mix i iH H y H∆ = −Σ =         ..(6.61) 

Employing the same reasoning: ig ig ig
mix mix i iU U y U∆ = −Σ      ..(6.62)  

The molar entropy of mixing of ideal gas mixture, however, is not zero. As stated above, the 

formation of 1 mole of mixture results from bringing together iy moles each species at T and partial 

pressure pi to form a mixture at T and P, Hence for isothermal mixing, yi moles of each species goes 

from (T, pi) to (T, P). Therefore:  

( , ) ( , ) ln( / ) lnig ig
i i i i iS T P S T p R P p R y− = − =       ..(6.63) 

On transposing: ( , ) ( , ) lnig ig
i i i iS T p S T P R y= −       ..(6.64) 

But: ( , ) ( , )ig ig
i i

i
S T P y S T P=∑         ..(6.65) 

So: ( , ) ( , )ig ig
i i i

i
S T P y S T p=∑         ..(6.66)  

Using eqns. 6.63 - 6.67, one obtains: 

( , ) ( , ) lnig ig
i i i i

i i
S T P y S T P R y y= −∑ ∑        ..(6.67) 

On applying the partial molar property operation (as given by eqn. 6.4) on 6.58, it may be shown that: 

( , ) ( , ) lnig ig
i i iS T P S T P R y= −          ..(6.68)  

It further follows: ( , ) ( , ) lnig ig ig
mix i i i i

i
S S T P y S T P R y y∆ = −Σ = ∑     ..(6.69) 

For Gibbs free energy relation we start from: G H TS= −  

For an ideal gas mixture: ig ig igG H TS= −        ..(6.70) 

Taking the partial molar property derivative: ig ig ig
i i iG H TS= −     ..(6.71)  

On putting eqns. 6.58 and 6.59 into 6.71 we get the following relation for the chemical potential of 

each species in an ideal gas mixture:    

lnig ig ig
i i i iG G RT yµ= ≡ +          ..(6.72) 

Using eqns. 6.51 and 6.58, it may be also shown that: 

lnig ig
mix i i i i

i i
G y G RT y y= +∑ ∑         ..(6.73) 

--------------------------------------------------------------------------------------------------------------------------- 



Example 6.3 

What is the change in entropy when 0.6 m3 of CO2 and 0.4 m3 of N2, each at 1 bar and 25oC blend to 

form a gas mixture at the same conditions? Assume ideal gases. 

(Click for solution) 

---------------------------------------------------------------------------------------------------------------------------- 

The Ideal Solution: 

We have already seen that owing to the fact that pure ideal gases and mixtures are not subject to 

intermolecular interactions the partial molar properties (apart from volume) of each species is the same 

as that of the pure species at the same temperature and pressure. In other words each species “sees” no 

difference in their environment in pure or mixed state. One can conceptually extend this idea to posit 

an ideal solution behaviour which may serve as a model to which real-solution behavior can be 

compared. Consider a solution of two liquids, say A and B. If the intermolecular interaction in the pure 

species, (i.e., A-A and B-B) is equal to the cross-species interaction A-B, neither A nor B type 

molecules will “see” any difference in their environment before and after mixing. This is in a sense the 

same condition as one obtains with idea gas mixtures. Hence an identical set of ideal solution property 

relations may be constructed based on the model of ideal gas mixture. By convention while describing 

properties of liquid solutions mole fractions yi are replaced by xi. The following relations therefore, 

derive for ideal (liquid) solution properties (denoted by a superscript ‘id’): 
id

i i
i

H x H=∑  and, id
i i

i
V xV=∑         ..(6.74) 

∑ ∑−=
i i

iiii
id xxRSxS ln          ..(6.75) 

Hence lnid
i i i i

i i
G x G RT x x= +∑ ∑         ..(6.76) 

Lastly, lnid id
i i i iG G RT xµ = = +         ..(6.77) 

As we will see later the ideal solution model can also serve to describe the behaviour of mixtures of 

real gases or solids. 

 

6.5 Excess Properties 

Unlike for real gases (pure or mixtures) the EOS based approach to calculation of thermodynamic 

properties of real liquid solutions have not proved very successful. However, as molar residual 

property is defined for real gases, for real liquid solutions one may formulate a different departure 



function called the molar excess property that quantify the deviation from ideal solution property. The 

mathematical formalism of excess properties is, therefore, analogous to that of the residual properties. 

If M represents the molar (or unit-mass) value of any extensive thermodynamic property(e.g., 

V,U, H, S, G, etc.), then an excess property EM is defined as the difference between the actual property 

value of a solution and the value it would have as an ideal solution at the same temperature, pressure, 

and composition. Thus: 
E idM M M≡ −           ..(6.78) 

The excess property bear a relationship to the property change of mixing. One may take the example of 

excess Gibbs free energy to illustrate the point. Thus: 
E idG G G= −            ..(6.79) 

Or: lnE
i i i i

i i
G G x G RT x x 

= − + 
 
∑ ∑        ..(6.80) 

Thus: lnE
mix i i

i
G G RT x x= ∆ − ∑         ..(6.81) 

Other relations include: 
E id

mixH H H H= − = ∆          ..(6.82) 

lnE
mix i i

i
S S R y y= ∆ + ∑          ..(6.83) 

Also: E EG H TS= −  

The non-ideality of real liquid solutions are depicted well by use of excess properties, especially 

through the behaviour of , and S .E E EG H The excess Gibbs energy is typically obtained from low 

pressure vapour-liquid equilibrium data, while EH is obtained by measuring isothermal enthalpy 

change of mixing. Lastly SE is derived using the following relation: 
E

E EH GS
T
−

=           ..(6.84) 

Fig. 6.5 shows the variation of each of the excess property as a function of liquid mole fraction for a 

number of binary solutions. 



 
Fig. 6.5 Excess properties at 50°C for 6 binary liquid systems: (a) chloroform(1)/n-heptane(2); (b) 

acetone(1)/methanol(2);(c) acetone(1)/chloroform(2); (d) ethanol(1)/n-heptane(2); (e) 
ethanol(1)/chloroform(2); ( f) ethanol(1)/water(2). (Source: H.C Van Ness and M. M. Abbott, Perry’s 

Chemical Engineer’s Handbook (7th ed.), McGraw Hill, 1997. 
 
 

6.6 Fugacity of pure substances 

It has been shown in section 6.3 that the chemical potential provides a fundamental description of 

phase equilibria. As we shall further see in chapter 8, it also proves an effective tool for depicting 

chemical reaction equilibria. Nevertheless, its direct usage is restricted, as it is not easy to directly 

relate the chemical potential to thermodynamic properties amenable to easy experimental 

determination, such as the volumetric properties. The definition of a new function called fugacity, 

itself related to the chemical potential, helps bridge the gap.  

The concept of fugacity is advanced based on the following thermodynamic relation for an ideal gas. 

For a single component closed system containing an ideal gas we have (from eqn. 5.7): 

dG VdP SdT= −            

At constant temperature, for a pure ideal gas ‘i’ the above equation reduces to:  

/ lnig ig
i idG V dP RTdP P RTd P= = =         ..(6.85) 

( ) lnig
i iG T RTd P= Γ +   [Where, ( )i TΓ  is the constant of integration]   

  



Utilizing the essential simplicity of eqn. 6.85 we apply it a real fluid but by replacing pressure with 

fugacity (since it is not valid for a real fluid): 

i idG V dP=  (At const. T) 

Thus, lni idG RTd f=   

Hence, ( ) lni i iG T RTd f= Γ +          ..(6.86) 

Since fi has the units of pressure, it is often described as a “fictitious pressure”. It may be noted 

that the definition of fugacity as provided by eqn. 6.86 is completely general in nature, and so can be 

extended to liquids and solids as well. However, the calculation of fugacity for the latter will differ 

from that for gases. This equation provides a partial definition of fi, the fugacity of pure species ‘i’. 

Subtracting eqn. 6.85 form 6.86 gives: 

lnig R i
i

fG G G RT
P

− = =
         ..(6.87)

 

The dimensionless ratio /if P  is termed fugacity coefficient ( ).φ  

Thus: lnR
i iG RT φ=           ..(6.88)  

Where, /i if Pφ ≡           ..(6.89)  

Clearly for an ideal gas the following relations hold: 0; ; accordingly, 1.R ig
i i iG f P φ= = =  

However, by eqn. 5.38: 
P

0
( 1)

RG dPZ
RT P

= −∫  
Thus, using the last relation in eqn. 6.78: 

0

ln ( 1)
P

i i
dPZ
P

φ = −∫  (At const. T)        ..(6.90) 

6.7 Fugacity-based phase equilibrium criterion for pure component system 

The general criterion of thermodynamic equilibrium has been defined by eqn. 6.38. Applying it to, for 

example, a vapour (V) and liquid (L) system of a pure component ‘i’ we have: 
V L
i iµ µ=            ..(6.91) 

However, for a pure component system: 
1

lim .
i

i ix
M M

→
=  

Thus: V V V
i i iG Gµ ≡ =  and L L L

i i iG Gµ ≡ =        ..(6.92) 

Thus, using eqn. 6.91 and 6.92 we have: 
V L
i iG G=            ..(6.93) 



The above equation may be generalized for any other types of phases. However, the eqn. 6.93 is 

rendered more easily applicable if the chemical potential is replaced by fugacity. Thus integrating eqn. 

6.86 between vapour and liquid states of a pure component:  

ln
V V

i iL L
dG RT d f=∫ ∫           ..(6.94)

ln( / )V L V L
i i i iG G RT f f− =          ..(6.95)  

Now applying  eqn. 6.93 to 6.95 it follows  ln( / ) 0V L
i iRT f f =  

Or: 
V L sat

i i if f f= =            ..(6.96) 

In eqn. 6.86 sat
if  indicates the value for either saturated liquid or saturated vapor, this is because the 

coexisting phases of saturated liquid and saturated vapor are in equilibrium. Since under such 

condition the pressure is ,sat
iP we can write: 

V
V i
i sat

i

f
P

ϕ =
 

L
L i

i sat
i

f
P

φ =
 

sat
i

sat
isat

i P
f

=φ
 

Thus, employing eqn. 6.86 again, it follows:
 

V L sat
i i iφ φ φ= =            ..(6.97) 

Both eqns. 6.93, 6.96 and 6.97 represent equivalent criterion of vapor/liquid equilibrium for pure 

species.  

 

 

6.8 Fugacity expressions for pure gases 

Fugacity coefficient (and hence fugacity) of pure gases may be conveniently evaluated by applying 

eqn. 6.80 to a volume-explicit equation of state. The truncated virial EOS is an example of the latter 

type, for which the compressibility factor of pure species (i) is given by: 

1 ii
i

B PZ
RT

= +  



Or 1 ii
i

B PZ
RT

− =  

Thus, on using eqn. 6.80: 
0

ln
Pii

i
B dP
RT

φ = ∫  (at const T) 

Hence, ln ii
i

B P
RT

φ =           ..(6.98) 

Eqn. 6.80 is, however, not amenable to use for obtaining expressions using cubic EOSs. The general 

equation for such purposes is relatively more involved and we derive it below.  

-------------------------------------------------------------------------------------------------------------------------- 

Example 6.4 

Estimate the fugacity of ethane at 122.2 K and 5 bar using the truncated virial EOS. For ethane Tc = 

305.4K, Pc = 48.84 bar, ω = 0.099 

(Click for solution) 

------------------------------------------------------------------------------------------------------------------------- 

======================================================================== 

Derivation of fugacity coefficient expression for cubic EOS: 

Starting from eqn. 5.38: 

0

1ln ln
R PG f RTV dP

RT P RT P
φ    = = = −   

   ∫        ..(6.99) 

Now: ( )VdP d PV PdV= −∫ ∫ ∫          ..(6.100) 

Using Eqn. 6.100 in 6.99: 

1 ( )ln ( )

       = ( 1) ln( )

V PV V

V PV RT V

PV V V

PV RT V V

P d PV dVPV RT dV
RT RT PV V

dV PZ d PV dV
V RT

φ
=∞ = =∞

= =∞ =∞

= − − − +

− − + −

∫ ∫ ∫

∫ ∫ ∫
 

On simplifying: 

1ln  = ( 1) ln ln
V

V

VZ Z PdV
V RT

φ
=∞

∞

− − + − ∫        ..(6.101) 

Here: molar volume at 0,  or ideal gas volumeV P V∞ ∞= → =  

Therefore: /V V Z∞ =           ..(6.102) 

Using eqn. 6.102 in 6.101 one arrives at: 

1ln ( 1)
V

V
Z PdV

RT
φ

=∞
= − − ∫          ..(6.103) 



=============================================================================== 

Equation 6.103 is a generalized expression for obtaining pure component fugacity from a pressure 

explicit EOS. We show below the expressions for fugacity coefficients that derive on application of the 

above equation to various cubic EOSs. (The reader may refer to section 2.3.3 for various forms of 

cubic EOS). 

VdW EOS: 

( )ln 1 ln P V b aZ
RT RTV

φ −
= − − −

        ..(6.104) 

RK-EOS: 

ln 1 ln( ) ln ;a Z B bPZ Z B B
bRT Z RT

φ + = − − − − = 
        ..(6.105)

          

SRK EOS: 

ln 1 ln( ) ln ;a Z B bPZ Z B B
bRT Z RT

φ + = − − − − = 
        ..(6.106) 

PR-EOS:
 

(1 2)ln 1 ln( ) ln ;
2 2 (1 2)

a Z B bPZ Z B B
RTbRT Z B

φ
 + +

= − − − − = 
+ −       ..(6.107)

 

---------------------------------------------------------------------------------------------------------------------------- 

Example 6.5 

Estimate the fugacity of ammonia vapor at 4.0 MPa and 321K assuming that it obeys the RK equation 

of state. 

(Click for solution) 

----------------------------------------------------------------------------------------------------------------------------  

6.9 Generalized Correlations for the Fugacity Coefficient 

The generalized correlation approach which has been presented earlier for calculation compressibility 

factor Z (section 2.3), and the residual enthalpy and entropy of gases (section 5.7), can also be applied 

for computing fugacity coefficients for pure gases and gaseous mixtures. Equation (6.90) can be 

rewritten in a generalized form as follows: 

; hence, C r c rP P P dP P dP= =  



Hence, an alternately,
P Pln ( 1)

P

r
r

rO

dZφ = −∫  (at const. Tr)     ..(6.109) 

Substitution for 0 1,  gives :Z Z Zω= +  

Pr Pr
1P Pln ( 1)

P P
O r r

r rO O

d dZ Zφ ω= − +∫ ∫         ..(6.110) 

The last equation may be written in alternative form: 
0 1ln ln lnφ φ ω φ= +           ..(6.111) 

Or: 0 1( )( )ωφ φ φ=           ..(6.112) 

Where, 
P

0 Pln ( 1)
P

r
O r

rO

dZφ = −∫          ..(6.113) 

P
1 1 Pln

P

r
r

rO

dZφ = ∫
          ..(6.114)

 

For obtaining the values of the integrals in the last two equations, the tabulated data for 0 1andZ Z for 

various values of Tr and Pr may be used for numerical or graphical computations. Yet another 

approach is due to Lee-Kesler which employsa variant of the BWR-EOS (eqn. 2.17) to evaluate the 

expressions for 0 1ln and lnφ φ for a wide range of values of Tr and Pr and are available in the form of 

extended tables. In either case the fugacity coefficient is finally computed using eqn. 6.112. (see figs 

6.6 and  6.7). 

------------------------------------------------------------------------------------------------------------------------- 

Example 6.6 

Estimate the fugacity of methane at 32C and 9.28 bar. Use the generalized correlation approach.  

(Click for solution) 

------------------------------------------------------------------------------------------------------------------------- 

 



 

Fig. 6.6 Correlation of 0φ drawn from tables of Lee-Kesler (Source: AIChE  J., pp. 510-527, 1975) 



 

FIG 6.7 Correlation of 1φ drawn from tables of Lee-Kesler (Source: AIChE  J., pp. 510-527, 1975) 

 

The above set of equations may well be used for estimating the overall fugacity coefficient of a 

gaseous mixture. As in earlier instance (sections, 2.3 and 5.7) one makes use of pseudo-critical 

properties that are estimated from the following set of linear relations:  

, ,C m i C i
i

T y T=∑ ;   , ,C m i C i
i

P y P=∑    m i i
i

yω ω=∑   ..(2.32) 

The subscript ‘i’ runs over all the species present in the mixture ‘m’. The above relations allow the 

mixture to be treated as single substance; the methodology outlined above for pure species may then be 

used to compute the fugacity coefficient of the mixture. 

 

6.10 Expression for Fugacity of a Pure Liquid 

Since the representation of liquid state by EOS is generally difficult, the calculation of fugacity of a 

compressed (or sub-cooled) liquid is based on the saturated liquid state as a reference state. One starts 

with the two generic relations (that apply to any pure real fluid ‘i’) already introduced in the section 

6.7, namely: 

(at const. T)i idG V dP=  



lni idG RTd f=  

The two equations above may be combined to yield: 

lni iV dP RTd f=           ..(6.115) 

As shown (eqn. 6.96) at the saturation condition for co-existing vapour and liquid phases:  
V L sat

i i if f f= =             
Thus for a compressed liquid state at a given pressure one can write for an isothermal change of 

pressure from to the compressed liquid pressure sat
iP P : 

sat
i

P
sat

i i i
P

G G V dP− = ∫           ..(6.116)  

Alternately, sat i
i i sat

i

fG G RT
f

− =         ..(6.117) 

On equating the last two equations:       

1ln
sat

i

P
i

isat
i P

f V dP
RTf

= ∫           ..(6.118) 

Since Vi, the liquid–phase molar volume, is a relatively weak function of pressure at temperatures well 

below the critical temperature, one may approximate ,l
i iV V≅ where, l

iV is the molar volume of the 

saturated liquid at the temperature of interest. 

Using sat sat sat
i i if Pφ= in the integrated form of eqn. 6.108 gives: 

( )( , ) exp[ ]
l sat

sat sat i i
i i i

V P Pf T P P
RT

φ
−

=         ..(6.119) 

The exponential term on the left side of the last equation is known as a Poynting factor. It may be 

noted that the calculation of the term sat
iφ can be made based on any EOS suitable for gases at the given 

temperature T and pressure .sat
iP  

 

 

 

 

 

 



---------------------------------------------------------------------------------------------------------------------------- 

Example 6.7 

Estimate the fugacity of cyclopentane at 110 C and 275 bar. At 110 C the vapor pressure of 

cyclopentane is 5.267 bar. 

(Click for solution) 

---------------------------------------------------------------------------------------------------------------------------- 

6.11 Fugacity and Fugacity Coefficient of Species in Mixture 

The definition of the fugacity of a species in a mixture is similar to the definition of the pure species 

fugacity. For an ideal gas mixture the chemical potential is given by eqn. (6.63): 

lnig ig
i i iG RT yµ ≡ +           ..(6.63) 

Or: lnig ig
i i id dG RTd yµ = +  (at const. T)       ..(6.120) 

 But lnig
i idG V dP RTd P= =  (at const. T)  

Thus: ln ln ln( )ig
i i id RTd P RTd y RTd y Pµ = + =       ..(6.121) 

Or: lnig
i id RTd pµ =  (where  partial pressure of  species)th

ip i=     ..(6.122) 

Using the same idea implicit in eqn. 6.86, we extend eqn. 6.122 to define a similar expression for 

fugacity of species in a real mixture:         
ˆlni id RTd fµ =            ..(6.123) 

Here, if̂  is the fugacity of species i in the mixture, which replaces the partial pressure ip of eqn. 6.122. 

As we will demonstrate later, if̂ is not a partial molar property, and is therefore denoted by a circumflex 

rather than by an overbar, as are partial properties. On integrating eqn. 6.123 between the any two 

multi-component phases and α ψ in equilibrium with each other: 

ˆ

ˆ
ˆlni i

i i

f

i if
d RT d f

α α

ψ ψ

µ

µ
µ =∫ ∫          ..(6.124) 

Hence, ( )ˆ ˆln /i i i iRT f fα β α βµ µ− =         ..(6.125) 

But by eqn. 6.42, for equilibrium: i i
α ψµ µ=          

It follows, therefore, ( )ˆ ˆln / 0i i i iRT f fα ψ α ψµ µ− = =  

Or: ˆ ˆ/ 1i if fα ψ =  

That is: ˆ ˆ
i if fα ψ=           ..(6.126) 



Therefore, for an arbitrary number of phases in equilibrium with each other: 
ˆ ˆ ˆ...i i if f fα ψ δ= = = (i = 1,2,..N)         ..(6.127)  

Thus, eqn. 6.126 offers a criterion of equilibrium corresponding to that provided by eqn. 6.42. The 

great advantage this equivalence offers is that, the fugacity coefficients of species in a mixture can be 

related to the volumetric properties of the mixtures, which facilitates the solution of phase and 

chemical reaction equilibria problems. 

On comparing eqns. 6.122 and 6.123, the following limiting condition obtains:  
 

0
ˆlim i iP
f y P

→
=       ..(6.128) 

It follows that a fugacity coefficient îφ (dimensionless) of a species in a real gas mixture may be 

defined as: 

ˆˆ
V

V i
i

i

f
y P

φ ≡            ..(6.129) 

Although the derivation above defines the fugacity coefficient with respect to gaseous mixture the 

definition may be extended to represent fugacity coefficient of a species in a real liquid solution as 

well. Accordingly, in that case it is defined in the following manner: 

ˆˆ
L

L i
i

i

f
x P

φ ≡            ..(6.130) 

 

6.12 Relation between residual property and species fugacity coefficients in mixtures 

As we know, for any molar property (M), the definition of residual property RM  is given by:  
R ig R igM M M nM nM nM= − ⇒ = −  

It follows that: 

, , , , , ,

( ) ( ) ( )R ig

i i iT P n T P n T P nj i j i j i

nM nM nM
n n n

≠ ≠ ≠

     ∂ ∂ ∂
= −     ∂ ∂ ∂     

      ..(6.131) 

Or: R ig

i i iM M M= −           ..(6.132) 

For the specific case of molar Gibbs free energy: 
R ig ig

i i i i iG G G µ µ= − = −          ..(6.133) 

From eqns. 6.122 and 6.123 ˆ = ln ; and lnig

i i i id RTd p d RTd fµ µ =  



On integrating between the real and ideal states:  

ˆ ˆ ˆln ln lnig i i
i i i

i i

f fRT RT RT
p y P

µ µ φ− = = =        ..(6.134) 

On comparing eqns. 6.131 and 6.122: 

ˆlnR

i iG RT φ=            ..(6.135) 

But by definition: R R

i i
i

G y G=∑         ..(6.136)

    
Thus, on inspecting 6.133 and 6.135: 

, ,

( / )ˆln
R

i

i T P n j i

nG RT
n

φ
≠

 ∂
=  ∂ 

         ..(6.137) 

It follows that:  

ˆln
R

i i
i

G y
RT

φ=∑           ..(6.138) 

Since ˆln iφ is a partial molar property, the Gibbs-Duhem relation (eqn. 6.14) applies, that is: 

ˆln 0 (at const. T and P)i i
i

x d φ =∑         ..(6.139) 

 

6.13 Expressions for gas phase îφ using EOS 

In this section we derive the expressions for computing the fugacity coefficients for individual species 

in a real gas mixture. As in the case of pure real gases (section 6.8) we consider the truncated virial 

EOS and the various cubic EOSs. From eqn. (6.90): 

0
ln ( 1)

P dPZ
P

φ = −∫            

Further by eqn. (6.137): 

, ,

( / )ˆln
R

i

i T P n j i

nG RT
n

φ
≠

 ∂
=  ∂ 

         . 

From these two relations we obtain the following equations:  



0
( )

R PnG dPnZ n
RT P

= −∫          ..(6.140)

0
, ,

( )ˆln
P

i

i T P n j i

nZ n dP
n P

φ
≠

 ∂ −
=  ∂ 
∫         ..(6.141) 

Now, 
( ) ; and 1i

i i

nZ nZ
n n

∂ ∂
= =

∂ ∂
 

Hence: ( )
0

ˆln 1
P

i i

dPZ
P

φ = −∫          ..(6.142) 

 

Species Fugacity Coefficients (in a gas mixture) from the Virial EOS: 

The expression for computing the mixture virial coefficient corresponds to eqn. 2.25. One may rewrite 

the expression for a binary mixture as follows: 

1 11 2 22 1 2 12B y B y B y y δ= + +          ..(6.143) 

Where, 12 12 11 222B B Bδ = − −          ..(6.144) 

Using (6.140 / 6.141): nBPnZ n
RT

= +  

Or: nBPnZ n
RT

− =           ..(6.145) 

Therefore:  

2 2

2

1
1 1 1. , ,

. ,

( ) ( )1
T P n T n

T P n

nBPn
nZ P nBRTZ
n n RT n

  ∂ +     ∂ ∂  ≡ = = +   ∂ ∂ ∂    
       ..(6.146)

 

Using (6.148) in (6.142):  

( )
2 2

1 10 0 1 1, ,

1 ( ) ( )ˆln 1
P P

T n T n

dP nB P nBZ dP
P RT n RT n

φ
   ∂ ∂

= − = =   ∂ ∂   
∫ ∫     ..(6.147) 

Now putting (6.133) it may be shown that: 

2

2
11 2 12

1 ,

( )

T n

nB B y
n

δ
 ∂

= + ∂ 
         ..(6.148) 

Therefore putting (6.148) in (6.147), one obtains: 



2
1 11 2 12
ˆln ( )P B y

RT
φ δ= +          ..(6.149) 

In a similar manner, one may show that: 

2
2 22 1 12
ˆln ( )P B y

RT
φ δ= +          ..(6.150) 

---------------------------------------------------------------------------------------------------------------------------- 

Example 6.8 

For the following system compute the species fugacity coefficients for an equimolar mixture at 20 bar 

and 500K.  

 Tc (K) Pc ( bar) Vc X 103 (m3/mol) Zc ω yi 

Propane (1) 369.9 42.57 0.2 0.271 0.153 0.4 

Pentane (2)  469.8 33.75 0.311 0.269 0.269 0.6 

 

(Click for solution) 

---------------------------------------------------------------------------------------------------------------------------- 

Fugacity coefficient expression for species in a mixture by pressure explicit EOS: 

The eqn. 6.130 is useful for application to volume explicit EOSs only. For pressure explicit EOS 

(cubic EOSs) the expression for obtaining the species fugacity coefficient in a mixture is relatively 

complex. For the present purpose we provide below the generic equation used for pressure explicit 

EOS, while its proof is provided at the end of the present chapter.  

, ,

ˆln ln
j

V

i V
i T V n

P RTRT dV RT Z
n V

φ
=∞

  ∂ = − − − −  ∂   
∫       ..(6.153) 

We enlist below the resultant final expressions that obtain for species fugacity in a gaseous mixture 

corresponding to various forms of cubic EOSs.  

For illustration we take the RK-EOS: 

( )
RT aP

V b V V b
= −

− +
          ..(6.154) 

Next one writes the parameters ‘a’ and ‘b’ for the mixture using typical mixing rules described by 

eqns. 2.29 to 2.31: 



( )

(1 )

binary interaction parameter

where, 0;  is very often also put to zero, as it is difficult to obtain.

Thus the RK-EOS may be written as:

i j i j ij
i j

ij

ii jj ij i j

i i
i

i i
i

a y y a a k

k
k k k

b y b

yω ω

≠

= −

=

= =

=

=

∑∑

∑

∑

 

2( / ) (1 )

( / ) ( ( / ) )

i j i j ij
i j

i i i i
i i

n n n a a k
RTP

V n n b V V n n b

−
= −

− +

∑∑
∑ ∑

 

, ,

Using the last expression one can derive the expression for and use it in (6.153) to obtain:
j

i T V n

P
n

 ∂
 ∂ 

 

ln ( 1) ln( ) ( 2 ln( );i m i i m
i

m m m m

b a b a b PZ BZ Z B B
b b RT b a Z RT

φ
  +

= − − − + − = 
      ..(6.155)

 

 
Similarly for SRK EOS: 

ln ( 1) ln( ) ( 2 ln( );i m i i m
i

m m m m

b a b a b PZ BZ Z B B
b b RT b a Z RT

φ
  +

= − − − + − = 
  

    ..(6.156)

  
For PR EOS: 



(1 2)ln ( 1) ln( ) 2 ln ;
2 2 (1 2)

i m i i m
i

m m mm

b a b a b PZ BZ Z B B
b b a RTb RT Z B

φ
   + +

= − − − + − =   
+ −        ..(6.157)

 

 

 

 

 

 

 

 

 

 

 



---------------------------------------------------------------------------------------------------------------------------- 

Example 6.9 

Calculate the fugacities of ethylene and propylene in a mixture of 70 mole percent ethylene and 30 

mole percent propylene at 600 K and 60 bar. Assume that the mixture follows the Redlich-Kwong 

equation of state. 

 Tc (K)  Pc ( bar) 

Ethylene (1) 283.1 51.17 

Propylene (2) 365.1 46.0 

(Click for solution) 

---------------------------------------------------------------------------------------------------------------------------- 

6.14 The Lewis/Randall Rule: 

A simple equation for the fugacity of a species in an ideal solution follows from the following 

equations. In general, for any solution: ˆ( ) lni i iT RT fµ = Γ +      ..(6.158) 

Applying to ideal solution, ˆ( ) lnid id id
i i i iG T RT fµ = = Γ +      ..(6.159) 

However we know (eqn. 6.77) that: lnid id
i i i iG G RT xµ = = +      ..(6.160) 

Also, from eqn. 6.86: ( ) lni i iG T RT f= Γ +  

Thus, ( ) lnid id
i i i i iG T RT x fµ = = Γ +         ..(6.161)     

on comparing eqns. 6.158&6.160: ˆ id
i i if x f=        ..(6.162) 

The last relation is known as the Lewis/Randall rule, and applies to each species in an ideal solution at 

all conditions of temperature, pressure, and composition. It shows that the fugacity of each species in 

an ideal solution is proportional to its mole fraction; the proportionality constant being the fugacity of 

pure species i in the same physical state as the solution and at the same T and P. 

          

6.15 Dependence of GE on temperature and pressure 

The idea of the molar excess property has been introduced in section 6.5 with the following definition: 

ME = M – Mid           ..(6.163)  

Typically the property M can be an intensive property such as: V, U, H, S, G, A, etc. The relations 

between the molar excess properties of V, H and G is particular significant for description of non-ideal 



solution thermodynamics. One may start from the generic total derivative of the Gibbs free energy for 

a real solution and an ideal solution in the same way as eqns. 5.27 and 5.28: 

2

G V Hd dP dT
RT RT RT

  = − 
 

         ..(6.164) 

One may write the same equation specifically for an ideal solution, whence: 

2

id id idG V Hd dP dT
RT RT RT

  = − 
 

         ..(6.165) 

Thus subtracting eqn. 6.165 from 6.164:  

2

E E EG V Hd dP dT
RT RT RT

  = − 
 

         ..(6.166) 

Thus we may write the following further generative relations: 

( / )E E

T

V G RT
RT P

∂ =  ∂ 
          ..(6.167) 

( / )E E

P

H G RTT
RT T

∂ = −  ∂ 
         ..(6.168) 

And further:
E E ES H G

RT RT RT
= −          ..(6.169) 

The sensitivity of the excess Gibbs free energy to changes in temperature and pressure may be 

estimated to show the effect of pressure and temperature on liquid phase properties. For example, for 

an equimolar mixture of benzene and cyclohexane at 298K and 1 bar are (source: J.M. Smith, H.C. 

Van Ness and M.M. Abbott, Introduction to Chemical Engineering Thermodynamics, 6th ed., 

McGraw-Hill, 2001): 
3

3

0.65 /
800 /

E

E

V cm mol
H cm mol

=

=
 

5 1

,

Thus it follows:

( / ) 0.65 2.62 10
83.14 298

E E

T x

G RT V x bar
P RT x

− − ∂
= = = ∂ 

 

3 1
2 2

,

( / ) 800 1.08 10
83.14 298

E E

P x

G RT H x K
T RT x

− − ∂
= − = − = − ∂ 

 

(forΔT 1 ) (for ΔP 40 )E EG K G bar∆ = ≈ ∆ =  



The above calculations suggest that to effect the same change in excess Gibbs free energy brought 

about a change of 1K, one needs to change the pressure to change by about 40bar. Hence the excess 

Gibbs free energy exhibits a relatively weak dependence on pressure.  

 
6.16 The Activity Coefficient 

While we have defined fugacity coefficients of individual species in a liquid solution by 6.153, we may 

define yet another parameter called activity coefficient in order to describe the non-ideality of a liquid 

solution, especially at low to moderate system pressure. 

We have by eqn. 6.155: ˆ( ) lni i iG T RT f= Γ +  

And from eqn. 6.158: ( ) lnid
i i i iG T RT x f= Γ +  

Using the above equations:
ˆ

lnid E i
i i i

i i

fG G G RT
x f

− = =       ..(6.170) 

The left side of this equation is the partial excess Gibbs energy E
iG ; the dimensionless ratio ˆ /i i if x f

appearing on the right is the activity coefficient of species i in solution, represented by the symbol .iγ  

Thus, by definition: 

ii

i
i fx

f̂
≡γ             

î i i if x fγ=            ..(6.171) 

Whence, / lnE
i iG RT γ=          ..(6.172) 

But E E
i i

i
G x G=∑           ..(6.173) 

On comparing the last two equations we conclude that γi is a partial molar property with respect to   

.EG  Thus, we have: 

1, ,

( / )ln
j

E

i
i T P n

nG RT
n

γ
≠

∂
=

∂
         ..(6.174) 

It follows from the definition of activity coefficient (eqn. 6.163) that for an ideal solution its 

value is unity for all species as GE = 0. For a non-ideal solution, however, it may be either greater or 

less than unity, the larger the departure from unity the greater the non-ideality of the solution. The 



derivatives of the activity coefficient with respect to pressure and temperature can be correlated to the 

partial molar excess volume and enthalpy respectively.  
 

Using eqn. 6.167 and 6.168 in conjunction with 6.173/6.174 the following results are obtained:

 

,

lnE

i i

T x

V
RT P

γ∂ =  ∂ 
          ..(6.175) 

2
,

lnE

i i

P x

H
RT T

γ∂ =  ∂            ..(6.176) 

As we have seen in the last section that the value of the function 
,

( / )E

P x

G RT
T

 ∂
 ∂ 

is relatively larger 

compared to 
,

( / ) ;
E

T x

G RT
P

 ∂
 ∂ 

thus comparing eqns. 6.167 and 6.168 with 6.175 and 6.176 

respectively, one may conclude that the activity coefficients are far more sensitive to changes in 

temperature than to changes in pressure. For this reason for phase equilibria computations at low to 

moderate pressures, the activity coefficients are assumed invariant with respect to pressure. 

Since the activity coefficients are partial molar properties, they are related by the Gibbs Duhem 

equation (at constant temperature and pressure) as follows: 

ln 0i i
i

x d γ =∑
          ..(6.177) 

The above equation may be used to validate or check the consistency of experimental data on 

isothermal activity coefficients for a binary system. The following equation may be derived from eqn. 

6.177 for this purpose (by assuming negligible effect of pressure on the liquid phase properties): 

1

1

1 1
10

2

ln 0
x

x
dxγ

γ
=

=

 
= 

 
∫

          ..(6.178) 

Thus, if the function ln (γ1/ γ2) is plotted over the entire range of x1, (fig. 6.8) the two areas above and 

below the x-axis in the resulting curve must add up to zero, if the activity coefficients are consistent.  

Representative values and the  



 
 

Figure 6.8 Thermodynamic consistency tests for activity coefficients in binary mixtures. 

nature of variation in the magnitude of activity coefficients is shown in fig. 6.9; they correspond to the 

same systems for which excess property variations were depicted in fig. 6.5. 

 
Fig. 6.9 Activity coefficients at 50C for 6 binary liquid systems: (a) chloroform(1)/n-heptane(2); (b) 

acetone(1)/methanol(2); (c) acetone(1)/chloroform(2); (d) ethanol(1)/n-heptane(2); (e) 
ethanol(1)/chloroform(2); ( f) ethanol(1)/water(2). (Source: H.C Van Ness and M. M. Abbott, Perry’s 

Chemical Engineer’s Handbook (7th ed.), McGraw Hill, 1997. 
 

 

 



 

6.17 Use of VLE data for generation of activity coefficient models 

In general during the process design of chemical plants, especially for distillation and liquid-liquid 

separation systems, it is necessary to predict the values of activity coefficients for carrying out phase 

equilibrium calculations. However, experimental data on activity coefficients of various types of liquid 

solutions are often not available at conditions (of temperature and/or composition) of interest. In such 

cases activity coefficient models - which relate GE to solution composition (at a given T&P) - are 

useful. Most of such models are based on semi-empirical considerations. These models are all 

characterized by a set of parameters that are temperature dependent. Vapour-liquid equilibrium (VLE) 

data at low pressures are readily used for computing the value of such parameters. The more general 

form of the VLE relationship is discussed in the next chapter. The VLE equation is essentially a 

relation that relates the equilibrium vapour and liquid phase compositions at a given temperature and 

pressure. For the purpose of demonstrating the method of generating the activity coefficient models, 

we state here without proof, the simple VLE relation that applies to low pressure systems containing an 

ideal gas phase, but a non-ideal liquid phase. At low pressures it is of the following form:

 
i

sat
i i iy P x Pγ=            ..(6.179) 

Where, i = 1, 2…N; , , , &
i

sat
i iy x P P  denote the vapour phase compos 

thequilibrium vapour phase mole fraction of  i  species iy ≡  
thequilibrium liquid phase mole fraction of  i  species ix ≡  

thactivity coefficeint of  i  species in the liquid phase; i.e., at the given  i ixγ ≡  
thsaturation vapour pressure of  i  species at the equilibrium temperature sat

iP =  

And equilibrium pressure P =  

It follows from eqn. 6.179 that: i
i sat

i i

y P
x P

γ =        ..(6.180) 

In a typical isothermal VLE data generation experiment, the equilibrium pressure and the 

corresponding vapour and liquid phase compositions are measured and the activity coefficients of each 

species estimated at each set of liquid phase composition using eqn. 6.180. For freezing ideas let us 

consider a binary system. Once the different sets of activity coefficient values for various liquid phase 

compositions, ideally ranging over  0 t o 1,ix = the excess molar Gibbs free energy is computed at each 

composition using the following equation (obtained by combining eqns. 6.172, and 6.173): 



/ lnE
i i

i
G RT x γ=∑  (At const. T)        ..(6.181) 

The values of GE/RTare in turn used to obtain a set of values of a new function: (GE/x1x2RT) are 

generated which is then fitted using a polynomial function of the following form: 
2

1 2 1 1/ ...EG x x RT A Bx Cx= + + +         ..(6.182) 

The final form of the polynomial is generally dependent on the nature of the constituent species of the 

liquid phase as well as the temperature. Representative plots for this form of data reduction for 

generating the (GE/x1x2RT) function are shown in figures 6.10 and 6.11. 

 
Fig. 6.10 Representative plot of experimental P-x-y, activity coefficient and molar excess Gibbs free 

energy data for systems exhibiting positive deviation from Raoult’s Law 

 

 
Fig. 6.11 Representative plot of experimental P-x-y, activity coefficient and molar excess Gibbs free 

energy data for systems exhibiting negative deviation from Raoult’s Law 



 

Once the values of the parameters A, B, C etc., have been calculated from an isothermal set of VLE 

data, the actual function for the activity coefficients may be derived by applying eqn. 6.174. 

 

6.18 Activity Coefficient Models  

In this section we present the forms of the various activity coefficient models commonly used for VLE 

calculations. Such models may be divided into two major groups depending upon their applicability to 

various types of solutions:  

1. Margules/Van Laar/Regular Solution Models 

2. Wilson/NRTL (Non-Random Two Liquid)/UNIQUAC (Universal Quasi Chemical) Model.  

The models in Group 1 are termed as "Homogeneous Mixture" models, while those in Group 2 

are termed "Local Composition" models. The reason for such distinction is as follows. The non-ideal 

behaviour of liquid solutions derives from two sources: (i) difference in molecular size/shape of 

constituent (ii) and the difference between the inter-species and intra-species molecular interaction 

energies. The Group 1 models generally apply to systems in which the inter-species and intra-species 

molecular interaction energies differ from each other, but in a relatively moderate measure. On the 

other hand type 2 models are principally useful for describing systems where the constituent molecular 

species differ on account of both size/shape as well molecular interaction energies. Thus while group I 

models useful for moderate deviation from ideal solution behaviour, those in group 2 represent 

strongly non-ideal solutions.  

In case the chemical species in the solution do not differ significantly in terms of size/shape, 

they tend to distribute uniformly across the entire solution volume. Accordingly Group 1 models are 

based on the premise that molecules are “homogeneously” distributed over the solution volume in that 

there is no difference between the overall macroscopic composition and microscopic (local) 

composition around a single central molecule. The Group 2 models, however, account for both types of 

differences: in the size of the molecules of the chemical species as well as in their interaction energies. 

It is reasonable to expect that owing to such differences molecular packing at the microscopic level to 

be non-homogeneous. As a result, the local composition around a central molecule is likely to differ 

from the average macroscopic composition.  

 All models used for predicting species activity coefficient contain about 2 – 3 parameters. 

Models which employ a larger number of parameters improve the accuracy of prediction but at the 



same time are rendered computationally difficult. Additionally a larger number of experimentally 

determined values of activity coefficients are needed for fixing the values of the model parameters. In 

general, these parameters are much more sensitive to variations in temperature than pressure. This has 

already been highlighted while discussing the significance of eqns. 6.175 and 6.176. Thus, if 

computations of the activity coefficients occur over reasonably low range of pressures (typically about 

10-20 bar) the model parameters may be assumed to remain invariant. The dependence of enthalpic 

quantities on temperature is usually strong. Thus, once again inspecting eqn. 6.176, we may conclude 

that, in general, the dependence of activity coefficients on temperature variations is relatively more 

significant. If the temperature variations over which activity coefficients are needed exceed ~ 100C, the 

effect of temperature on model parameters need to be considered. Table 6.1 presents the domain of 

applicability of the various commonly used activity coefficient models. For simplicity, we provide in 

the table 6.2 the model expressions for binary solutions and that of the corresponding activity 

coefficient formulas. In table 6.3 expressions of select models for higher order liquid mixtures are 

presented.  

 
Table 6.1 Applicability of Activity Coefficient Models 

System Type Models 

Species similar in size and shape One-constant Margules 
Moderately non-ideal mixtures Two-constant Margules, Van Laar, Regular Solution 
Strongly non-ideal mixtures (for 
example Alcohols+Hydrocarbons) 

Wilson, NRTL, UNIQUAC 

Solutions with miscibility gap  NRTL, UNIQUAC 



 
Table 6.2: Select Models for the Excess Gibbs Energy and Activity Coefficients for Binary Systems 

 
Model 
Name 

GE/RT Binary 
parameters 1 2ln and ln  γ γ  

Two-suffix  
Margules 1 2/EG RT Ax x=  

(One-constant) 

A 2
1 2ln Axγ =  

2
2 1ln Axγ =  

Three-
suffix 

Margules 
1 2 21 1/ (EG RT x x A x= +

 
(Two-constant) 

21 12,A A  
2

1 2 12 21 12 1ln [ 2( ) ]x A A A xγ = + −  
2

2 1 21 12 21 2ln [ 2( ) ]x A A A xγ = + −  

 
Van Laar 12 21 1 2

12 1 21

/E A A x xG RT
A x A x

=
+

 

21 12,A A  212 1
1 12

21 2

ln /(1 )A xA
A x

γ = + ;

221 2
2 21

12 1

ln /(1 )A xA
A x

γ = +  

Conversely:
22 2

12 1 21 2
1 1

lnln (1 ) ; ln (1
ln

xA A
x

γγ γ
γ

= + =

 
 

 
Wilson 1 1 2 12ln( )

EG x x x
RT

= − + Λ

 

12 21,Λ Λ  12
1 1 2 12 2

1 12

ln ln( )x x x
x x

γ
 Λ

= + Λ +  + Λ
 

12
2 2 1 21 1

1 12

ln ln( )x x x
x x

γ
 Λ

= + Λ +  + Λ
 

 
NRTL 21 21 12 12

1 2
1 2 21 `2 1 1

/E G GG RT x x
x x G x x G
τ τ

= + + +
 

(

2
2 21 1

1 2 21
1 2 21 2

ln Gx
x x G x

τγ τ
  
= + + +  

 



Where, 

12 12 12 21 12 21exp( ); exp( )G Gα τ α τ= − = −
 

12
12

b
RT

τ =   ;  21
21

b
RT

τ =  

 

(

2
2 12 2

2 1 12
2 1 12 1

ln Gx
x x G x

τγ τ
  
= + + +  

 

 



 
Except for the NRTL model, all others are characterized by two parameters that are essentially 

adjustable with variations of temperature. For the Wilson equation in the above table the parameters 

are defined as follows: 

2 12 1 21
12 21

1 2
exp ; expV a V a

V RT V RT
   Λ = − Λ = −   
   

       ..(6.183) 

Here 1V and 2V are the pure component molar volumes at the temperature of the system; and 12a and 21a

are constants for a given pair of components. However, as the expressions in 6.183 indicate, the 

parameters 12 21 and Λ Λ are temperature dependent. The parameters for NRTL are, 12 21, , and α τ τ , the 

latter two are temperature dependent. 

 
Table 6.3 Expressions for the Molar Excess Gibbs Energy and Activity Coefficients of 

Multi-component Systems obeying Wilson & NRTL Models 
Name Molar excess Gibbs energy Activity coefficient for component i 
Wilson 

ln
N NE

i j ij
i j

G x x
RT

 
= − Λ  

 
∑ ∑  ln 1 ln

N
k ki

i j ij
j k j kj

j

xx
x

γ
  Λ

= − Λ −  Λ 
∑ ∑∑

 

 
NRTL 

N

ji ji jNE
j
N

i
ki k

k

G x
G x
RT

G x

τ
=

∑
∑

∑
 

 

ln

N N

ji ji j k kj kjN
j j ij k

i ijN N N
k

ki k kj k kj k
k k k

G x x Gx G

G x G x G x

τ τ
γ τ

 
 
 = + −
 
 
 

∑ ∑
∑

∑ ∑ ∑
 

 
A common feature of all the models are that the parameters are basically related to the infinite dilute 

activity coefficients for each binary. Table 6.4 provides the relevant relations for each model.  

 

Table 6.4 Relation between the model parameters and infinite dilute activity coefficients 

Model Relation between the model parameters and infinite dilute activity coefficients 

Two-suffix 
Margules 

1 2ln ln Aγ γ∞ ∞= =  

Three-suffix 
Margules 

1 12ln Aγ ∞ = ;  2 21ln Aγ ∞ =  

Van Laar 
1 12ln Aγ ∞ = ;  2 21ln Aγ ∞ =  

Wilson 
1 21 12ln 1 lnγ ∞ = −Λ − Λ ; 2 12 21ln 1 lnγ ∞ = −Λ − Λ  

NRTL 
1 21 12 12ln exp( )γ τ τ ατ∞ = + − ; 2 12 21 21ln exp( )γ τ τ ατ∞ = + −  

 



---------------------------------------------------------------------------------------------------------------------------- 

Example 6.10 

Methanol (1)-acetone (2) system is described by the Van Laar activity coefficient model. At 600C, the 

model parameters are 12 210.47; 0.78A A= = . Estimate the activity coefficients for a solution containing 

10mole% of methanol.   

(Click for solution) 

---------------------------------------------------------------------------------------------------------------------------- 

Regular Solution (RS) Model 

This activity coefficient model is derived for solutions that show moderate deviations from ideal 

solution behaviour, and for which  and E EV S  are both zero. The model was proposed by Scatchard and 

Hildebrand (J. H. Hildebrand & R. L Scott. The Solubility of Non-electrolytes, Dover, 1964) and 

constitutes one of few models that are derived from theory. Known as the Regular Solution Model, the 

molar excess Gibbs free energy function is given by: 

( ) ( )2
1 1 2 2 1 2 1 2/EG RT x V x V δ δ= + Φ Φ −         ..(6.184) 

It follows that: 

( )22
1 1 2 1 2ln  Vγ δ δ= Φ −          ..(6.185) 

( )22
2 2 1 1 2ln Vγ δ δ= Φ −          ..(6.186) 

where, iΦ = volume fraction = 
m

ii

V
Vx

; Vi = molar volume of pure ith species, and m i i
i

V xV=∑  

Further: iδ = solubility parameter for ith species, which is given by: 

( ) ( )
i

vap
i

i

vap
i

i V
RTH

V
U −∆

≅
∆

=δ         ..(6.187) 

Where, ,  vap vap
i iU H∆ ∆ are molar internal energy, and enthalpy of vapourization of ith species at the 

temperature of interest. 

The above relations may be extended to multi-component mixtures for which: 

( )2
1 R ln i iT Vγ δ δ= −           ..(6.188) 

j j
j

δ δ= Φ∑            ..(6.189) 



j j
j

j j
j

x V
x V

Φ =
∑

; (where, j → runs over all the species)      ..(6.190) 

The solubility parameters for a set of select substances are provided in Appendix IV. 

-------------------------------------------------------------------------------------------------------------------------- 

Example 6.11 

Use of Regular Solution Model to estimate activity coefficients for an equimolar benzene (1)  / 

cyclohexane (2) solution 350oK. The solubility parameters are: δ1 = 9.2 (cal/cm3)1/2; δ2 = 8.2 

(cal/cm3)1/2. The molar volumes: V1
L = 88 cm3/mol; V2

L = 107 cm3/mol  

(Click for solution) 

-------------------------------------------------------------------------------------------------------------------------- 

UNIQUAC: Group Contribution Method for Evaluation of Activity Coefficients 

The acronym UNIQUAC stands for Universal Quasi Chemical Equation. The principle that the 

UNIQUAC method is founded on is that of group contribution. The methodology is based on the 

postulate that any thermo-physical property of a pure substance is a weighted sum of the chemical 

groups that constitute it. Since the number of functional groups (such as 

3 2, , , , etc.)CH CH OH COOH− − − − are few (about 50 or so) in comparison to the vast number of 

chemical species they can form, the approach based on group contribution constitutes an universal, and 

indeed a versatile method of prediction of a wide variety of properties of a very large number of 

substances. Properties as diverse as normal boiling point, enthalpy of vapourization, molar volume, 

thermal conductivity, viscosity, surface tension, etc may be estimated when no direct experimental data 

are available.  

While estimating any property, a molecule is decomposed into the functional groups that make 

it up. Intermolecular interactions (in a pure fluid or a mixture) are then considered to be approximately 

equal to the weighted sum of group-group interactions. Characteristic quantitative values representing 

group interactions have been obtained from regression of experimental data for binary systems. The 

use of this approach for predicting a wide variety of number of physic-chemical properties has been 

demonstrated comprehensively by Reid et. al. (J C. Reid, J. M. Prausnitz, and B. E. Polling, The 

Properties of Gases and Liquids, 4th ed. McGraw Hill, 1987). A group contribution method is, 

however, necessarily approximate as it is based on the simple additivity of contributions from each 



group; further it assumes the contribution made by each group is independent of the nature of the 

adjacent group.  

In extending the method to prediction of activity coefficients, the molar excess Gibbs free 

energy is divided into two parts: combinatorial and residual. The combinatorial part accounts for non-

ideality of a mixture arising from differences in size and shape of constituent molecular species; 

whereas the residual part considers the difference between inter-molecular and intra-molecular 

interaction energies.  

We provide there the final UNIQUAC activity coefficient relations for a binary. It is may be 

easily extended to represent ternary and higher order mixtures (J.M. Prausnitz, R.N. Lichtenthaler and 

E.G. Azevedo, Molecular Thermodynamics of Fluid-Phase Equilibria, 3rd ed., Prentice Hall, 1998). 

The function /Eg G RT≡ is comprised of the combinatorial and residual parts as follows: 
C Rg g g= +            ..(6.191) 

The combinatorial part represents pure species parameters, while the residual part contains two binary 

parameters for each pair of molecules. In general for a system comprised of N molecular species, we 

have the following relations: 

ln 5 ln
N N

C i i
i i i

i ii i

g x q x
x

θΦ
= +

Φ∑ ∑        ..(6.192) 

ln
N

R
i i i ji

i j
g q x θ τ

 
= −  

 
∑ ∑         ..(6.193) 

Where: 

i i
i N

j j
j

x r

x r
Φ =

∑
          ..(6.194) 

i i
i N

j j
j

x q

x q
θ =

∑
          ..(6.195) 

ir = relative molecular volume; iq = relative molecular surface area (both are pure species parameters) 

The binary interaction parameters jiτ and ijτ which need to be regressed from binary VLE data are 

temperature dependent. They are the UNIQUAC model parameters and are provided by: 



exp ji ii
ji

u u
RT

τ
 −  

= −  
  

; and, exp ij jj
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u u
RT
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= −  
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    ..(6.196) 

The activity coefficient is also divided into two parts: 

ln ln ( ) ln ( )C R
i i icombinatorial residualγ γ γ= +      ..(6.197) 

ln 1 ln 5 1 lnC i i
i i i i

i i

J JJ J q
L L

γ
 

= − + − − + 
        ..(6.198)
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ijR
i i i j
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q s j
s
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γ θ
 

= − − → ≡  
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i
i N

j j
j

rJ
r x

=

∑           ..(6.200)
 

i
i N

j j
j

qL
q x

=

∑           ..(6.201) 

; ( )
N

i l li
l

s l dummy indexθ τ= →∑
 

The computation of the parameters , andi i iJ L s is based on the UNIFAC (Universal Functional Group 

Activity Coefficients) method (see eqns. 6.202 and 6.203 below), which is an extension of the 

UNIQUAC model. The application of the UNIFAC method is premised on the idea that a solution is 

composed of the sub-groups rather than molecules themselves. The groups are essentially small, self-

contained chemical units, each designated as k, for which the relative volume and surface areas are 

denoted as Rk and Qk respectively. When a molecule may be constructed from more than a single set of 

subgroups, the one with the least number of different subgroups is assumed as the correct one. The 

values of Rk and Qk for various common subgroups are shown in table 1 of Appendix V. More 

exhaustive tables may be found elsewhere (J.M. Prausnitz, R.N. Lichtenthaler and E.G. Azevedo, 

Molecular Thermodynamics of Fluid-Phase Equilibria, 3rd ed., Prentice Hall, 1998). 

 Apart from the dependence on pure species properties species Rk and Qk, the activity 

coefficients are functions of interaction between the various subgroups. As shown in table 1 of 

Appendix V, a cluster of sub-groups are classified under a main group, which are primarily descriptive. 

All subgroups under a main group are identical with respect to group interactions. Accordingly the 



interaction between group parameters is identified with pairs of main groups under which the former 

are classified. Parametric values of select pairs of main groups are provided in table 2 of Appendix V.   

One of the distinct advantages of the UNIFAC model is that it is able to predict activity 

coefficients more effectively in mixtures where constituent molecules have large size differences, as in 

polymer solutions. 

In the UNIFAC method the expression for the combinatorial part of the activity coefficient is 

the same as that in eqn. 6.196. However, the residual part takes a somewhat different form.  

ln 1 ln 5 1 lnC i i
i i i i

i i

J JJ J q
L L

γ
 

= − + − − + 
         ..(6.200) 
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β βγ θ

  
= − − → ≡  
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∑

     ..(6.201) 

The terms Ji and Li are given by eqns. 6.198 and 6.199. However, the other parameters are defined as: 
( )i

i k k
k

r Rν=∑
           ..(6.202) 

( )i
i k k

k
q Qν=∑

           ..(6.203) 
( )i
k k

ki
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Qe
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           ..(6.204) 

ik mi mk
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           ..(6.205) 

( ) number of   subgroup in  molecular species i th th
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x q
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∑
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k m mk
m

s θ τ=∑
           ..(6.207) 

exp mk
mk

a
T

τ  = − 
            ..(6.208) 

Thus, in summary the key UNIFAC parameters are RK, QK and amk. Tables containing the values of 

these parameters are recorded more exhaustively elsewhere (H. K. Hansen, P. Rasmusen, Aa. 



Fredenslund, M.Schiller, and J. Gmehling, IEC Research, Vol 30, pp 2352 – 2355, 1991; and R.C 

Reid, J, M., Prausnitz, and B.E. Poling, in Properties of Gases and Liquids, 4th ed., McGraw-Hill, 

1987). All the parameters in the UNIFAC approach are essentially binary and there are effectively two 

parameters that need to be determined from experimental VLE data. 

---------------------------------------------------------------------------------------------------------------------------- 

Example 6.12 

Use UNIFAC model to estimate activity coefficients for an equimolar n-pentane (1) /acetone (2) 

solution 320oK. 

(Click for solution) 

---------------------------------------------------------------------------------------------------------------------------- 

Appendix 6.1 

Some relations among partial properties 

Every equation that provides a linear relation among thermodynamic properties of a constant-

composition (single-phase) solution can be used to derive a corresponding equation relating the partial 

molar properties. As an example, this is demonstrated below for the property enthalpy. 

One may write for a constant composition solution: H U PV= +  

It follows that for the entire system: ( )nH nU P nV= +  

Applying the definition of partial molar properties: 

, , , , , ,

( ) ( ) ( )

j i j i j i
i i iT P n T P n T P n

nH nU nVP
n n n

≠ ≠ ≠

     ∂ ∂ ∂
= +     ∂ ∂ ∂     

      ..(A.6.1.1) 

Hence: i i iH U PV= +  

Similar relations may be derived for other thermodynamic properties. Other forms of relationships are 

also derivable as is illustrated below, as an example, using Gibbs free energy relations. 

For an open multi-component system: ( ) ( ) ( ) i i
i

d nG nV dP nS dT G dn= − +∑   ..(A.6.1.2)   

By Maxwell Relations: 
, ,P n T n

V S
T P
∂ ∂   = −   ∂ ∂   

 

Also for both P and n = constant, we have: ( ) ( )d nG nS dT= −  

Or 
,

( ) ( )
P n

nG nS
T

∂  = − ∂ 
         ..(A.6.1.3) 



Thus: 
, ,

, , ,

( ) ( )

T P nj i j i
P ni iT P n

nG nS
n T n

≠ ≠

   ∂ ∂ ∂  = −     ∂ ∂ ∂    
 

Or: 
, ,

,
, ,

( ) ( )

j i T P n j iP n
i iT P n

nG nS
T n n

≠ ≠

    ∂ ∂ ∂  = −   ∂ ∂ ∂     
 

Hence
, , ,

( )

P n T P n j i

i
i

i

G nS S
T n

≠

  ∂ ∂
= − = −  ∂ ∂   

      ..(A.6.1.4) 

In the same manner, it may be shown that: 
, , ,

( )

T n T P n j i

i
i

i

G nV V
P n

≠

  ∂ ∂
= − =  ∂ ∂   

  ..(A.6.1.5) 

So if one writes at const n, ( , )i iG G T P= , it follows: 

 

, ,i i

i i
i

T x P x

G GdG dP dT
P T

   ∂ ∂
= +   ∂ ∂   

       ..(A.6.1.6) 

Using (A.6.1.4) and (A.6.1.5) in (A.6.1.6) one obtains: 

 

i i idG V dP S dT= −          ..(A.6.1.7) 

Equation A.6.1.7 is exploited in the derivation of relations for fugacity of individual species in real 

mixtures. As with the Gibbs free energy function; those given by eqns. 5.3 – 5.5 can be used as starting 

points for the corresponding relations of the form given by eqn. A.6.1.7.    

 

Appendix 6.2 

Derivation of the expression for species fugacity coefficient for pressure explicit EOS 

dG VdP SdT= −  

It may be shown that: i i idG V dP S dT= −  

At constant T: i idG V dP=         ..(A.6.2.1) 

ˆUsing (A.6.2.1) and (A.6.2.2): lni iV dP RTd f=      ..(A.6.2.3) 

ˆBut by defintion: lni idG RTd f=        ..(A.6.2.2) 

We may also write for the pure compoent: ig ig
i idG V dP=     ..(A.6.2.4) 



ˆlnig ig
i idG RT f=          ..(A.6.2.5) 

( ) ( )
ˆ

Using  and  and integr. a6.2.2 .6.2.5 ting: ln ˆ
ig i

i i ig
i

fG G RTA
f

A
 

− =   
 

 

ˆ
Or: lnig i

i i
i

fG G RT
y P

 
− =   

 
        ..(A.6.2.6) 

( ) ( )
0

0

.6.2.3 .6. 1Equivalently, using  and : ( )

1Or:

2.

 

4
Pig ig

i i i i

Pig
i i i

G G V V dP
RT

RTG G V dP
RT P

A A − = −

 − = − 
 

∫

∫
  

..(A.6.2.7) 

Next we develop the expression for fugacity coefficient using the foregoing relations. 

( ) ( )

,,,

Using  a.6.2.2 .6.nd :2.3
ˆln

iii

i i i
i

T nT nT n

f GRT V
P P

A A

P
µ   ∂ ∂ ∂ = = =      ∂ ∂ ∂   

      

..(A.6.2.8) 

 
( )n

In the last eqn. implies that all n constant
i

i =  

 

,, ,

Now:
ii i

i i

T nT n T n

V
P V P
µ µ∂ ∂ ∂     =     ∂ ∂ ∂    

       ..(A.6.2.9) 

 
( ) ( )

,,

,

, ,,

Putting  in  and rearranging:

ˆln

.6.2.9 .6

1
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i ii
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ˆln
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i i

T nT n

fRT
V V

µ ∂ ∂ =    ∂ ∂  
        ..(A.6.2.10)  

For a multi-component mixture we may write the following expression for the total Helmholtz free 

energy:   



1 2

2 2

( , , , ,... )

One may write:

t t
N

t t

i i

A A T V n n n

A A
V n n V

=

   ∂ ∂
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Or: 
ij ji

t t

i i T nT V n T V nT n
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      ∂ ∂ ∂ ∂   =   ∂ ∂ ∂ ∂        
     ..(A.6.2.11) 

 
One can also prove that the chemical potential may be expressed in any of the following forms: 

, , , , , , , ,

1

, , , ,

Also, since ( , , ,..., );
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By comparison to the coresponding closed system expression: 

Thus: 

j

ii

t
t t t

i
i i T V n

t

t
T nT n

AdA PdV S dT dn
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A A P
V V

 ∂
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 ∂ ∂ = = −   ∂ ∂  

∑  

Therefore, eqn. (A.6.2.11) may be written as: 

, , ,i j

i

T n i T V n

P
V n
µ  ∂ ∂  = −  ∂ ∂            

(A.6.2.12)
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Using  and.6.2.10 .6.2. 2 :1
ˆln

ji

i

i T V nT n
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Adding (13) and (14) one gets:
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∫       ..(A.6.2.16) 

Equation (A.6.2.16) is useful for deriving the analytical expression for the fugacity coefficient of 

species in a mixture using typical pressure explicit cubic EOSs. However, for doing that the expression 

for
, , j

i T V n

P
n

 ∂
 ∂ 

has to be obtained. This has been presented earlier in section 6.14. 
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Chapter 7 Vapour-Liquid Equilibria 
7.1 Introduction 

Both the general criterion of thermodynamic equilibrium as well as the specific condition of equality 

of chemical potential of each species which hold at equilibrium was introduced in the last chapter. We 

now develop the detailed relationships connecting the phase variables (T, P and composition) that 

originate from the concepts of chemical potential and the fugacity coefficient. The basic principle 

employed in all separation processes is that under equilibrium the compositions of phases differ from 

each other, and therefore it is possible to preferentially concentrate one species over another (or others) 

in one particular phase. This feature of phase equilibria is exploited in a wide variety of process 

equipments such as distillation, extraction, crystallization, etc.   

 This chapter focuses on the vapour-liquid equilibria (VLE) problem which is depicted 

schematically in fig. 7.1. When a multi-component, vapour and liquid phase – each (say) containing N 

chemical species – co-exist in thermodynamic equilibrium at a temperature T and pressure P, the phase 

compositions { }1, 2, 1... Ny y y − and { }1, 2, 1... Nx x x −  remain invariant with time, and are related by a unique 

set of relations. If the relations are known as a function of temperature, pressure and compositions 

{ }i iy and x for each species, then provided some of these variables are specified the rest may be 

calculated. We will derive such relations for real multi-component systems; but as in all cases of 

thermodynamic modeling we take the ideal system as our starting point. Next the VLE of systems at 

moderate pressures are treated. Finally the relations for VLE at high pressures are presented. In the 

following section we derive the relations that hold for pure component VLE before describing those 

which apply to multi-component systems. 

 

 
 

Fig. 7.1 The VLE Problem Description 
 



7.2 Single Component System Phase Equilibria 

We start with the general criterion of equality of the chemical potential in the two phases. To 

generalize the results we assume that any two types of phases α and β of a pure component are at 

equilibrium. Thus as given by eqn. 6.50:  

i i
α βµ µ=            ..(6.50) 

However, for a pure component the chemical potential is reduces to the pure component molar Gibbs 

free energy. Therefore: 

i Gα αµ = and, i Gβ βµ =          ..(7.1) 

Thus eqn. 6.50 reduces to: 

G Gα β=            ..(7.2) 

On taking a differential:  

dG dGα β=            ..(7.3) 

Using the generic relationship in eqn. 5.7 we may write in keeping with the fact that for a given 

equilibrium temperature, the equilibrium pressure corresponds to the saturation vapour pressure satP :  
sat satV dP S dT V dP S dTα α β β− = −         ..(7.4) 

On rearranging:  

αβ

αβ

αβ

αβ

V
S

VV
SS

dT
dP sat

∆
∆

=
−
−

=
         ..(7.5) 

Additionally using the second law we have: 

dS dQ T=
           ..(7.6) 

And that for a constant pressure process:  

dQ dH=
           ..(7.7) 

Using eqns. (7.6) and (7.7) we obtain: 

H T Sαβ αβ∆ = ∆           ..(7.8) 

Thus, /S H Tαβ αβ∆ = ∆ , and substitution in eqn.7.5 gives:  

αβ

αβ

VT
H

dT
dP sat

∆
∆

=           ..(7.9) 

The last equation is called the Clapeyron equation. For the specific case of phase transition from liquid 

(l) to vapor (v), it translates into: 



sat LV

LV
dP H
dT T V

∆
=

∆
          ..(7.10) 

Noting that liquid phase molar volumes are relatively much lesser than vapour phase volumes, we may 

write,  LV V V vV V V V∆ = − ≅          ..(7.11) 

Further at low to moderate saturation pressures if we assume ideal vapour phase behaviour, then

v
sat

RTV
P

≅
           ..(7.12)

 

Eqn. 7.10 then becomes: 

/

sat LV

sat
dP H
dT RT P

∆
=  

Or: 

2

/
/

sat sat LVdP P H
dT T R

∆
=           ..(7.13) 

Whence, 
ln[ ]
(1/ )

sat
LV d PH R

d T
∆ = −         ..(7.14) 

This approximate equation is known as the Clausius-Clapeyron equation. The assumptions used in the 

above derivations have approximate validity only at low pressures. Integrating eqn. 7.14 we have:  

ln sat BP A
T

= −           ..(7.15) 

On comparing eqns. 7.14 and 7.15, it follows that: / ,LVB H R= ∆  while A is the constant of integration. 

These are generally regarded as constants for a given species. A plot of experimental values of lnPsat

ln sat BP A
T C

= −
+

 

vs. 1/T generally yields a line that is nearly straight between the triple and critical points. However, the 

validity of eqn. 7.15is questionable at relatively high pressures, and certainly in the critical region. 

Thus the accuracy of the Clausius-Clapeyron equation reduces at higher pressures. A modified form of 

eqn. 7.15, called the Antoine Equation, has proved to be more accurate (including at higher pressures), 

has the following form:  

          ..(7.16) 

A, B, and C are readily available for a large number of species. Appendix VI provides values of 

Antoine constants for select substances. More complex forms of equations relation temperature and 



vapour pressure of pure substances have been reported in the literature, which provide even greater 

accuracy. An example of such an equation is the Wagner equation, which is given by:  
1.5 3 6

ln
1

sat
r

A B C DP τ τ τ τ
τ

+ + +
=

−
, where 1 rTτ = −       ..(7.17) 

The constants for the Wagner equation for specific substances are available in several reference texts 

(see R.C. Reid, J.M. Prausnitz and B.E. Poling, Properties of Gases and Liquids, 4th ed., McGraw-

Hill, 1987). 

 

7.3 Derivation of the Phase Rule 

The phase rule was introduced in section 1.5 without proof. Here we develop its mathematical form 

based on the tenets of solution thermodynamics and phase equilibrium criterion presented in the last 

chapter. Consider a non-reactive system under equilibrium, with π phases each containing N 

independent chemical species. The degrees of freedom for the system, i.e., the number of intensive 

variables that may vary independently of each other would be given by: 

 

Degrees of freedom = Total number of systemic intensive variables –number of independent equations 

relating all the variables. 

 

For the system of interest here the above terms are as follows: 

I. Total number of systemic intensive variables (also called the phase rule variables)= T, P and 

(N-1) species mole fractions for each of the π phases 

II. Number of independent relations connecting the phase rule variables = ( 1)Nπ −  

 

The second relation above follows from the fact that for each of the N species one may use the 

chemical potential equality relation across all π phases, as described by eqn. 6.52. It follows that for 

each component there can be only ( 1)π −  independent relations.  

Thus the phase rule may be rewritten as: 

[ ] [ ]2 ( 1) ( 1) 2F N N Nπ π π= + − − − = + −        (7.18) 

It may be noted that the actual mass of each of the species present are not considered as phase 

rule variables, as they cannot influence the intensive state of the system. A special case of the phase 

rule obtains for closed systems for which the initial mass for each species is fixed. Since no mass can 



enter or leave the system, the extensive state of the system is rendered fixed along with the intensive 

variables. Therefore, apart from the ( 1)Nπ − constraining relations involving the species chemical 

potentials, there is an additional [ ]( 1)N π− constraint on the mass of each species; this follows from 

the fact that if a quantum of a species leaves a phase it must reappear in another or more. Thus the 

phase rule eqn. leads to: 

[ ] [ ] [ ]2 ( 1) ( 1) ( 1) 2F N N Nπ π π= + − − − − − =       ..(7.19) 

The above equation is known as the Duhem's theorem. It implies that for any closed system 

formed initially from given masses of a number of chemical species, the equilibrium state is 

completely determined when any two independent variables are fixed. The two independent variables 

that one may choose to specify may be either intensive or extensive. However, the number of 

independent intensive variables is given by the phase rule. Therefore, it follows that when F = 1, at 

least one of the two variables must be extensive, and when F = 0, both must be extensive. 
' 
7.4 Description of General VLE Behavior  

Before presenting the mathematical formulation of the multi-component VLE problem it is pertinent to 

discuss some key features of typical vapour liquid phase behaviour. The description of phase 

behaviour of vapour and liquid phases co-existing under equilibrium can be complex and difficult to 

visualize for systems containing a large number of chemical species. Thus, to clarify matters it is 

useful to consider a binary system. The considerations for such a system may, in principle, be 

generalized to understand the behaviour of multi-component systems. However, we restrict ourselves 

to description of VLE of multi-component systems to the corresponding mathematical formulation.   

When N = 2, the phase rule yields a degree of freedom F = 4 – π. In the general VLE problem 

since there are at least two phases, the corresponding number of independent intensive variables 

become 2. In the case of extractive distillation, there are at least two liquid phases and a vapour phase, 

whence the degrees of freedom reduce to 1.In the following discussion we present the phase behaviour 

of the simplest case of a binary VLE. The more volatile of the two is designated as component (1). The 

phase rule variables for this case are: T, P, y1 and x1. Graphical plots of experimentally obtained phase 

behaviour can then be expressed as a functionof various combinations of these variables. For example 

at a given temperature one may plot two curves, P vs. x1 (or in short P-x1) and P vs. y1. Similarly on 

specifying a certain pressure, one may plot T vs. x1 and T vs. y1. In addition if one fixes either x1 or y1 

one may plot P-T diagrams. The combination of these diagrams lead to a 3-dimensional surface 



involving pressure, temperature and phase compositions on the three axes. A typical plot is shown in 

fig. 7.2. 

 
Fig. 7.2 Three dimensional VLE phase diagram for a binary system 

 
Consider first a case of VLE phase behaviour at a constant temperature. This is in shown as the 

“lens” AB. The lower part of the lens corresponds to P-y1 while upper curve is the P-x1

1 1x y−

 plot. The 

values of the vapour and liquid compositions at any system equilibrium pressure are found by drawing 

a line parallel to the axis. The point of intersection of this line with the upper curve provides the 

saturated liquid phase composition ( 1x ) and is termed the bubble pressure line; while that with the 

lower curve corresponds to the saturated vapour phase composition 1( )y and is termed the dew pressure 

line. Extending the description the entire upper face of the three dimensional surface constitutes the 

bubble surface. Any point above it corresponds to the state of sub-cooled liquid. In the same manner, 

the lower face represents the dew surface. For any point below this face the state is that of a 

superheated vapour. The line that connects the phase compositions ( * *
1 1x and y  ) is called the tie line 

(shown as T1-T2

Similarly, if one considers isobaric plots (shown as the lens DE), for any equilibrium 

temperature the vapour and liquid phase compositions are found by drawing a line that passes through 

the specific temperature and is parallel to the 

). Such tie lines may be drawn at any other pressure and the same considerations as 

above are valid. 

1 1x y− axis. The upper intersection point provides the 



vapour phase composition (dew temperature line), while the lower one corresponds to the liquid phase 

composition (bubble temperature line). Finally if one fixes the composition at a point on the 1 1x y−

axis the intersection of a vertical plane through the composition point with the 3-dimension surface 

yields the curve FCG. The upper part of this curve, i.e., FC corresponds to the locus of liquid phase 

compositions while the lower one (CG) is that of the vapour phase compositions. The point C is the 

meeting point of the two curves and defines the critical point of the mixture at the composition 

specified by the original vertical plane at a point on the 1 1x y− axis. At the two end points of the 

composition axis are the pure component P-T plots which terminate at the critical points, C1-C2

 If one takes a series of varying isothermal or isobaric “lenses”, two types of plots result, which 

are shown in fig. 7.3. Consider the P-x-y plot. The lowest lens (T

, of the 

two substances. 

X) corresponds to the situation 

already described in the last paragraph (i.e., the lens MN). However, the one at TY 

1 2, but . C Y C YT T T T< >

corresponds to a 

case for which  Thus at this temperature the vapour and liquid phases of the pure 

component ‘1’ cannot co-exist, and hence the P-x-y plot vanishes as the composition tends to 1 1.x →  

If one moves to a still higher temperature say TZ  1 1x y−the P-x-y “hangs” at both ends of the  as both  

1 2, and . C Z C ZT T T T< < The considerations for the isobaric lenses at ,X Y ZP P and P are the same as for 

the isotherms, i,e., for the highest isobar, both  1 2, and C Z C ZP P P P< < and so on.  

 
Fig. 7.3 (a) P-x1–y1 diagrams for three temperatures. (b) T-x1-y1 

 
diagrams for three pressures 

If one considers now a series of P-T plots they correspond to the curves shown in fig, 7.4. The lines I-J 



and K-L which represent the vapour pressure-vs.-T curves for pure species 1 and 2 respectively. At 

other intermediate compositions the upper and lower plots (obtained by intersection of a vertical plane 

at constant point on the 1 1x y− axis, and the P-T-x-y surface of fig. 7.2) constitute a curve that rounds 

off at the true critical point of the mixture (as opposed to the “pseudo-critical” temperature  

 
Fig. 7.4 P-T diagram for various compositions 

and pressure of mixtures discussed in section 2.4).  The critical points of the various mixtures of the 

two species thus lie along a line on the rounded edge of the surface between J and L; it is, therefore 

composition dependent. Each interior loop represents the P-T behavior of saturated liquid and of 

saturated vapour for a mixture of constant composition; the loops differ from one composition to 

another. It follows that the P-T relation for saturated liquid is different from that for saturated vapour 

of the same composition. This is in contrast with the behavior of a pure species, for which the bubble 

and dew lines are the same, as for I-J and K-L. 

 The above discussion suggests that the phase behaviour of even a simple binary can be 

relatively more difficult to interpret in its complete three-dimensional form. Reducing such behaviour 

to two-dimensional plots enables easier visualization of the phase behaviour and understanding their 

features. However, in many instances, even two dimensional plots can be more complex in nature. 

Examples of such curves (as are often encountered with solvent mixtures in industrial practice) are 

shown schematically in the form of (P-x-y) in fig. 7.5, for systems at relatively low pressures                

( 1 ).atm≤  



 
Fig. 7.5 Schematic P-x-y plots showing deviation from ideal VLE behaviour 

 
All the four systemic VLE behaviour exhibits deviation from ideal vapour-liquid systems. As 

discussed in the next section ideal VLE behaviour is characterized by Raoult’s Law (RL). Suffice it 

mention here that non-ideal VLE systems may exhibit both negative (figs. 7.5a & 7.5b) and positive 

deviations (figs. 7.5c and 7.5d)  from that which obeys the Raoult’s law (RL). The RL behaviour is 

typified by the dotted P-x1 lines in each set in fig. 7.5. When the actual P-x1

From a molecular thermodynamic viewpoint, negative deviations occur if the 1-2 type 

(between unlike species) of molecular interactions (attraction) are stronger than 1-1 or 2-2 (between 

like species) type of interaction. As a result, the molecules of the more volatile component (1) are 

“constrained” by those of component 2 from transiting to the vapour phase to a greater extent than in 

the case when the former is present in a pure form. This effectively translates into an equilibrium 

pressure less than the RL system at the same liquid phase composition; hence the actual system 

displays “negative” deviation in comparison to RL for which 1-1, 2-2, and 1-2 types of interactions are 

 line lies below the RL-

line, the system is said to show negative deviation from RL, while if it lies above it is indicative of a 

positive deviation.  



more or less the same.  Appreciable negative departures from P-x1

There is an additional complexity evident in figs. 7.5c and 7.5d. Considering the former we see 

that it is defined by two distinct types of behaviour on either sides of the point termed as the 

“azeotrope”. At this point the P-x

 linearity reflect strong liquid-phase 

intermolecular interaction. The opposite applies to the case where a system shows a positive deviation 

from RL; that is, the interaction between the unlike species of molecules is lower than that between 

like molecules. 

1 and the P-y1 

1 1x y>

curves converge; i.e., the two phases are identical in 

composition at this point. On left side of the azeotrope , while on the other side, 1 1.x y< The 

reverse situation holds for the system depicted in fig. 7.4d. Such systems are not uncommon in the 

process industry and always pose a difficulty in purifying a mixture to compositions higher than the 

azeotropic point. This is because during a distillation process when the mixture composition arrives at 

the azeotropic point the two phases become identical in composition, and the liquid composition does 

not alter further during evaporation.  

The phase behaviour of the same systems as in fig. 7.5 is depicted as T-x-y diagrams in fig. 7.6. 

In particular we refer to the figs 7.6b and 7.6d. As expected the P-x curves appear inverted on a T-x 

diagram. The first kind of system (fig. 7.6b) is said to show a maximum boiling point azeotrope, while 

that depicted by fig. 7.5d shows a minimum boiling point azeotropic behaviour. 

 

 



 
Fig. 7.6 Schematic T-x-y plots showing deviation from ideal VLE behaviour 

 
 
7.5 Raoult’s Law for VLE 

As mentioned in the concluding part of the last section, vapour-liquid systems which are ideal in 

nature display a behaviour corresponding to Raoult’s Law. In such a system, both the vapour and the 

liquid phases essentially behave as ideal mixtures. For describing the VLE for such systems we start by 

applying eqn. 6.50, to the vapour and liquid phases: 
V L
i iµ µ=            ..(7.20) 

For an ideal vapor mixture by eqn. 6.72 we have: 

lnig ig
i i iG RT yµ ≡ +           

 Similarly for an ideal liquid solution eqn. 6.77 provides: 

lnid id
i iG RT xµ = +  

Thus rewriting eqn. 7.20 (using expressions provided by eqns. 6.72 and 6.77):  
ig id
i iµ µ≡            ..(7.21) 



ln lnig
i i i iG RT y G RT x+ = +          ..(7.22) 

Or: ln( / ) ig
i i i iRT y x G G= −          ..(7.23) 

Since effect of pressure is negligible on liquid properties we assume that:  

( , ) ( , )l l S
i i iG T P G T P           ..(7.24) 

Now for the gas phase: ig ig
i idG V dP=  (at const T)      ..(7.25) 

Thus: ( , ) ( , ) / ln ( / )
s

iPig s ig s
i i i iP

G T P G T P RT dP P RT P P− = =∫      ..(7.26) 

Combining eqns. 7.23, 7.24 and 7.26 gives: 

ln( / ) ( , ) ( , ) ln( / )l s ig s s
i i i i i i iRT y x G T P G T P RT P P= − +      ..(7.27) 

The first two terms on the RHS in equation above correspond to the Gibbs free energy of pure liquid 

and vapour phases under equilibrium conditions, i.e., at ( , )s
iT P ; hence, as shown in section 7.1, these 

terms equal. Therefore, it follows that: 

/ /s
i i iy x P P=            ..(7.28) 

Alternately: s
i i iy P x P=          ..(7.29)  

Equation 7.29 is known as the Raoult’s Law.  

It may be noted that the conditions for ideal mixture behaviour for the gas and liquid phases are 

not the same in general. For the gas mixture to be ideal the pressures need to be close to atmospheric or 

less. While a liquid solution is ideal if the interaction between the same molecular species is identical 

to that between dissimilar molecules. 

 The algorithms needed for generating RL phase diagrams are discussed later in this section. But 

prior to that, we present examples of typical phase diagrams that obtain from the application of the 

Raoult’s law (RL) equations. Consider again a binary system for which a representative isothermal 

plot is depicted in fig. 7.7. (The more volatile of the two components is designated as component ‘1’). 

The upper straight line represents the saturated liquid compositions, while the lower curve corresponds 

to the saturated vapour compositions. At any pressure, the phase compositions are found at the 

intersections of a line parallel to the x-y axis with the P-x and P-y curves. The straight line connecting 

these compositions is the tie line (such as A1-B1, A2-B2, etc.). The portion of the diagram enclosed by 

the P-x-y curves corresponds to the two phase region where the vapour and liquid phases co-exist. Any 

point lying outside of this two-phase envelope corresponds to a state where only a single phase is 



present. Now consider the point L which lies above the phase envelope. At this condition the mixture 

exists as a compressed (or sub-cooled) state whose composition corresponds to *
1x . Lowering the 

pressure at this fixed composition eventually brings the liquid mixture to the point A3, where any 

further reduction of pressure leads to the formation of a vapour phase whose composition is given by 

B3

 

. Thus this point is characterized by the formation of the first bubble of vapour, and hence is termed 

the bubble point, the corresponding pressure being the bubble pressure, at the given composition. 

Fig. 7.7 Model P-x-y plot for a system obeying Raoult’s Law 

 Next consider the point V in the above diagram. At this state the mixture is at the same overall 

composition as at L, but the state is one of single phase, superheated vapour. Increasing the pressure at 

the same composition eventually brings the mixture to the point B1, where any further increase of 

pressure leads to the formation of the liquid phase, whose composition is given by the point A1

*
1 ,y

. Thus 

this point is said to be the dew point corresponding to the vapour phase composition given by  

while the pressure at this point is termed the dew pressure.  

 We revert to the discussion on the system state at the bubble point A3. If one reduces the 

pressure progressively formation of more bubbles of vapour occurs, which coalesce and lead to the 

development of a bulk vapour phase.  The system eventually reaches the point B1 where practically the 

entire mixture exists in the vapour form; further reduction of pressure renders the mixture superheated 

and finally one reaches the point V (and beyond). Let us focus on what happens as the system transits 

through the two-phase region defined by the end points A3 and B1. Note that the overall composition 

of the system remains invariant as the pressure reduces. However, since now the original amounts of 



each species need to be distributed across the co-existing vapour and liquid phases the actual 

composition in each phase must change in accordance with the following mass conservation equation:
* *

1 1 1 1 1( ) ;z x or y x L y V≡ = + where, 1 overall composition; z = 1 1andx y are compositions of the liquid and 

vapour phases at equilibrium, and andL V  are the relative amounts of moles (per mole of the original 

mixture) in the liquid and vapour phases, respectively (thus 1)L V+ = . The liquid phase composition 

progressively changes along the line A3 to A1 (bubble curve), while the composition of the vapour 

phase in equilibrium with the liquid phase transits from B3 to B1(dew curve). At each pressure between 

the bubble pressure (Pb) and the dew pressure (Pd

* *
1 1 1 1 1( ) ;and 1.z x or y x L y V L V≡ = + + =

) the equilibrium vapour and liquid phase 

compositions, as well as the relative amounts of mass in each phase are constrained by the relations:  

 

The associated, isobaric T-x-y plots for the same system are shown in fig.7.7. As is expected 

the dew temperature curve lies above the bubble temperature curve. The lens-like region corresponds 

to the two-phase states of the system. At the point V the system is in a single phase, super-heated state. 

 
Fig. 7.8 Model T-x-y plot for a system obeying Raoult’s Law 

Progressive reduction of temperature brings it to the point B3 where the first dew of liquid forms, 

whose composition is provided by the point A3. Thus this point is referred to as the dew point, and the 

corresponding temperature called the dew temperature(Td

*
1( ).y

) for the given vapour phase composition

.On the other hand if one starts from the point L (single-phase, compressed liquid state) gradual 

increase of temperature brings the system to A1, the bubble point, where the first bubble of vapour 

forms. The associated temperature then is the bubble temperature (Tb
*
1 .x) for the composition At any 



other temperature intermediate to Td and Tb

* *
1 1 1 1 1( ) ;z x or y x L y V≡ = +

, the system contains co-existing vapour and liquid phases 

whose compositions are constrained by the same mass conservation relations provided above, i.e.,

 and 1.L V+ =  Note that as in the P-x-y plot the T-x-y plots also are 

characterized by horizontal tie lines that connect the compositions of the equilibrated vapour and liquid 

phases. 

 The data in figures 7.7 and 7.8 may be may be alternately displayed in the form of a y-x plot 

(fig. 7.9). It shows the equilibrium vapour and liquid phase compositions in a more immediate manner. 

Note that, as required by the phase rule, each pair of equilibrium y and x values correspond to a 

different combination of equilibrium temperature and pressure.  

 
Fig. 7.9 Model y-x plot for a system obeying Raoult’s Law 

 

Multi-component VLE calculations using Raoult’s Law: 

For generality we consider a system containing N chemical species. Then by phase rule, for a VLE 

situation, the degrees of freedom are 2N, the phase rule variables being {xi},{yi}, T, and P. The 

Raoult’s Law (eqn. 7.29) provides N constraining relations connecting these variables. Thus, for 

solving the VLE problem, N variables need to be specified, so that the values of the other N variables 

may be determined. Five types of VLE computations are commonly encountered in practice. They are 

enumerated below in table 7.1 first and then the relevant algorithms used are presented.  
 

 
 



Table 7.1 Types of VLE calculations 
VLE Type Specified Variables  Computed Variables 

Bubble Pressure { }and iT x  { }and iP y  

Dew Pressure { }and iT y  { }and iP x  

Bubble Temperature { }and iP x  { }and iT y  

Dew Temperature { }and iP y  { }and iT x  

Flash Distillation { }, and iT P z  { } { }, and  i iL orV x y  

 

In the above table the notations used signify the following: 

{ } { }1 2 1, ,...   i Nx overall liquid phase compoition x x x −≡ ≡  

{ } { }1 2 1, ,...   i Ny overall vapour phase compoition y y y −≡ ≡  

{ } { }1 2 1, ,...     i Nz overall feed composition to flash vessel z z z −≡ ≡  

           L moles of liquid phase formed per mole of feed to flash vessel≡  

In summary, therefore, one specifies either T or P and either the liquid-phase or the vapor-phase 

composition, thus fixing 1+(N-1) or N phase rule variables as required by the phase rule for VLE 

calculation. The variants of Raoult’s Law (eqn. 7.29) which are used are as follows: 

/s
i i iy x P P=            ..(7.30) 

Thus:  

/ 1
N

s
i i

i
x P P =∑            

Or: 
N

s
i i

i
P x P=∑            ..(7.31) 

Also:  

/ s
i i ix y P P=            ..(7.32) 

Thus:  

/ 1
N

s
i i

i
y P P =∑  



Or:  

1 /
N

s
i i

i
P y P= ∑           ..(7.33) 

For computation of vapour pressures the Antoine equation (or another suitable equation) may be used: 

0 0ln ; where ( )s i
i i

i

BP A t K or C
t C

= − =
+        ..(7.34) 

Values of Antoine constants for a select group of substances are tabulated in Appendix IV. More 

exhaustive tabulation is available at: 

 
http://www.eng.auburn.edu/users/drmills/mans486/Diffusion%20Tube/Antoine_coefficient_table.PDF 

 

Bubble Pressure: 

Given { }and iT x , to calculate { }and iP y : 

a) Use eqn. 7.31 to compute P 

b) Next use eqn. 7.30 to obtain { }iy  

  

Dew Pressure: 

Given { }and iT y , to calculate { }and iP x : 

a) Use eqn. 7.33 to compute P 

b) Use eqn. 7.32 to obtain { }ix  
 
Bubble Temperature: 

Given { }and iP x , to calculate { }and iT y  

a) For the given pressure compute { }siT using the following form of Antoine eqn. 

ln
s i

i i
i

BT C
A P

= −
−         

 

b) Initialize the bubble temperature as: ( )

N
s

b i i i
i

T x T=∑  

c) Using computed T calculate{ }siP  

d) Use equation 7.30 to compute { }iy  



e) Is 1 ? ( pre - defined acceptable error for convergence) i
i

y ε ε− < =∑  

f) If yes, ( )last b fT T= ; where ( )b fT = final acceptable bubble temperature 

g) At ( )b fT compute final{ }iy  

h) If 1i
i

y ε− >∑ , then ( )last b fT T> ; revise to new T as: 
1new last

i
i

T T
y
ε

 
 =  − 
 
∑

and return to step (c). 

i) If 1i
i

y ε− < −∑ , then the assumed ( )b fT T< ; where ( )b fT = final acceptable bubble temperature 

Revise to new T using: 
1i

i
new last

y
T T

ε

 
− 

 =
 
 
 

∑
and return to step (c). 

Dew Temperature: 

Given { }and iP y , to calculate { }and iT x  

a) For the given pressure compute { }siT using the following form of Antoine eqn. 

b) 
ln

s i
i i

i

BT C
A P

= −
−          

 

c) Initialize the dew temperature as: ( )

N
s

d i i i
i

T x T=∑  

d) Using computed T calculate{ }siP  

e) Use equation 7.33 to compute { }ix  

f) Is 1 ? ( pre - defined acceptable error for convergence) i
i

x ε ε− < =∑  

g)  If yes, ( )last d fT T= ; where ( )d fT = final acceptable bubble temperature 

h) At ( )d fT compute final{ }ix  

j) If 1i
i

x ε− >∑ , then ( )last d fT T< ; revise to new T as: 
1i

i
new last

x
T T

ε

 −
 =   
 

∑
and return to step (c). 



k) If 1i
i

x ε− < −∑ , then ( )last d fT T> ; revise to new T as: 
1i

i
new last

x
T T

ε

 
− 

 =
 
 
 

∑
and return to step 

(c). 

 

---------------------------------------------------------------------------------------------------------------------------- 

Example 7.1 

Consider the ternary system: Acetone (1) / Acetonitrile (2) / Nitromethane (3) for which: 

1
2940.46ln 14.5463

237.22
SP

t
= −

+ ; 2
2940.46ln  14.5463

237.22
SP

t
= −

+ ; 3
2972.64ln 14.2043

209.00
SP

t
= −

+  

0( ); ( ).S
iP KPa t C  

Calculate: (a) P, {yi} for a temperature = 80oC, x1 = 0.3, x2 = 0.3 (b) P, {xi}, for t = 70o

(Click for solution) 

C, y1 = 0.5, y2 = 

0.3. 

--------------------------------------------------------------------------------------------------------------------------- 

Flash Distillation Calculations 

This is an operation, often exploited in the chemical industry to achieve the desired enrichment of a 

feedstock through a one-step distillation process. A schematic of the process is shown in fig. 7.6. A 

liquid at a pressure equal to or greater than its bubble point pressure is introduced into the flash by 

passing it through a pressure reduction valve. The abrupt reduction in pressure "flashes" or partially 

evaporates the feed liquid, which results in the formation of a vapour and a liquid stream which are 

typically assumed to leave the flash vessel in equilibrium each other.  

 
Fig. 7.10 Schematic of Flash Distillation Process 



One of the common forms of flash calculation typically involves the determination of the liquid and 

vapour stream composition that results from process as well also the resultant liquid or vapour phase 

mole fractions that obtains per mole of feed. Consider a system containing one mole of mixture of 

chemical species with an overall composition represented by the set of mole fractions{ }iz . Let L and V 

be the moles of liquid and vapour formed per mole of feed. The corresponding stream compositions 

are denoted as{ }ix and{ }iy respectively. The material-balance equations are: 

1F L V= + =            ..(7.35) 

i i iz F x L yV= +            

(1 )i i iz x V yV= − + ;           ..(7.36) 

Now: / /s
i i i iK y x P P= =          ..(7.37) 

Putting /i i ix y K=  and using relations in (7.44) one obtains: 

1 ( 1)
i i

i
i

z Ky
V K

=
+ −           ..(7.38) 

1i
i

y =∑  

Using this condition in eqn. 7.38: 

1
1 ( 1)

i i

i i

z K
V K

=
+ −∑  (i = 1, 2….N)        ..(7.39) 

Since /i i ix y K= , an alternative equation is: 

1 ( 1)
i

i
i

zx
V K

=
+ −

 (i = 1,2,….N)        ..(7.40) 

It follows that: 1
1 ( 1)

i

i i

z
V K

=
+ −∑

        ..(7.41)
 

Subtracting eqn. 7.41 from 7.39and defining a functionϕ we get 

( 1) 0
1 ( 1)

i i

i i

z K
V K

ϕ −
= =

+ −∑          ..(7.42) 



It follows that: 
2

2

( 1)
[1 ( 1)]

i i

i i

z Kd
dV V K
ϕ −
= −

+ −∑        ..(7.43) 

The derivative d
dV
ϕ  is always negative; in other words the relation between ϕ  vs. V is monotonic, and 

this makes for convenient application of the well-known Newton-Raphson method of solution (see 

Appendix VII); this leads to the following equation for the nth

1 n
n n

n

V V
d
dV

ϕ
ϕ+ = −

 
 
 

 iteration: 

              

..(7.44)

 

Where, the values for ϕ and d
dV
ϕ 

 
 

may be computed using eqns. 7.42 and 7.43 respectively.  

--------------------------------------------------------------------------------------------------------------------------- 

Example 7.2 

A liquid mixture containing equimolar amounts of benzene (1) /toluene (2) and ethylbenzene (3) is 

flashed to conditions of T = 110o

0ln ( )
( )

sat BP Pa A
t K C

= −
+

C, P = 90 kPa, determine the equilibrium mole fractions {xi} and {yi} 

of the liquid and vapor phase formed and the molar fraction V of the vapor formed. Assume that 

Raoult’s law applies.  

 A B C 
Benzene 13.8594 2773.78 -53.08 
Ethylbenzene 14.0045 3279.47 -59.95 
Toluene 14.0098 3103.01 -53.36 

 

(Click for solution) 

--------------------------------------------------------------------------------------------------------------------------- 

7.6 VLE Algorithms for Low to Moderate Pressures 

The next level of complexity in VLE algorithms arise when one has to account for non-ideal behaviour 

for both the gas and liquid phases. This may obtain at pressures away from atmospheric and if the 

constituent molecules form a non-ideal liquid phase. The general approach to VLE of such system 

involves correcting both sides of the Raoult’s law to incorporate the effect of non-ideal behaviour. If 

the pressures are moderately high the truncated virial EOS may be used to describe the gas phase 



behaviour, whereas the liquid phase non-ideality is defined by a suitable activity coefficient model. 

The activity coefficient based approach is preferred for moderate pressures, as under such conditions 

the liquid phase properties may be conveniently regarded as independent of pressure, hence only 

temperature effects on the activity coefficients need be accounted for. This approach, of course, is 

rendered inaccurate at relatively high pressures, where both the gas and liquid phases need to be 

described using fugacity coefficients derived typically from a cubic (or a higher order) EOS. This is 

dealt with in the next section. Presently the VLE algorithms for low to moderate pressure range are 

introduced.  The starting point is the eqn. (6.126):  
ˆ ˆ
i if fα ψ=            ..(6.126) 

Applying it to VLE:  
ˆ ˆV L
i if f=            ..(6.127) 

For gas phase, we use eqn. 6.129: 

ˆ ˆV
i i if y Pφ=      

For liquid phase (using eqn. 6.164):  

ˆ L
i i i if x fγ=  

Applying eqn. 6.127: 

ˆ
i i i i iy P x fφ γ=            ..(7.45) 

From basic fugacity function for liquid phase (eqn.6.119): 

( )( , ) exp[ ]
l sat

sat sat i i
i i i

V P Pf T P P
RT

φ
−

=
        ..(6.119)

 

Using eqn. 6.119 in 6.128 we may write the phase equilibria relation as: 
S

i i i i iy P x PγΦ = ;   (i = 1,2,… N)      ..(7.46) 

Where ( )ˆ ˆ( / )exp[ ]
L s

s i i
i i i

V P P
RT

φ φ
−

Φ = −
       ..(7.47)

  

One may show that the Pontying (exponential factor) in the last equation is usually ~ 1 for low to 

moderate pressure range, hence one may write: 
ˆ( / )s

i i iφ φΦ ≈            ..(7.48)  

For a gas mixture obeying the truncated virial EOS (by eqn. 6.98): 



exp[ ]
s

sat ii i
i

B P
RT

φ =           ..(7.49) 

Specifically for a binary using eqns. 6.149 and 6.150: 

2
1 11 2 12
ˆln ( )P B y

RT
φ δ= +

         ..(6.149)
 

2
2 22 1 12
ˆ exp[ ( )]P B y

RT
φ δ= +

         ..(6.150) 

Using the last four equations it follows that: 
2

11 1 2 12
1

( )exp[ ]
sB P P Py

RT
δ− +

Φ =         ..(7.50) 

And 
2

22 2 1 12
2

( )exp[ ]
sB P P Py

RT
δ− +

Φ =         ..(7.51) 

It may be shown that for a multi-component the general expression for iΦ is provided by: 

( ) ( )1
2

exp

s
ii i i k ji jk

j k
i

B P P P y y

RT

δ δ− + −
Φ =

∑∑
      ..(7.52)  

Now, 1 1( , , ,..., )i i NT P y y −Φ = Φ  

And: 

1 1 1 1( , , ,..., ) ( , ,..., )i i N i NT P x x T x xγ γ γ− −= ≅        ..(7.53) 

The approximation made in eqn. 7.53 is a reasonable one, as at low to moderate pressures the 

dependence of iγ γi on ‘P’ may be neglected (as at such conditions the liquid phase properties are not 

strongly pressure dependent). 

The same five classes as provided in table 7.1 may be solved using this modified form of the 

Raoult’s law. In all cases eqn. 7.46 provides the starting point for calculation, which may be re-written 

is two principal alternate forms as follows: 

/s
i i i i iy x P Pγ= Φ           ..(7.54) 

/ s
i i i i ix y P Pγ= Φ           ..(7.55) 

Since 1iy =∑  

/ 1s
i i i ix P Pγ Φ =∑  

Or: 



/s
i i i iP x Pγ= Φ∑           ..(7.56) 

Similarly since 1 / s
i i i i ix y P Pγ= = Φ∑ ∑ ; it follows that: 

1/ / s
i i i iP y Pγ= Φ∑           ..(7.57) 

We may also re-write eqn. 7.46 in terms of the K-factor (as used for Raoult’s Law in eqn. 7.37) as 

follows: 
S

i i i
i

i i

y PK
x P

γ
= =

Φ           ..(7.58) 

Accordingly:  

i i iy K x=            ..(7.59) 

Or:  

i
i

i

yx
K

=            ..(7.60) 

From eqn. 7.59, it follows that: 

1i i
i

K x =∑            ..(7.61) 

From eqn. 7.60: 

1i

i i

y
K

=∑  

Note that when 1i iγΦ = = eqn. 7.46 reduces to the ideal case of Raoult’s Law.  

 

Bubble pressure: 

Given { }and iT x , to calculate { }and iP y : 

a) Start with given T,{ }ix , Antoine constants, ∈  (error value for convergence) 

b) Set all{ }iΦ = 1.0, Evaluate{ }siP ,{ }iγ , Calculate P using eqn. 7.56 

c) Calculate{ }iy  using eqn.7.54 

d) Now evaluate { }iΦ , using eqns. 7.52 

e) Calculate newP  using eqn. 7.56 

f) Is δP <∈ ? 



g) If ‘No’, go to step ‘c’ and calculate new { }iy  with last { }iΦ  

h) If ‘Yes’, end at last P, and{ }iy  

 

Dew Point Pressure: 

Given { }and iT y , to calculate { }and iP x  

a) Start with { }and ;iT y Antoine constants; ε and δ (error values for convergence); start with 

Raoult’s law by setting all { }iΦ = 1.0, and all { }iγ = 1.0; Evaluate { }siP , then calculate P using 

eqn. 7.57; Now evaluate { }ix  by eqn. 7.55; Evaluate{ }iγ using appropriate activity coefficient 

model Liquid-phase; recalculate  P using eqn. (7.65),  revise{ }iΦ using given { }iy and last P. 

b) Calculate new set{ }ix  using eqn. 7.55 

c) Normalize { }ix using ( )
i

i n
i

xx
x

=
∑

, and use normalized { }ix to compute { }iγ  

d) Use last { }iγ to calculate P by eqn. 7.57 

e) Is δP <ε  ? 

f) If ‘Yes’ then ( )last d fP P=  

 

Bubble Temperature: 

Given { }and iP x , to calculate { }and iT y  

a) Solve for { }and iT y first by assuming Raoult’s Law algorithm for bubble temperature 

b) Using solution in ‘a’ estimate { }iK  using eqn. 7.58 with the given values of { }and ;iP x  

latest values of { }and iT y  

c) Next calculate { }i iK x  

d) Calculate all i i i i i
i

y K x K x= ∑  

e) Using normalized { } ,iy recalculate { }iK and i i
i

K x∑  

f) Has i i
i

K x∑  changed? If yes return to step ‘d’ 



g) If i i
i

K x∑ has not changed between two successive iterations between steps ‘c’ and ‘d’ is

1i i
i

K x =∑ ?  

h) If yes, the last values of { }and i i iT y K x≡  give the final bubble temperature ( )b fT ,and vapour 

compositions. 

i) If no, and last 1,i i
i

K x >∑ then ( )last b fT T> ; revise to new T as: 
1

new last
i i

i

T T
K x

 
 =  
 
 
∑

and return to 

step (c).and return to step ‘b’. 

j) If no, and last 1,i i
i

K x <∑ then ( )last b fT T< ; revise to new T as: new last i i
i

T T K x= ∑ and return to 

step (c).and return to step ‘b’. 

 

Dew Temperature: 

Given { }and iP y , to calculate { }and iT x  

a) Solve for { }and iT x first by assuming Raoult’s Law algorithm for dew temperature 

b) Using solution in ‘a’ estimate { }iK  using eqn. 7.58 with the given values of { }and ;iP y  

latest values of { }and iT x  

c) Next calculate { }/i iy K  

d) ( ) ( )Calculate all / /i i i i i
i

x y K y K= ∑  

e) Using normalized { } ,ix recalculate { }iK  and /i i
i

y K∑  

f) Has /i i
i

y K∑  changed? If yes return to step ‘d’ 

g) If /i i
i

y K∑ has not changed between two successive iterations between steps ‘c’ and ‘d’ is

/ 1i i
i

y K =∑ ?  

h) If yes, the last values of { }and /i i iT x y K≡  give the final dew temperature ( )d fT ,and liquid 

phase compositions.  



i) If no, and / 1i i
i

y K >∑ , then ( )last d fT T< ; revise to new T as: /new last i i
i

T T x K= ∑ and return to 

step (b). 

j) If no, and / 1i i
i

y K <∑ , then ( )last d fT T> ; revise to new T as: /new last i i
i

T T x K= ∑ and return to 

step (b). 

--------------------------------------------------------------------------------------------------------------------------- 

Example 7.3 

Methanol (1)-acetone (2) forms an azeotrope at 760 Torr with 1x = 0.2, T = 55.70C. Using van Laar 

model predict the bubble pressure for a system with for x1 = 0.1 at 55.70

10 1 10 2log 8.0897 [1582.271/ ( 239.726)]; log 7.1171 [1210.595 / ( 229.664)]s sP t P t= − + = − +

C.  

 

0( ); ( )s
iP torr t C  

(Click for solution) 

--------------------------------------------------------------------------------------------------------------------------- 

Example 7.4 

For a binary, the activity coefficients are 2
1 2ln Axγ =  and 2

2 1ln .Axγ =  Show that the system forms an 

azeotrope when ( )2 1ln /s sA P P>   

(Click for solution) 

--------------------------------------------------------------------------------------------------------------------------- 

Flash Distillation Calculations 

The procedure for non-ideal systems takes a form similar to that adopted for systems obeying Raoult’s 

Law except that one needs to additionally check for existence of both liquid and vapour phases 

following flash. The algorithm comprises the following steps. 

a) Start with flash T, P and feed composition{ }iz  

b) At the given T, calculate dew pressure dP by putting { } { }i iy z=  

c) Next calculate bubble pressure bP by putting{ } { }i ix z=  

d) Is d bP P P< <  ? If no, the vapour phase has not formed. 

e) If yes, compute{ } { }, and V as, b
i i

b d

P P
P P

γ −
Φ

−
  



f) Use{ } { } { }, to get using eqn. 7.58,  i i iKγΦ  

g) Then use eqn. 7.42 and 7.43 to evaluate and / . d dVϕ ϕ  

h) Using Newton-Raphson method, findV 

i) With last V compute{ }ix using eqn. 7.40 and { }iy  by eqn. 7.38       

j) Re-calculate{ } { } { }, and using eqn. 7.58,  i i iKγΦ  

k) Check if the change in each parameter , , andi ix y V  between steps ‘e’ and ‘j’ is within pre-

defined error values chosen for convergence. 

l) If yes, then the last values of , , andi ix y V constitute the solution 

m) If no, return to step ‘f’ with the last values of , , andi ix y V  

 

7.7 High Pressure Vapour Liquid Equilibria 

At relatively high pressures the VLE relations used in the last section lose exactness especially with 

respect to the activity coefficient-based approach for description of the non-ideal behaviour of the 

liquid phase. This is because the assumption that the activity coefficients are weakly dependent on 

pressure no longer remains a realistic approximation. In addition, the gas phase P-V-T behaviour can 

no longer be described by the truncated virial EOS. Under such conditions a use of a higher order EOS, 

which may be applied both to the gas and liquid phase is preferred. As we have seen in chapter 2, the 

cubic EOS provides just that advantage; besides they offer a reasonable balance between accuracy and 

computational complexity. We start with the general criterion for phase equilibria as applied to vapour-

liquid systems, given by eqn. 6.127: 

ˆ ˆV L
i if f=  (i = 1,2, …, N)         ..(7.62) 

An alternative form of the last equation results from introduction of the fugacity coefficient using eqn. 

6.129 and 6.130: 

ˆ ˆV L
i i i iy P x Pφ φ=  (   1, 2,  i N= … )        ..(7.63) 

The last equation reduces to: 

ˆ ˆV L
i i i iy xφ φ=            ..(7.64) 

 

VLE of pure species 

For the special case of pure species i, equation 7.64 reduces to: 



V L
i iφ φ=            ..(7.65) 

If both andV L
i iφ φ  are expressed in terms of cubic EOS as defined by any of the eqns. 6.104 to 6.107, 

for a given T one may obtain the saturation vapour pressure by means of suitable algorithm as shown 

by the worked out example below. 

--------------------------------------------------------------------------------------------------------------------------- 

Example 7.5 

Estimate the vapour pressure of a substance “A’ using PR-EoS, at T = 428o

 (Click for solution) 

K. For the substance A: TC 

= 569.4 K, PC = 2.497 MPa, = 24.97 bar, ω = 0.398. 

---------------------------------------------------------------------------------------------------------------------------- 

 

VLE from K-value Correlations for Hydrocarbon Systems 

Using eqn. 7.64 one can write, /i i iK y x=      

Alternately: ˆ ˆ/V L
i i iK φ φ=          ..(7.66) 

As evident from eqns. 6.155 to 6.157, the expression for species fugacity coefficients for mixtures 

described by cubic EOS are relatively complex, which in turn makes the estimation of the K-factors 

difficult as iterative solutions to obtaining T, P and/or compositions are inevitable. As demonstrated in 

the last section, this is true even for the fugacity and activity coefficient based formulation of the VLE 

problem. The use of cubic EOS for description of fugacity coefficients of species in both phases poses 

additional difficulty owing to the intrinsic complexity of the expressions shown in eqns. 6.155 to 

6.157.   

However, in the case of VLE of light hydrocarbon mixtures a reasonable simplification may be 

achieved by assuming ideal solution behaviour for both the phases. This is a relatively practical 

approximation as hydrocarbons being non-polar in nature, the intermolecular interactions are generally 

weaker than amongst polar molecules. In effect in the case of lighter hydrocarbons (C1-C10) the 

interactions between the same species and those between dissimilar species are not significantly 

different. This forms the basis of assuming ideal solution behaviour for such system. It may be noted 

that since equilibrium pressures in light hydrocarbon systems tend to be ‘high’ (as they are low-

boiling) under practical conditions of distillation processes, ideal solution behaviour yields far more 

accurate results than would be possible by ideal gas assumption. 



We develop next the result that obtains owing to the assumption of ideal solution behaviour. 

The chemical potential of all species in an ideal solution is given by eqn. 6.77:  

lnid id
i i i iG G RT xµ = = +          ..(7.67) 

For a real solution: ˆlni idG RTd f=         ..(7.68) 

At the same time for pure species at same T&P: lni idG RTd f=     ..(7.69) 

From eqns. (7.68) and (7.69) it follows that:  

ˆln( / )i i i iG G RT f f− =          ..(7.70) 

From (7.67) lnid
i i iG G RT x− =         ..(7.71) 

Thus from eqns. (7.70) and (7.71):  

ˆln( / )id
i i i i iG G RT f x f− =          ..(7.72) 

For an ideal solution LHS of (7.72) is identically zero; hence for such a solution: 

î i if x f=            ..(7.73) 

For a real gas mixture the fugacity coefficient îφ is defined by: ˆ ˆ
i i if y Pφ=  

In analogy, for a real solution we define îφ by: ˆ ˆ
i i if x Pφ=  

Or: ˆˆ /i i if x Pφ =           ..(7.74) 

Using (7.74) for an ideal solution: ˆˆ /id id
i i if x Pφ =       ..(7.75) 

Using (7.73) in (7.75) it follows: ˆ / /id
i i i i i ix f x P f Pφ φ= = =  

Thus for an ideal solution: î iφ φ=         ..(7.76) 

Now considering the light hydrocarbon systems, the application of eqn. 7.76 in 7.66 gives: 

( )
( )

, ( , )
, ( , )

L L
i i

i V V
i i

T P f T PK
T P P T P

φ
φ φ

= =          ..(7.77) 

        

Using eqn. 6.119 we substitute for the fugacity ( , )L
if T P . Thus: 

( )exp[ ]
L sat

L sat sat i i
i i i

V P Pf P
RT

φ −
=      

Where, l
iV  is the molar volume of pure species i as a saturated liquid. Thus the K-value is given by: 



( , ) ( )exp[ ]
( , )

sat sat sat L sat
i i i i i

i V
i

P T P V P PK
P T P RT
φ
φ

−
=        ..(7.78) 

 

The advantage of eqn. 7.78 is that it is a function of the properties of the pure species only, and 

therefore its dependence on composition of the vapour and liquid phases is eliminated. The K-factor 

then is a function of temperature and pressure alone. The terms sat
iφ  and V

iφ in eqn. 7.78 can in principle 

be computed using expression provided by cubic EOS (i.e., eqns. 6.104 – 6.107) or a corresponding 

expression from an higher order EOS, including the generalized correlation (section 6.9). This allows 

K-factors for light hydrocarbons to be as functions of T and P.  

However, it may be noted that the computation of fugacities at high pressures (and/or 

temperatures) can potentially be rendered difficult as above the critical temperature the liquid state is 

necessarily hypothetical, while at pressures higher than the saturation pressure the vapour state is 

hypothetical. This is corrected for by some form of extrapolations to those hypothetical states. Various 

approaches have been described in the literature (T.E. Daubert, Chemical Engineering 

Thermodynamics, McGraw-Hill, 1985). The nomographs of K-factors (see figs. 7.11 and 7.12) 

reported by Dadyburjor (D.B. Dadyburjor, Chem. Eng. Progr., vol. 74(4), 85-86, 1978) provide an 

example of one such approach.  



 
Fig. 7.11 K-factors in light hydrocarbon systems (low temperature range) [Source: Dadyburjor; D.B., 

Chem. Eng.Progr., Vol. 74 (4) pp.85-86 (1978)].  
 



   
 
Fig. 7.12 K-factors in light hydrocarbon systems (high temperature range) [Source: Dadyburjor; D.B., 

Chem. Eng.Progr., Vol. 74 (4) pp.85-86 (1978)]. 
 

The nomographs may be conveniently used purpose of VLE calculations in hydrocarbon 

systems as they the K-factors for each species can be estimated at a given T and P. This is done by 

drawing a straight line connecting the given temperature and pressure; the corresponding Ki value is 

read off from the point of intersection of this line with the Ki curve for a particular species. For bubble 

point (either T or P) calculations one uses:  

1i i i
i i

y K x= =∑ ∑           ..(7.79) 



• For pressure calculation: If 1i i
i

K x >∑ , assumed pressure is lower than the correct value; if

1i i
i

K x <∑  the assumed pressure is higher than the correct pressure. Thus, pressure needs to be 

revised for the next step of calculation. 

• Similarly, for temperature calculation: if 1i i
i

K x >∑ , assumed temperature is higher than the 

correct value; if 1i i
i

K x <∑  the assumed temperature is lower than the correct value. Thus, 

temperature needs to be revised for the next step of calculation. 

 

On the other hand the solution for dew point calculations derives from:  

1i
i

i i i

yx
K

= =∑ ∑           ..(7.80) 

• For pressure calculation: If, ( )/ 1i i
i

y K >∑ assumed pressure is higher than the correct value; if

( )/ 1i i
i

y K >∑ the assumed pressure is lower than the correct pressure. Thus, pressure needs to 

be revised for the next step of calculation. 

• Similarly, for temperature calculation: if ( )/ 1i i
i

y K >∑ , assumed temperature is lower than its 

correct value; if ( )/ 1i i
i

y K <∑ the   assumed temperature is higher than its correct value. Thus, 

temperature needs to be revised for the next step of calculation. 

 

The use of these equations illustrated below using an example. 

--------------------------------------------------------------------------------------------------------------------------- 

Example 7.6 

A vapour mixture contains 20mol% methane (1), 30mol% ethane (2) , and rest propane (3), at 300

(Click for solution) 

C. 

Determine the dew composition. 

---------------------------------------------------------------------------------------------------------------------------- 



High Pressure VLE using cubic EOS 

This constitutes a generalized approach without any simplifying assumptions such as employed for 

light hydrocarbons. The governing relation thus is eqn. 7.66.   

ˆ ˆ/V L
i i iK φ φ=   

 

The fugacity of each species, either in vapour or liquid phase, is computed using the expressions that 

apply to use of cubic EOS (eqns. 6.155 to 6.157). For relevant VLE calculations once again the eqns. 

7.79 and 7.80 are employed. The steps for computing (for example) the bubble pressure are enlisted 

below. The basic principle used for other types of standard calculations (such as discussed for low to 

moderate pressure VLE systems, table 7.1) remains the same. 

 

Bubble pressure algorithm: 

Given { }and iT x , to calculate { }and iP y  

a) Solve for { }and iP y first by assuming Raoult’s Law algorithm for bubble pressure 

b) Using solution in ‘a’ estimate { }iK  using eqn. 7.66 with the given values of { }and ;iT x  

and the latest values of { }and iP y  

c) Next calculate { }i iK x and i i
i

K x∑  

d) Calculate all i i i i i
i

y K x K x= ∑  

e) Using normalized { } ,iy recalculate { }iK  and i i
i

K x∑  

f) Has i i
i

K x∑  changed between steps ‘c’ and ‘e’? If yes return to step ‘d’ 

g) If i i
i

K x∑ has not changed between two successive iterations between steps ‘c’ and ‘e’ is

1i i
i

K x =∑ ?  

h) If yes, the last values of { }and i i iP y K x≡  give the final bubble temperature ( )b fP ,and vapour 

compositions. 



i) If no, and last 1,i i
i

K x >∑ then ( )last b fP P< ; revise to new P as: new last i i
i

P P K x= ∑ and return to 

step (c).and return to step ‘b’. 

j) If no, and last 1,i i
i

K x <∑ then ( )last b fP P> ; revise to new P as: new last i i
i

P P K x= ∑ and 

return to step (c).and return to step ‘b’. 

 

We illustrate the above methodology by a calculation of bubble pressure for an example binary system 

below. 

---------------------------------------------------------------------------------------------------------------------------- 

Example 7.7 

For the system of methane (1) and butane (2) compute the bubble pressure for a liquid phase 

composition of x1 = 0.2 at a temperature of 310K, using the PR-EOS.  

(Click for solution) 

---------------------------------------------------------------------------------------------------------------------------- 

 

7.8 Henry’s Law 

The solubility of gases that are sparingly soluble in solvents constitutes a special application of the 

general VLE relations developed in sections 7.3 and 7.4. There are numerous real-life examples of 

such situations; for example, the solubilization of oxygen in water, which sustains aqueous life. 

Similarly, gases such as nitrogen, carbon dioxide, etc., display relatively low solubility (mole fraction:
5 210 10− −− ) in water or many solvents of industrial interest.  Further, in many such instances, the 

solubility of a gas in a solvent is required at temperatures beyond the critical temperature of the gas. 

Application of vapour-liquid phase equilibria relations given by Raoult's law or its modified versions 

(discussed in the foregoing sections) to a solute species i (in a solvent) requires the saturation vapour 

pressure sat
iP at the temperature of application. Clearly if the temperature of interest exceeds the critical 

temperature of the solute, the parameter sat
iP is not definable, and hence such VLE relations presented 

in sections 7.5 and 7.6 are not appropriate in such cases.  

As for any VLE problem the starting point for determining the solubility of a gaseous species ‘i’ in a 

liquid is the equality of the fugacity of the solute species and liquid (liq) phases: 

ˆ ˆgas liq
i if f=            ..(7.81)  



Using eqn. 7.45 (considering low to moderate pressures): 

ˆ
i i i i iy P x fφ γ=            ..(7.45) 

Denoting the gaseous solute as ‘1’ and the solvent as ‘2’, one may write: 

1 1
ˆ ˆgas liqf f=            ..(7.82) 

And:  2 2
ˆ ˆgas liqf f=           ..(7.83) 

Using eqn. 7.45 the last two equations may be re-written as: 

1 1 1 1 1
ˆy P x fφ γ=            ..(7.84) 

2 2 2 2 2
ˆy P x fφ γ=           ..(7.85) 

If we further assume that the gas is very sparingly soluble in the solvent, the liquid phase is essentially 

pure solvent and the following relations derive: 

1 1 γ γ ∞≅  

2 1γ ≈  

Therefore, for component 1 we may rewrite the eqn. 7.84 as: 

1 1 1 1 1
ˆy P x fφ γ ∞=            ..(7.86) 

Or alternately: 

1 1 1 1
ˆy P x Hφ =            ..(7.87) 

Where:  

1 1 1H fγ ∞=            ..(7.88) 

Equation 7.88 is termed the Henry’s law, and 1H the Henry’s constant, which is defined at the system 

temperature. If one plots the value of 1̂f  as a function of the gas mole fraction 1x  in the solvent phase 

(as shown schematically in fig. 7.13), the parameter 1H  corresponds to the slope of the tangent drawn 

on the curve at the limiting condition of 1 0.x →  



 

Fig. 7.13 Plot of 1̂f  as a function of the gas mole fraction 1x  

 

Similarly for component 2 the phase equilibrium equation 7.85 may be rewritten as: 

2 2 2 2
ˆ   y P x Hφ =           ..(7.89) 

Where: 2 2 2H fγ=           ..(7.90) 

Since 2 1,γ ≈  it follows that: 

Where: 2 2H f=           ..(7.91) 

Thus: 2 2 2
ˆ  f x f=           ..(7.92) 

It may be noted that eqn. 7.92 is the same as 6.162 (section 6.15), which describes the Lewis -Randall 

rule. Thus when Henry’s law is applicable for the solute then Lewis-Randall rule is applicable for the 

solvent. Since for a system temperature ,1cT T>  the fugacity 1̂f of pure liquid phase for ‘1’ is 

hypothetical, it follows that the Henry’s law constant 1H 1 1( )fγ ∞= is necessarily a hypothetical quantity 

as well. Since solubility of a gas is temperature dependent, it follows that iH is also a function of 

temperature. The Henry’s law constant for a large number of gases with water as the solvent has been 

reported in the literature. For example for acetylene the value is 1350bar, for carbon dioxide 1670bar, 

and for air 72950bar). Fig. 7.14 presents the value of Henry’s law constant for a number of gases in 

water as a function of temperature. 

 

 



 

---------------------------------------------------------------------------------------------------------------------------- 

Example 7.8 

A concentrated binary solution containing mostly species 22( 1)butX ≠ 2 (but x2 ≠ 1) is in equilibrium 

with a vapor phase containing both species 1 and 2. The pressure of this two-phase system is 1 bar; the 

temperature is 298.0K. Determine from the following data good estimates of x1 and y1. H1 = 200 bar; 

sat
2P = 0.10 bar. 

(Click for solution) 

----------------------------------------------------------------------------------------------------------------------- 

 

Fig. 7.14 Plot of Henry’s Constant vs. Temperature, [ ](1 ) ( ) ( )H N mole fraction P atm= [Reprinted 

with permission from O.A. Hougen, K.M. Watson, and R.A. Ragatz (1960), Chemical Process Principles 
Charts, 2nd ed., John Wiley & Sons, New York] 

-------------------------------------------------------------------------------------------------------------------  

Assignment- Chapter 7 
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8.1 Introduction 

Chapter 8:Chemical Reaction Equilibria 

Reaction chemistry forms the essence of chemical processes. The very distinctiveness of the chemical 

industry lies in its quest for transforming less useful substances to those which are useful to modern 

life. The perception of old art of ‘alchemy’ bordered on the magical; perhaps in today’s world its role 

in the form of modern chemistry is in no sense any less. Almost everything that is of use to humans is 

manufactured through the route of chemical synthesis. Such reactive processes need to be 

characterized in terms of the maximum possible yield of the desired product at any given conditions, 

starting from the raw materials (i.e., reactants). The theory of chemical reactions indicates that rates of 

reactions are generally enhanced by increase of temperature. However, experience shows that the 

maximum quantum of conversion of reactants to products does not increase monotonically. Indeed for 

a vast majority the maximum conversion reaches a maximum with respect to reaction temperature and 

subsequently diminishes. This is shown schematically in fig. 8.1.   

 

Fig. 8.1 Schematic of Equilibrium Reaction vs. Temperature  

 

The reason behind this phenomenon lies in the molecular processes that occur during a reaction. 

Consider a typical reaction of the following form occurring in gas phase: ( ) ( ) ( ) ( ).A g B g C g D g+ → +

The reaction typically begins with the reactants being brought together in a reactor. In the initial 

phases, molecules of A and B collide and form reactive complexes, which are eventually converted to 

the products C and D by means of molecular rearrangement. Clearly then the early phase of the 

reaction process is dominated by the presence and depletion of A and B. However, as the process 
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continues, the fraction of C and D in the reactor increases, which in turn enhances the likelihood of 

these molecules colliding with each other and undergoing transformation into A and B. Thus, while 

initially the forward reaction dominates, in time the backward reaction becomes increasingly 

significant, which eventually results in the two rates becoming equal. After this point is reached the 

concentrations of each species in the reactor becomes fixed and displays no further propensity to 

change unless propelled by any externally imposed “disturbance”(say, by provision of heat). Under 

such a condition the reaction is said to be in a state of equilibrium. The magnitude of all measurable 

macroscopic variables (T, P and composition) characterizing the reaction remains constant. Clearly 

under the equilibrium state the percentage conversion of the reactants to products must be the 

maximum possible at the given temperature and pressure. Or else the reaction would progress further 

until the state of equilibrium is achieved. The principles of chemical reaction thermodynamics are 

aimed at the prediction of this equilibrium conversion.  

The reason why the equilibrium conversion itself changes with variation of temperature may be 

appreciated easily. The rates of the forward and backward reactions both depend on temperature; 

however, an increase in temperature will, in general, have different impacts on the rates of each. Hence 

the extent of conversion at which they become identical will vary with temperature; this prompts a 

change in the equilibrium conversion. Reactions for which the conversion is 100% or nearly so are 

termed irreversible, while for those which never attains complete conversion are essentially reversible 

in nature. The fact that a maxima may occur in the conversion behaviour (fig. 8.1) suggests that for 

such reactions while the forward reaction rates dominate at lower temperatures, while at higher 

temperatures the backward reaction may be predominant.   

 The choice of the reaction conditions thus depends on the maximum (or equilibrium) 

conversion possible.  Further, the knowledge of equilibrium conversions is essential to intensification 

of a process. Finally, it also sets the limit that can never be crossed in practice regardless of the process 

strategies. This forms a primary input to the determination of the economic viability of a 

manufacturing process. If reaction equilibria considerations suggest that the maximum possible 

conversion over practical ranges of temperature is lower than that required for commercial feasibility 

no further effort is useful in its further development. On the other hand if the absolute maximum 

conversion is high then the question of optimizing the process conditions attain significance. 

Exploration of the best strategy for conducting the reaction (in terms of temperature, pressure, rate 

enhancement by use of catalytic aids, etc) then offers a critical challenge.  
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 This chapter develops the general thermodynamic relations necessary for prediction of the 

equilibrium conversion of reactions. As we shall see, as in the case of phase equilibria, the Gibbs free 

energy of a reaction constitutes a fundamental property in the estimation of equilibrium conversion. 

The next section presents method of depicting the conversion by the means of the reaction co-ordinate, 

which is followed by estimation of the heat effects associated with all reactions. The principles of 

reaction equilibria are then developed.   

 

8.2 Standard Enthalpy and Gibbs free energy of reaction 

From the foregoing discussion it may be apparent that a chemical reaction may be carried out in 

diverse ways by changing temperature, pressure, and feed composition. Each of the different 

conditions would involve different conversions and heat effects. Thus there is need to define a 

“standard” way of carrying out a reaction. If all reactions were carried out in the same standard 

manner, it becomes possible to compare them with respect to heat effects, and equilibrium conversion 

under the same conditions. In general all reactions are subject to heat effects, whether small or large. A 

reaction may either release heat (exothermic) or absorb heat (endothermic). However, it is expected 

that the heat effect will vary with temperature. Thus, there is a need to develop general relations that 

allow computation of the heat effect associated with a reaction at any temperature.  

Consider a reaction of the following form:  

1 1 2 2 3 3 4 4A A A Aα α α α+ → +         ..(8.1) 

The reactants (A1 and A2) and products (A3 and A4 iα) may be gaseous, liquid or solid. The term is 

the stoichiometric coefficient corresponding to the chemical species Ai

4 2 2 2( ) 2 ( ) ( ) 2 ( )CH g O g CO g H O g+ +

. For the purpose of 

development of the reaction equilibria relations it is convenient to designate the stoichiometric 

numbers of the reactants as negative, while those of the products as positive. This is to signify that 

reactants are depleted in proportion to their stoichiometric numbers, while the products are formed in 

proportion to their stoichiometric numbers. Consider, for example, the following gas-phase reaction: 

 

The stoichiometric numbers are written as follows: 
4 2 2 2

1; 2; 1; 2.CH O CO H Oα α α α= − = − = =  

The standard enthalpy of reaction
0

o
TH∆ at say at any temperature T is defined in the following 

manner: it is the change in enthalpy that occurs when 1α  moles of A1 2αand  moles of B2 in their 
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standard states at temperature T convert fully to form 3α moles of A3 4α and  moles of A4

 Gases: the pure substance in the ideal gas state at 1 bar 

 in their 

respective standard states at the same temperature T. The standard states commonly employed are as 

follows:  

 Liquids and Solids: the pure liquid or solid at 1 bar 

The conceptual schema of a standard reaction is depicted in fig. 8.1. All reactants enter and products 

leave the reactor in pure component form at the same temperature T, and at their respective standard 

states. In the literature, data on the standard enthalpy of reaction is typically reported at a  

 
 

Fig. 8.2 Apparatus in which a gas-phase reaction occurs at equilibrium (van't Hoff equilibrium box) 
 

 

temperature of 2980

0 0
,T i i T

i
H Hα∆ =∑

K. Using the sign convention adopted above, the standard enthalpy of reaction at 

any temperature T may be mathematically expressed as follows: 

          ..(8.2)  
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Where, 0
,i TH  is the standard state enthalpy of species ‘i’ at the temperature T, and the summation is over 

all the reactants and products. For example, on expansion the eqn. 8.2 takes the following form for the 

reaction depicted in eqn. 8.1: 
0 0 0 0 0

3 3, 4 4, 1 1, 2 2,T T T T TH H H H Hα α α α∆ = + − −        ..(8.2) 

If we further consider that each molecular species ‘i’ is formed from j elements each, an expression for 

the standard enthalpy of formation results: 
0 0 0

, , ,if T i T j j T
j

H H Hα∆ = −∑         ..(8.3)                                                     

Where, the summation is over all j constituent elements that make up the ith 0
,if TH∆ molecule, is 

standard state enthalpy of formation of the ith 0
,j THmolecule at T, and  the standard state enthalpy of 

the jth 0
,j TH atomic species. If all  are arbitrarily set to zero as the basis of calculation then eqn. 8.3 

simplifies to: 
0 0
, ,ii T f TH H= ∆            ..(8.4) 

In such a case eqn. 1 becomes: 
0 0

,iT i f T
i

H Hα∆ = ∆∑           ..(8.5) 

Values of Standard Enthalpy of formation of select substances are shown in Appendix VIII.  

For simplicity in the subsequent equations we drop the subscript T, but implicitly all terms correspond 

to temperature T. Now writing 0
iH  in a differential form:   

0 0
ii PdH C dT=           ..(8.6) 

Where 0
iPC  is the specific heat of the ith

0
i i

ig
P PC C=

 species corresponding to its standard state. Note that since the 

standard state pressure for all substances is 1 bar in terms of pressure, for gases , while for 

liquids and solids it is the actual value of the specific heat at 1 bar 0( )
iP PiC C= . Since the specific heat 

of liquids and solids are weakly dependent on pressure, it helps write eqn. 8.6 in the general form 

shown. The following summation may be applied on eqn. 8.6 to give:  
0 0

ii i i P
i i

dH C dTα α=∑ ∑          ..(8.7)  

Since each iξ is constant one may write: 
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0 0( )i i i i
i i

d H d Hα α=∑ ∑          ..(8.8) 

Or: 0 0
ii i i P

i i
d H C dTα α=∑ ∑          ..(8.9)  

Thus: 0 0
i

o
i P P

i
d H C dT C dTα∆ = = ∆∑         ..(8.10) 

Where, 
i

o o
P i P

i
C Cα∆ =∑           

Thus on integrating eqn. 8.10, between a datum T0

0
0

To o o
T PT

H H C dT∆ = ∆ + ∆∫

 and any T, we have: 

         ..(8.11)  

Note that since the standard state pressure is always at 1 bar, for all species one may write the general 

form of relation for specific heat capacity: 
2 ...

i

o
P i i iC A BT C T= + + +          ..(8.12) 

(The values of and
i

o
PC thus are those shown in Appendix III). 

Eqn. 8.12 may be substituted in eqn. 8.11 which leads to: 

0

2
0 ( ) ( ) ( ) ...

To o
T T

H H A B T C T dT ∆ = ∆ + ∆ + ∆ + ∆ + ∫       ..(8.13)  

Where:  ; ; ; ; and so on.i i i i i t i t
i i i i

A A B B C C D Dα α α α∆ = ∆ = ∆ = ∆ =∑ ∑ ∑ ∑
 

The standard enthalpy of reaction is most often reported at 2980

In continuance of the foregoing considerations one may also define a standard Gibbs free 

energy change of a reaction. As we will see in the later sections, this property is essential to computing 

the equilibrium constant for a reaction at any temperature. As with enthalpy of reaction (eqn. 8.2) the 

standard Gibbs free energy change at any temperature is given by the function: 

K. Using this value as the datum, the 

value of the standard heat of reaction at any other temperature can be evaluated using eqn. 8.13. As 

evident from eqn. 8.5 the enthalpy of a reaction may be recovered from the enthalpy of formation of 

the individual species for a reaction. Values of standard enthalpy of formation for a select list of 

compounds are tabulated in Appendix VIII. 

0 0
,T i i T

i
G Gα∆ =∑           ..(8.14) 
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Thus, 0
TG∆  is the difference between the Gibbs energies of the products and reactants when each is in 

its standard state as a pure substance at the system temperature and at a fixed pressure. Thus, just as the 

standard enthalpy of reaction is dependent only on temperature (the standard state pressure being fixed 

by definition), so is the Gibbs free energy change of a reaction. It follows that when the temperature is 

fixed 0
TG∆  is independent of the reaction pressure or composition. Indeed extending the argument, one 

can define any standard property change of reaction by the same expression; all being functions of 

temperature alone: 
0 0

,T i i T
i

M Mα∆ =∑           ..(8.15) 

Where: , , , , .M U H S A G≡  

In the context of chemical reaction equlibria the relations between the standard enthalpy of reaction 

and the standard Gibbs energy change of reaction is of particular significance. Using the form 

described by eqn. 5.31, since any standard property change of a reaction is only temperature 

dependent, one may write:  

( ),2
,

/o
i To

i T

d G RT
H RT

dT
= −          ..(8.16) 

Multiplying of both sides of this equation by iα and summing over all species one obtains: 

( ),2
,

/
RT

o
i i To

i i T

d G RT
H

dT

α
α = −

∑∑  

This may be written as:
( )0

0 2
/T

T

d G RT
H RT

dT

∆
∆ = −       ..(8.17) 

Or: 
( )0 0

2

/T T
d G RT H

dT RT

∆ ∆
= −          ..(8.18) 

Now substituting eqn. 8.13 in 8.18: 

( ) { }
0

2
02

/ 1 ( ) ( ) ( ) ...
T o

d G RT
H A B T C T dT

dT RT

∆
 = − ∆ + ∆ + ∆ + ∆ +   

If we know the standard Gibbs free energy change 
0

0
TG∆ at a particular temperature 0T  (typically, 

values are reported at 2980

{ }0

0

00
2

02
0

1 ( ) ( ) ( ) ...
TT oT

T

GG H A B T C T dT dT
RT RT RT

∆∆  = − ∆ + ∆ + ∆ + ∆ + ∫

K) the above equation may be integrated as follows: 

    ..(8.19) 
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Or finally: 

{ }0

0

00
2

02
0

1 ( ) ( ) ( ) ...
TT oT

T

GG H A B T C T dT dT
T T T

∆∆  = − ∆ + ∆ + ∆ + ∆ + ∫     ..(8.20) 

-------------------------------------------------------------------------------------------------------------------- 

Example 8.1

Consider the reaction: C

  

2H4(g) + H2O(g) → C2H5OH(g). If an equimolar mixture of ethylene and 

water vapor is fed to a reactor which is maintained at 500 K and 40 bar determine the Gibbs free 

energy of the reaction, assuming that the reaction mixture behaves like an ideal gas. Assume the 

following ideal gas specific heat data: Cp
ig = a + bT + cT2 + dT3 + eT–2

Species 

 (J/mol); T(K). 

a bx10 cx103 dx106 ex109 -5 
C2H 20.691 4 205.346 – 99.793 18.825 - 
H2 4.196 O 154.565 – 81.076 16.813 - 
C2H5 28.850 OH 12.055 - - 1.006 

 
      (Click for Solution) 

-------------------------------------------------------------------------------------------------------------------- 

8.3 The Reaction Coordinate 

Consider again the general chemical reaction depicted in eqn. 8.1: 

1 1 2 2 3 3 4 4A A A Aα α α α+ = +   

During the progress of the reaction, at each point the extent of depletion of the reactants, and the 

enhancement in the amount of product is exactly in proportion to their respective stoichiometric 

coefficients. Thus for any change dni in the number of moles of the ith 

31 2 4

1 2 3 4

=...= dndn dn dn
α α α α

= =

species for a differential 

progress of the reaction one may write: 

         ..(8.21) 

Since all terms are equal, they can all be set equal to a single quantity dξ , defined to represent the 

extent of reaction as follows: 

 31 2 4

1 2 3 4

=...= dndn dn dn dξ
α α α α

= = =         ..(8.22) 

The general relation between a differential change dni

dξ

 in the number of moles of a reacting species and 

 is therefore:    i idn dα ξ= (i = 1,2, ...N)       ..(8.23) 
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This new variableξ , called the reaction coordinate, describe the extent of conversion of reactants to 

products for a reaction. Thus, it follows that the value of ξ is zero at the start of the reaction. On the 

other hand when 1ξ = , it follows that the reaction has progressed to an extent at which point each 

reactant has depleted by an amount equal to its stoichiometric number of moles while each product has 

formed also in an amount equal to its stoichiometric number of moles. For dimensional consistency 

one designates such a degree of reaction as corresponding to 1 mole.ξ∆ =  

Now, considering that at the point where the reaction has proceeded to an arbitrary extent 

characterized by ξ (such that 0ξ > ), the number of moles of ith species is ni

0
00

; where,  is a dummy variable and = initial number of moles of ' '.i

i

n

i i in
dn d n i

ξ
α η η=∫ ∫

 we obtain the following 

relation: 

Thus:

oi i in n α ξ= + ;(i = 1,2,...,N)         ..(8.24) 

Thus the total number of moles of all species corresponding toξ extent of reaction:

oi i in n n ξ α= = +∑ ∑ ∑          ..(8.25) 

Or: 0n n αξ= +            ..(8.26) 

Where: 

0 oi
n n=∑            ..(8.27) 

iα α=∑            ..(8.28) 

Thus, ioi ii
i

o

nny
n n

α ξ
αξ

+
= =

+
         ..(8.29) 

--------------------------------------------------------------------------------------------------------------------------- 

Example 8.2 

Consider the following reaction:  A(g) + B(g) = C(g) + 3D(g). 

Intially the following number of moles are introduced in the reactor. Obtain the mole fraction 

expressions in terms of reaction coordinate.  

0,An = 2 mol, 0,Bn = 1 mol, 0,Cn = 1 mol 0,Dn = 4 mol 

 (Click for Solution) 

-------------------------------------------------------------------------------------------------------------------------- 
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 The foregoing approach may be easily extended to develop the corresponding relations for a set of 

multiple, independent reactions which may occur in a thermodynamic system. In such a case each 

reaction is assigned an autonomous reaction co-ordinate jξ (to represent the jth reaction). Further the 

stoichiometric coefficient of the ith species as it appears in the jth
, .i jα reaction is designated by Since a 

species may participate in more than a single reaction, the change in the total number of moles of the 

species at any point of time would be the sum of the change due each independent reaction; thus, in 

general: 

,i i j j
j

dn dα ξ=∑  (i= 1,2,...N)        ..(8.30) 

On integrating the above equation starting from the initial number of moles 
oi

n to in  corresponding to 

the reaction coordinate jξ of each reaction:    

0
,0

i i

i

n

i i j jn
j

dn d
ξ

α ξ= ∑∫ ∫ (i = 1,2,...,N)        ..(8.31) 

Or: ,oi i i j j
j

n n α ξ= +∑           ..(8.32) 

Summing over all species gives: 

,oi i i j j
i i i j

n n dα ξ= +∑ ∑ ∑∑          ..(8.33) 

Now: i
i

n n=∑ and, 0oi
i

n n=∑         ..(8.34)  

We may interchange the order of the summation on the right side of eqn. (8.33); thus: 

, ,i j j i j j
i j j i

d dα ξ α ξ=∑∑ ∑∑          ..(8.35) 

Thus, using eqns. 8.34 and 8.35, eqn. 8.33 may be written as: 

0 ,i j j
j i

n n α ξ
 

= +  
 

∑ ∑          ..(8.36)  

In the same manner as eqn. 8.28, one may write:        . 

,j i j
i

α α=∑            ..(8.37)  

Thus eqn. 8.33 becomes: 0 j j
j

n n α ξ= +∑        ..(8.38)  

Using eqns. 8.32 and 8.38 one finally obtains:  
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,oi i j j
j

i
o j j

j

n
y

n

α ξ

α ξ

+

=
+

∑
∑

  (i = 1,2,....,N)       ..(8.39) 

-------------------------------------------------------------------------------------------------------------------------- 

Consider the following simultaneous reactions. Express the reaction mixture composition as function 

of the reaction co-ordinates. All reactants and products are gaseous. 

Example 8.3  

A + B = C + 3D   ..(1) 

A + 2B = E + 4D   ..(2) 

Initial number of moles: 0,An = 2 mol; 0,Bn = 3 mol 
(Click for Solution) 

-------------------------------------------------------------------------------------------------------------------------- 

8.4 Criteria for Chemical Reaction Equilibrium 

The general criterion for thermodynamic equilibrium was derived in section 6.3 as:  

,( ) 0t
T PdG ≤            ..(6.36b)  

As already explained, the above equation implies that if a closed system undergoes a process of change 

while being under thermal and mechanical equilibrium, for all incremental changes associated with the 

compositions of each species, the total Gibbs free energy of the system would decrease.  At complete 

equilibrium the equality sign holds; or, in other words, the Gibbs free energy of the system corresponds 

to the minimum value possible under the constraints of constant (and uniform) temperature and 

pressure. Since the criterion makes no assumptions as to the nature of the system in terms of the 

number of species or phases, or if reactions take place between the species, it may also be applied to 

determine a specific criterion for a reactive system under equilibrium.  

 As has been explained in the opening a paragraph of this chapter, at the initial state of a 

reaction, when the reactants are brought together a state of non-equilibrium ensues as reactants begin 

undergoing progressive transformation to products. However, a state of equilibrium must finally attain 

when the rates of forward and backward reactions equalize. Under such a condition, no further change 

in the composition of the residual reactants or products formed occurs. However, if we consider this 

particular state, we may conclude that while in a macroscopic sense the system is in a state of static 

equilibrium, in the microscopic sense there is dynamic equilibrium as reactants convert to products and 

vice versa. Thus the system is subject to minute fluctuations of concentrations of each species. 
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However, by the necessity of maintenance of the dynamic equilibrium the system always returns to the 

state of stable thermodynamic equilibrium. In a macroscopic sense then the system remains under the 

under equilibrium state described by eqn. 6.36b. It follows that in a reactive system at the state of 

chemical equilibrium the Gibbs free energy is minimum subject to the conditions of thermal and 

mechanical equilibrium. 

The above considerations hold regardless of the number of reactants or the reactions occurring 

in the system. Since the reaction co-ordinate is the single parameter that relates the compositions of all 

the species, the variation of the total Gibbs free energy of the system as a function of the reaction co-

ordinate may be shown schematically as in fig. 8.3; here eξ is the value of the reaction co-ordinate at 

equilibrium. 

 
Fig. 8.3 Variation of system Gibbs free energy with equilibrium conversion 

 

8.5 The Equilibrium Constant of Reactions 

Since chemical composition of a reactive system undergoes change during a reaction, one may use the 

eqn. 6.41 for total differential of the Gibbs free energy change (for a single phase system): 

( ) ( ) ( ) i id nG nV dP nS dT dnµ= − +∑         ..(6.41)  

For simplicity considering a single reaction occurring in a closed system one can rewrite the last 

equation using eqn. 8.3: 

( ) ( ) ( ) i id nG nV dP nS dT dµ α ξ= − +∑         ..(8.40)  

It follows that: ( )
,

i i
T P

nG
α µ

ξ
 ∂

=  ∂ 
∑         ..(8.41) 
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On further applying the general condition of thermodynamic equilibrium given by eqn. 6.36b it follows 

that: 

( )
,,

0
t

T PT P

nG G
ξ ξ

 ∂  ∂
≡ =   ∂ ∂  

         ..(8.42) 

Hence by eqn. 8.41 and 8.42:    

0i iα µ =∑            ..(8.43) 

Since the reactive system is usually a mixture one may use the eqn. 6.123:  

ˆlni i id dG RTd fµ = = ; at constant T        ..(6.123) 

Integration of this equation at constant T from the standard state of species i to the reaction pressure: 

ˆ
o i

i,T i,T o
i

fμ = G + RT ln 
f

          ..(8.44) 

The ratio ˆ o
i if /f  is called the activity ˆia  of species i in the reaction mixture, i.e.: 

ˆ
ˆ i

i o
i

fa =
f

           ..(8.45) 

Thus, the preceding equation becomes: 0
, , ˆlni T i T iG RT aµ = +      ..(8.46) 

Using eqns. 8.46 and 8.44 in eqn. 8.43 to eliminate µi

ˆ 0o
i i,T i(G + RT ln a )=α∑

 gives: 

         ..(8.47) 

On further re-organization we have: 

( ), ˆln 0io
i i T iG RT a αν + =∑ ∑  

( ) ,ˆln i

o
i i T

i

G
a

RT
α α  = − 

∑∏          ..(8.48) 

Where,∏ signifies the product over all species i. Alternately: 

( )ˆ i

o
i i,T

i

G
a = exp  

RT
α α 

−  
 

∑∏          ..(8.49) 

( ) ( )0ˆˆ  /
ii

i i i Ta f f K
αα =∏ =∏          ..(8.50) 

On comparing eqns. 8.49 and 8.50 it follows:
o

i i,T
T

G
K = exp  

RT
α 

−  
 

∑    ..(8.51) 
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The parameter KT 

,o
i,TG

is defined as the equilibrium constant for the reaction at a given temperature. Since 

the standard Gibbs free energy of pure species,  depends only on temperature, the equilibrium 

constant KT is also a function of temperature alone. On the other hand, by eqn. 8.50 KT

îf

 is a function of

, which is in turn a function of composition, temperature and pressure. Thus, it follows that since 

temperature fixes the equilibrium constant, any variation in the pressure of the reaction must lead to a 

change of equilibrium composition subject to the constraint of KT

0
,ln o

T i i T TRT K G Gα− = = ∆∑

 remaining constant. Equation (8.51) 

may also be written as: 

         ..(8.52) 

0

ln T
T

GK
RT
∆

= −           ..(8.53) 

Taking a differential of eqn. 8.53: 

( )0
ln TT

d G RTd K
dT dT

∆
= −          ..(8.53) 

Now using eqn. 8.18: 
0

2

ln T Td K H
dT RT

∆
=           ..(8.54) 

On further use of eqn. 8.13: 

0

2
0

2

( ) ( ) ( ) ...ln
To

TT
H A B T C Td K

dT RT

 ∆ + ∆ + ∆ + ∆ + 
=

∫
       

Lastly, upon integration one obtains the following expression: 

0

0

2
0

2

( ) ( ) ( ) ...
ln ln

To

T
T T

H A B T C T dT
K K

RT

 ∆ + ∆ + ∆ + ∆ + 
= −

∫
     ..(8.55) 

Where, 
0TK is the reaction equilibrium constant at a temperature 0.T  

If 0
TH∆ , is assumed independent of T (i.e. 0

avgH∆ , over a given range of temperature 2 1( )T T− , a simpler 

relationship follows from eqn. 8.54: 
0

2

1 2 1

1 1ln avgT

T

HK
K R T T

∆  
= − − 

 
         ..(8.55) 

The above equation suggests that a plot of ln TK vs. 1/ T is expected to approximate a straight line. It 

also makes possible the estimation of the equilibrium constant at a temperature given its values at 



15 | P a g e  
 

another temperature. However, eqn. 8.55 provides a more rigorous expression of the equilibrium 

constant as a function of temperature.  

Equation 8.54 gives an important clue to the variation of the equilibrium constant depending on 

the heat effect of the reaction. Thus, if the reaction is exothermic, i.e., 0 0,TH∆ < the equilibrium 

constant decreases with increasing temperature. On the other hand, if the reaction is endothermic, i.e., 
0 0,TH∆ > equilibrium constant increases with increasing temperature. As we shall see in the following 

section, the equilibrium conversion also follows the same pattern.  

-------------------------------------------------------------------------------------------------------------------------- 

Consider again the reaction: C

Example 8.4  

2H4(g) + H2O(g) → C2H5OH(g). If an equimolar mixture of 

ethylene and water vapor is fed to a reactor which is maintained at 500 K and 40 bar 

determine the equilibrium constant, assuming that the reaction mixture behaves like an ideal 

gas. Assume the following ideal gas specific heat data: Cpig = a + bT + cT2 + dT3 + eT–2

Species 

 

(J/mol); T(K). 

a bx10 cx103 dx106 ex109 -5 

C2H 20.691 4 205.346 – 99.793 18.825 - 

H2 4.196 O 154.565 – 81.076 16.813 - 

C2H5 28.850 OH 12.055 - - 1.006 

 

(Click for solution) 

-------------------------------------------------------------------------------------------------------------------------- 

8.6 Reactions involving gaseous species 

We now consider eqn. 8.50 that represents a relation that connects equilibrium composition with the 

equilibrium constant for a reaction. The activities ˆia  in eqn. 8.50 contains the standard state fugacity of 

each species which – as described in section 8.1 – is chosen as that of pure species at 1 bar pressure. 

The assumption of such a standard state is necessarily arbitrary, and any other standard state may be 

chosen. But the specific assumption of 1 bar pressure is convenient from the point of calculations.  

Obviously the value of the state Gibbs free energy o
iG of the species needs to correspond to that at the 
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standard state fugacity. In the development that follows we first consider the case of reactions where 

all the species are gaseous; the case of liquids and solids as reactants are considered following that. 

 For a gas the standard state is the ideal-gas state of pure i at a pressure of 1 bar. Since a 

gaseous species at such a pressure is considered to be in an ideal gas state its fugacity is equal to its 

pressure; hence at the standard state assumed at the present, o
if = 1 bar for each species of a gas-phase 

reaction. Thus, the activity and hence eqn. 8.50 may be re-written as follows: 

ˆ ˆˆ o
i i i ia = f /f = f            ..(8.56) 

( )ˆ i

iK f
α

=∏            ..(8.57) 

For the use of eqn. 8.57, the fugacity îf  must be specified in bar [or (atm)] because each îf  is 

implicitly divided by o
if 1 bar [or 1(atm)]. It follows that the equilibrium constant KT

By eqn. 6.129, for gaseous species, 

 is dimensionless. 

This is true also for the case of liquid and/or solid reactive species, though, as is shown later, the 

standard state fugacity is not necessarily 1 bar, since for condensed phases the fugacity and pressure 

need not be identical at low pressures.  

i
ˆ ˆ  .i if y Pφ= Thus eqn. 8.57 may be rewritten as: 

( )î
i

T iK y P
α

φ=∏           ..(8.58) 

On further expanding the above equation: 

( ){ } ( ){ } ( ){ }î
i i i

T iK y P
α α αφ= ∏ ∏ ∏         ..(8.59) 

Or: 

T yK K K Pα
φ=            ..(8.60) 

Where: 

( ){ }î
i

K
α

φ φ= ∏           ..(8.61) 

( ){ }iy iK y α= ∏           ..(8.62) 

( ){ } i
i iP P P

α
α α∑

∏ = =          ..(8.63) 

An alternate from of eqn. 8.60 is: 

y TK K K P α
φ

−=           ..(8.64) 
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Both the terms and yK Kφ  contain the mole fraction iy  of each species. As given by eqn. 8.29 or 8.39, 

all the mole fractions may be expressed as a function of the reaction co-ordinate ξ of the reaction(s). 

Hence, for a reaction under equilibrium at a given temperature and pressure the only unknown in eqn. 

8.64 is the equilibrium reaction co-ordinate eξ . An appropriate model for the fugacity coefficient 

(based on an EOS: virial, cubic, etc.) may be assumed depending on the pressure, and eqn. 8.64 may 

then solved using suitable algorithms to yield the equilibrium mole fractions of each species. A 

relatively simple equation ensues in the event the reaction gas mixture is assumed to be ideal; whence 

î 1.φ = Thus, eqn. 8.64 simplifies to:  

y TK K P α−=            ..(8.65) 

Or: 

( ) i
iy P Kα α−∏ =           ..(8.66) 

Yet another simplified version of eqn. 8.64 results on assuming ideal solution behavior for which (by 

eqn.7.84): ˆ .i iφ φ= Thus: 

( ){ }iiK α
φ φ= ∏           ..(8.67) 

This simplification renders the parameter Kφ  independent of composition. Once again a suitable model 

for fugacity coefficient (using an EOS) may be used for computing each iφ and eqn. 8.64 solved for the 

equilibrium conversion. 

-------------------------------------------------------------------------------------------------------------------------- 

Consider the reaction: C

Example 8.5  

2H4(g) + H2O(g) → C2H5OH(g). If an equimolar mixture of ethylene and 

water vapor is fed to a reactor which is maintained at 500 K and 40 bar determine the degree of 

conversion, assuming that the reaction mixture behaves like an ideal gas. Assume the following ideal 

gas specific heat data: Cp
ig = a + bT + cT2 + dT3 + eT–2

Species 

 (J/mol); T(K). 

a bx10 cx103 dx106 ex109 -5 

C2H 20.691 4 205.346 – 99.793 18.825 - 

H2 4.196 O 154.565 – 81.076 16.813 - 

C2H5 28.850 OH 12.055 - - 1.006 
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(Click for solution)  

-------------------------------------------------------------------------------------------------------------------------- 

 

8.7 Reaction equilibria for simultaneous reactions 

While we have so far presented reaction equlibria for single reactions, the more common situation that 

obtains in industrial practice is that of multiple, simultaneous reactions. Usually this occurs due to the 

presence of ‘side’ reactions that take place in addition to the main, desired reaction. This leads to the 

formation of unwanted side products, necessitating additional investments in the form of purification 

processes to achieve the required purity of the product(s). An example of such simultaneously 

occurring reaction is: 

4 2 2 2( ) 2 ( ) ( ) 2 ( )CH g O g CO g H O g+ +  

4 2 2( ) ( ) ( ) 3 ( )CH g H O g CO g H g+ +  

Clearly the challenge in such cases is to determine the reaction conditions (of temperature, pressure 

and feed composition) that maximize the conversion of the reactants to the desired product(s). 

Essentially there are two methods to solve for the reaction equilibria in such systems.  

 

Method 1: Use of reaction-co-ordinates for each reaction 

This is an extension of the method already presented in the last section for single reactions. Consider, 

for generality, a system containing i chemical species, participating in j independent parallel reactions, 

each defined by a reaction equilibrium constant jK and a reaction co-ordinate .jξ  One can then write a 

set of j equations of the type 8.64 as follows: 

,( ) ( ) j
j y j T jK K K P α

φ
−=          ..(8.68) 

Where, andj iyα are given by eqns. 8.37 and 8.39 respectively (as follows): 

,j i j
i

α α=∑            ..(8.37)  

And, 
,oi i j j

j
i

o j j
j

n
y

n

α ξ

α ξ

+

=
+

∑
∑

  (i = 1,2,....,N)      ..(8.39) 

Therefore there are j unknown reaction co-ordinates which may be obtained by solving simultaneously 

j equations of the type 8.68.  
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-------------------------------------------------------------------------------------------------------------------------- 

The following two independent reactions occur in the steam cracking of methane at 1000 K and 1 bar: 

CH

Example 8. 6 

4(g) + H2O(g) → CO(g) + 3H2(g); and CO(g) + H2O(g) → CO2(g) + H2(g). Assuming ideal gas 

behaviour determine the equilibrium composition of the gas leaving the reactor if an equimolar mixture 

of CH4 and H2

(Click for solution) 

O is fed to the reactor, and that at 1000K, the equilibrium constants for the two 

reactions are 30 and 1.5 respectively.   

-------------------------------------------------------------------------------------------------------------------------- 

Method 2: Use of Lagrangian Undetermined Multipliers 

This method utilizes the well-known Lagrangian method of undetermined multipliers typically 

employed for optimizing an objective function subject to a set of constraints. As outlined in section 8.3 

at the point of equilibrium in a reactive system, the total Gibbs free energy of the system is a 

minimum. Further, during the reaction process while the total number of moles may not be conserved, 

the total mass of each atomic species remains constant. Thus, in mathematical terms, the multi-reaction 

equilibria problem amounts to minimizing the total Gibbs free energy of the system subject to the 

constraint of conservation of total atomic masses in the system. The great advantage that this approach 

offers over the previous method is that one does not need to explicitly determine the set of independent 

chemical reactions that may be occurring in the system.  

We formulate below the set of equations that need to be solved to obtain the composition of the 

system at equilibrium. Let there be N chemical (reactive) species and p (corresponding) elements in a 

system; further, ni ikβ= initial no of moles of species i; = number of atoms of kth element in the ith 

kβchemical species; = total number of atomic masses of kth 

( )  1, 2 ,  ;i ik k
i

k pn β β == …∑

element as available in the initial feed 

composition.  

        ..(8.69) 

Or: ( )0;   1, 2 ,  i ik k
i

k pn β β = …− =∑        ..(8.70) 
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Use of p number of Lagrangian multipliers (one for each element present in the system) give: 

( )  , 20 1 ,  ;k i ik k
i

pn kλ β β 
− = 

 
= …∑

These equations are summed over p, giving: 

       ..(8.71) 

- 0k i ik k
p i

nλ β β  = 
 

∑ ∑          ..(8.72) 

Let Gt

t
k i ik k

p i
L G nλ β β 
= + − 

 
∑ ∑

 be the total Gibbs free energy of the system. Thus, incorporating p equations of the type 8.72 

one can write the total Lagrangian L for the system as follows: 

        ..(8.73) 

It may be noted that in eqn. 8.73, L always equals Gt as the second term on the RHS is identically zero. 

Therefore, minimum values of both Land Gt occur when the partial derivatives of L with respect to all 

the ni kλand are zero.  

Thus:
, , , ,

  1, 2, ,0; )(
j i j i

t

k ik
ki iT P n T P n

F G
n n

i Nλ β
≠ ≠

   ∂ ∂
= + =   ∂ ∂  

= …


∑     ..(8.74) 

However, the first term on the RHS is the chemical potential of each reactive species in the system; 

thus eqn. 8.74 may be written as: 

( )0;   1, 2, ,  i k ik
k

i Nµ λ β+ = = …∑         ..(8.75) 

But by eqn. 8.44: 

( )ˆo o
i,T i,T i iμ = G + RTln f / f          ..(8.44) 

Once again, we consider, for illustration, the case of gaseous reactions for which the standard state 

pressure for each species is 1 bar, whence, 0 1 .if bar=  

( )ˆo
i,T i,T iμ = G + RTln f           ..(8.76)  

( ), ,
ˆln

i

o
i T f T i iG RT y Pµ φ= ∆ +          ..(8.77) 

In the above equation , may be equated to 
i

o o
i,T f TG G∆ , the latter being the standard Gibbs free energy of 

formation of the ‘i’ species (at temperature T). In arriving at this relation, the standard Gibbs free 

energy of formation of the elements comprising the ith species are arbitrarily set to zero (for 

convenience of calculations). Thus combining eqns. 8.75 and 8.77 one obtains: 
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( ) ( ),   1,ˆ ; 2,ln 0 ,
i

o
f T i i k ik

k
G RT y P i Nφ λ β∆ + + = = …∑ ;     ..(8.78) 

In eqn. 8.78, the reaction pressure P needs to be specified in bar (as 0 1 ).if bar=  Also, if the ith

0
, 0

if TG∆ =

 species 

is an element, the corresponding  

Further taking the partial derivative of the Lagrangian L (of eqn. 8.73) 
,

( )
i n kk nL
λ

λ
≠

∂ ∂ with respect to 

each of the p undetermined multipliers, an additional set of p equations of type 8.70 obtains. Thus there 

are a total of ( )N p+  equations which may be solved simultaneously to obtain the complete set of 

equilibrium mole fractions of N species. 

-------------------------------------------------------------------------------------------------------------------------- 

The gas n-pentane (1) is known to isomerise into neo-pentane (2) and iso-pentane (3) according to the 

following reaction scheme: 

Example 8.7 

1 2 2 3 3 1; ;P P P P P P  

  

. 3 moles of pure n-pentane is fed into a 

reactor at 400
o

 

K and 0.5 atm. Compute the number of moles of each species present at equilibrium.  

 

       

     

 

 

-------------------------------------------------------------------------------------------------------------------------- 

8.8 Reactions involving Liquids and Solids 

In many instances of industrially important reactions, the reactants are not only gaseous but are also 

liquids and / or solids. Such reactions are usually heterogeneous in nature as reactants may exist in 

separate phases. Some examples include:  

• Removal of CO2

• Removal of H

 from synthesis gas by aqueous solution of potassium carbonate 

2

• Air oxidation of aldehydes to acids 

S by ethanolamine or sodium hydroxide 

• Oxidation of cyclohexane to adipic acid 

• Chlorination of benzene 

Species 0
fG∆ at 400

o
K (Cal/mol)  

P 9600  1 

P 8900  2 

P 8200  3 
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• Decomposition of CaCO3 to CaO and CO

In all such instances some species need to dissolve and then diffuse into another phase during the 

process of reaction. Such reactions therefore require not only reaction equilibria considerations, but 

that of phase equilibria as well. For simplicity, however we consider here only reaction equilibria of 

instances where liquid or solid reactive species are involved. The thermodynamic treatment presented 

below may easily be extended to describe any heterogeneous reaction. The basic relation for the 

equilibrium constant remains the starting point. By eqn. 8.50 we have:  

2 

( )ˆ i

T iK a α= ∏            ..(8.50) 

On expanding (by eqn. 6.171): 

( ) 0,ˆ  ˆ , /i i i iT P xf fa =
          ..(8.79) 

As already mentioned in section 8.1 above, for solids and liquids the usual standard state is the pure 

solid or liquid at 1 bar [or 1(atm)] and at the temperature (T) of the system. However, unlike in the 

case of gaseous species, the value of o
if for such a state cannot be 1 bar (or 1 atm), and eqn.(8.50) 

cannot be reduced to the form simple form of eqn. 8.57.  

 

Liquid-phase reactants 

On rewriting eqn. 8.79: 

( ),ˆ ,  i i ii iT P x x ff γ=  

Thus:  
0( , ) / ( ,1 )ˆi i i i if T Pa T rx f baγ=          ..(8.80) 

By eqn. 6.115:   

i iRTdlnf V dP=  
Thus on integrating: 

0

( , )

( ,1 ) 1
lni

i

f T P P i
if T bar

Vd f dP
RT

=∫ ∫
         ..(8.81) 

As we have already seen in section 6.10, the liquid phase properties, such as molar volume, are weakly 

dependent on pressure; hence their variation with respect to pressure may be, for most practical 

situations, considered negligible. Thus, if one considers that in the last equation the molar volume Vi is 

constant over the range 1 – P bar, one obtains: 
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0

( 1)ln i i

i

f V
f R

P
T

 
= 

 

−

         ..(8.82) 

∴
( 1)/ exp  o i

i i
V Pf f

RT
− =  

           ..(8.83) 

Thus, using eqn. 8.53 in 8.50:
 

( ) ( ) ( )ˆ  / ii i o
i i i i iT a x f fK

αα απ γ   = ∏   
∏


=        ..(8.84) 

Or: ( ) -1/ exp  io
i i i i

Pf f V
RT

α
α  ∏ =     

∑  

Thus:  

( )
( -1)

 exp  i

T
i i

i i

V
RT

K
P

x α α
γ

  ∏    
=



∑
       ..(8.85)

 

Except for very high pressure the exponential term on the right side of the above equation:

( -1) i iP V RTα <<∑ . 

Thus one may approximate:  

( -1)
exp  1.0i iP V

RT
α 

≈ 
 

∑  

Whence: 

( ) i

iT ixK αγ∏           ..(8.86) 

To use the above equation for prediction of the equilibrium composition one needs to employ a 

suitable activity coefficient model. The activity coefficient models described in section 6.18 are based 

on physical interactions between molecules. Hence, their use is not expected to be adequately 

representative of a situation where molecules are subject to specific chemical forces and are chemically 

transformed due to formation of intermediate reactive complexes. While it is possible to write models 

for physical interactions it is generally not feasible to establish quantitative relations that describe the 

microscopic-level interactions between reactive molecular species. Discussions on approaches to solve 

such problems may be found elsewhere (J.M. Prausnitz, R.N. Lichtenthaler and E.G. Azevedo, 

Molecular Thermodynamics of Fluid-Phase Equilibria, 3rd ed., Prentice Hall, 1998). Nevertheless, for 
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the purpose of illustrating an approximate solution, one may simplify eqn. 8.86 by assuming ideal 

solution behavior, wherein γi

( ) i

iK x α=∏

 = 1.0. Hence:   

           ..(8.87) 

However, since reactive solutions can never be ideal, one way to overcome the difficulty is by defining 

a reaction equilibrium constant based on molar concentration (say in moles/m3

( ) i

icK C α=∏

), rather than in terms of 

mole fractions. Thus:   

          ..(8.88) 

Where, Ci

It is generally difficult to predict the equilibrium constant K

 = molar concentration of each species. 

C

-------------------------------------------------------------------------------------------------------------------------- 

, and one needs to use experimentally 

determine values of such constants in order to predict equilibrium compositions. 

Consider the liquid phase reaction: A(l) + B(l) → C(l) + D(l). At 50

Example 8.8 
oC, the equilibrium constant is 

0.09. Initial number of moles, nA,0 = 1 mole; nB,0

(Click for solution) 

 = 1 mol Find the equilibrium conversion. Assume 

ideal solution behaviour. 

-------------------------------------------------------------------------------------------------------------------------- 

Solid-phase reactants 

Consider a solid reactive species now, for which one again starts from eqn. 8.80: 

( ) 0,ˆ  ˆ , /i i i iT P xf fa =
          ..(8.80) 

Thus as for a liquid reactant one has 

( )0ˆ )(i i i iia x f fγ=  = ( 1))( e pˆ xi i i
iP V

RT
a x γ −= 

  
 

As it is for liquid species, Vi

( -1)
exp  1.0i iP V

RT
α 

≈ 
 

∑

 for solids is also small and remains practically constant with pressure, 

thus: 

 

In addition, the solid species is typically ‘pure’ as any dissolved gas or liquid (for a multi-phase 

reaction) is negligible in amount. 
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Thus ~ 1.0, 1.i ix γ→ =  

Therefore, for solids ( 1)) exp 1ˆ .0(i
i

i i
P Va x

RT
γ −  ≈  

=       ..(8.89)   

-------------------------------------------------------------------------------------------------------------------------- 

Consider the following reaction: A(s) + B(g) → C(s) + D(g). Determine the equilibrium fraction of B 

which reacts at 500

Example 8.9 

oC if equal number of moles of A and B are introduced into the reactor initially. 

The equilibrium constant for the reaction at 500o

Assignment- Chapter 8 

C is 2.0. 

 



For a liquid ‘A’ at 350K and 1 bar, κ = 50x10
Example 2.1 

-6 bar-1

At T = constant (using expression for κ) 

. To what pressure must water be 
compressed at 350 K to change its density by 0.5%? Assume that κ is independent of P. 

 
2

1

: ln

dP dP
P

POr P
P

κ

κ

=

= ∆
 

Now P2 =1.005P

6

ln(1.005) ln(1.005)
50 10

P
K −∆ = =

×

1 

bar = 100bar 

P2=P1 P∆+ = 100 bar 

Calculate the molar volume for butane at 2.5bar and 298 K using the truncated virial EOS 

using the following data:

Example 2.2 

425.1 ; 37.96 ; 0.2.C CT K P bar ω= = =   

T = 298 K, Tc = 425.1 K, Tr = T/Tc

P = 2.93 bar, P

 = 0.701 

c = 37.96 bar, Pr = P/Pc

Using truncated viral EOS 

 = 0.069 

ω = 0.200, Mol. Wt. = 58 

B0
1.6

0.422 0.661
rT

− = − = 0.083  

B1
4.2

0.172 0.624
rT

− = − = 0.139  

V 0 1 3 3( ) 9.4 10 cm / molc

c

RTRT B wB
P P

= + + = ×   

For methane at 298K and 2 MPa compute the molar volume using SRK equation. 

Example 2.3  

Tc= 190.7 K, Pc= 46.41 bar, ω = 0.011, Tr = T/Tc

  

 = 1.56395 

  

 3 2.( / )Pa m mol  



 3 /m mol  

  

The SRK EOS can be expressed as:  

Here,  

Refer to method of solution for cubic equation and solving the cubic equation 

yields  Z = 0.9665. Thus, the molar volume is given as follows. 

V = ZRT/P = (0.9665)(83.14cm3bar/molK)(298K)/20bar  = 1197.3 cm3

 

/mol 

A rigid 0.5-m

Example 2.4 
3 vessel at 25oC and 2500kPa holds ethane; compute the number of moles of 

ethane in the vessel. For ethane: Tc = 305 K; Pc 

T

= 48.72 bar, ω = 0.1. 

 = 298 K, Tc = 305 K; Tr

P

 = 0.977 

 = 220 KPa, Pc = 48.72 bar, Pr

V

 = 0.452 

total = 0.5 m3

Using plots for Z

, ω = 0.1 
0 and Z1, at given T, P we have: Z0 = 0.8105, Z1

Thus: Z = Z

 = -0.0479 

0 + ωZ1

3 1
1 1 1 1/ 798.8V Z RT P cm mol −= =

 = 0.806 

 

Moles of ethane in vessel = 6 3 3 10.5 10 / 798.7 626 .x cm cm mol moles− ≈  

 

Compute the saturate liquid phase molar volume for methane at 150K. For methane T

Example 2.5 

c= 

190.7 K, Pc= 46.41 bar, VC = 98.6cm3/mol, ZC

At the given condition: T

 = 0.286, ω = 0.011. 

r = T/Tc

Using Rakectt Equation: 

 ~ 0.8 

( )0.28571 ; where / reduced temperture.rTsat
c c r CV V Z T T T−= = =  

Thus:  

( )0.28571 0.8 3(98.6)(0.286) 44.7 / .satV cm mol−= =  

 

 

 

 



 

Estimate the second virial coefficient for an equimolar mixture of propane and n-pentane at 

500K and 10 bar. 

Example 2.6  

 Tc P (K) c V ( 

bar) 
c x 103 (m3 Z/mol) ω c yi 

Propane (1) 369.9 42.57 0.2 0.271 0.153 0.5 

Pentane (2)  469.8 33.75 0.311 0.269 0.269 0.5 

 

 

 

 

 

 

 

 

 

 

 

 

Similarly, for pure components   

Following the same procedure above (K11 = K22= 0), [Kij

B

 = 0 where i = j]  

11 = - 1.1833×10-4 m3/mol, B22 = - 3.4407×10-4 m3/ mol 



 

  

 

Calculate the molar volume of an ethylene and propylene mixture comprising 70 mole 

percent ethylene and 30 mole percent propylene at 600 K and 60 bar. Assume that the 

mixture follows the Redlich-Kwong equation of state. 

Example 2.7 

 Tc P (K) c ( bar) 

Ethylene (1) 283.1 51.17 

Propylene (2) 365.1 46.0 

 

R-K parameters for pure species and mixture are obtained first  

 

 

Similarly,  

 

 

 

Now, solve for Z from cubic EOS, 

 

 

It follows,  

 

 

 

Since  one real root only exists, 



 

The mixture molar volume = 3/ (0.9626)(83.14)(600) / 60 800 /mV Z RT P cm mol= = ≈  

Find the molar volume and internal energy of a system containing water and steam at 50% 

quality at 200

Example 2.8 

0

From saturated steam tables one has the following data at 200

C. 
0

3 30.13 / ; 0.0012 / ; 2593 / ; 851 /V L V LV m kg V m kg U kJ kg U kJ kg= = = =

C. 

 

3System molar volume: ( ) 0.065 /
System molar internal energy: ( ) 1722.0 /

L V V L

L V V L

V V x V V m kg
U U x U U kJ kg

= + − =

= + − =
 

 

Using Riedel’s correlation, estimate the enthalpy of vaporization of water at its normal 

boiling point and compare the result with that given in steam tables. 

Example 9  

Solution: For water, Pc = 221.2 bar, Tc = 647.3 K and Tbr

ln 1.0131.093
0.930

 vap c
n c br

br

PH RT T
T

 −
∆ =  − 

 = 373.15/647.3 = 0.5765. 

= 1.093 x 8.314 x 647.3 





−
−

5765.0930.0
)013.12.221(ln5765.0  

 = 42.075 kJ/mol = 2337.5 kJ/kg 

We get from steam tables = 2256.94 kJ/kg and error = 
94.2256

)94.22565.2337( − x 100 = 3.57% 

The enthalpy of vaporization of water at 100

Example 2.10 

oC is 2256.94 kJ/kg. Determine the value at 

150o

Solution: For water, T

C, and compare the value with that listed in the steam tables. 

c

1
373.15 0.5765
647.3rT = =

 = 647.3 K. 

;     2
423.15 0.6537
647.3rT = =  

0.38

2
2 1

2

1
1

vap vap r

r

TH H
T

 −
∆ = ∆  − 

 or  
0.38

2
1 0.65372256.94 2090.78 /
1 0.5765

 vapH kJ kg− ∆ = = − 
 



vapH∆ from steam tables = 2113.25 kJ/kg 

 



A gas initially at 1 MPa, 500°C is contained in a piston-cylinder arrangement of initial 

volume of 0.1 m

Example 3.1 

3

PV = Constant; 

. The gas expanded isothermally to a final pressure of 100 kPa. Determine 

the work.  

1 1
2

2

PVV
P

=              

2
1 1

1

ln

CW PdV dV
V

VW PV
V

= =

=

∫ ∫
           

 Putting all relevant data, W = 230.3 KJ  

 

Helium gas expands from 125 kPa, 350 K and 0.25 m

Example 3.2 
3

PV

 to 100 kPa in a polytropic 

process with δ = 1.667. How much work does it give out?  
δ 

1/

1
2 1

2

0.2852PV V
P

δ
 

= = 
 

= Constant  

m3

2 2 1 1
2 1

PV PVW
n
−

=
−

  

= 4.09 KJ 

A chiller cools liquid water (Sp. Ht = 4.2 J/gmK) for air-conditioning purposes. 

Assume 2.5 kg/s water at 20

Example 3.3 

oC and 100 kPa is cooled to 5o

Heat transferred needed = Q

C in a chiller. How much 

heat transfer (kW) is needed?  

out

.

out outQ m q
• • •

=

  

  

 Qout m
•

 = Cp T∆  = m
•

(H i – H e

 

) = 156.75 KW 

Example 3.4 

A piston-cylinder assembly contains 0.1 kg wet steam of quality 0.75 at 100 kPa. If 150 

kJ energy is added as heat while the pressure of the steam is held constant determine 

the final state of steam.  



From saturated steam tables one has the following data at 100kPa. 
3 3 31.694 / ; 10 / ; 2675 / ; 417.5 /V L V LV m kg V m kg H kJ kg H kJ kg−= = = =  

3System molar volume: ( ) 1.27 /
System molar internal energy: ( ) 2110.0 /

L V V L

L V V L

V V x V V m kg
H H x H H kJ kg

= + − =

= + − =  
Total enthalpy at state 1= 1 1

tH mH=  

By first law: 2 1 150t t tQ H H kJ= − =  

Thus 2 1( ) / 3610. 9 /t tH Q H m KJ kg= + =  

It may be seen that at 100kPa, the saturated steam enthalpy H2 > HV ⇒ hence the state 2 is 

superheated steam at 100 kPa & H = 3610.9 KJ/kg.  

 

An adiabatic compressor operating under steady-state conditions receives air (ideal gas) at 

0.1 MPa and 300 K and discharges at 1 MPa. If the flow rate of air through the compressor is 

2 mol/s, determine the power consumption of the compressor. Constant pressure specific heat 

for air = 1kJ/kg. 

Example 3.5 

For compressor 0Q
•

=  

Let ‘i’ and ‘e’ denote the inlet and exit streams respectively.  

We assume that: ui = ue = 0 and that zi – ze 

Thus, the 1

= 0. 
st

 

 law becomes, 

( ) ..(1)
, ( ) ..(2)

e i S

e i P e i

m H H W
But H H C T T

• •

− = −

− = −
                 

       /

Thus, 
1

It follows that from the given data 1.4

( ) ..(3)
1

P V

P V

P

e i e i

C C R
C C

RC

RH H T T

γ
γ
γ

γ
γ
γ

− =

=

=
−

=

− = −
−

 

   Also for adiabatic operation of the compressor: 

 
1

0580e
e i

i

PT T K
P

γ
γ
−

 
= ≅ 

 
 

   

 



2 / 0.058 /m mol s kg s
•

= =  

Substituting the relevant data: ( ) 16.25
1S e i

RW m T T kWγ
γ

• •  
− = − = − 

 

 

= 16.25 

An insulated piston-cylinder system has air at 400kPa & 600K. Through an inlet pipe to the 

cylinder air at certain temperature T(K)  and pressure P (kPa) is supplied reversibly into the 

cylinder till the volume of the air in the cylinder is 4 times the initial volume. The expansion 

occurs isobarically at 400kPa. At the end of the process the air temperature inside the 

cylinder is 450K. Assume ideal gas behaviour compute the temperature of the air supplied 

through the inlet pipe.  

Example 3.6 

          Applying the first law (∆ PE = ∆  KE = 0) 

          

. . .( ) ( )

( )

cv

cv

d mU H m Q W
dt

d mU dm Q WH
dt dt dt dt

δ δ

+ ∆ = +

 + ∆ = + 
 

 

            Or d(mUcv ∆) + (Hdm) = δQ + δW  ..(1) 

            For change of state from 1 – 2 

          
2 2 2 2

1 1 1 1

( )cvmU Hdm Q Wδ δ+ ∆ = +∫ ∫ ∫ ∫  

           Or 
2 2

2
1 12 12

1 1

t
e e i iU H dm H dm Q W∆ + − = +∫ ∫  

            Here Q12 

2

1

0e eH dm =∫= 0,   as there is no exit  

            Equation (1) may be expanded into: 

          (m2U2 - m1U1)cv – Hi (m2 - m1) = - P ( V2
t  - V1

t

           For ideal gas m = PV

) …………………..(2) 
t / Rm

           R

T………………………  (3);  

m

           Since incoming fluid and system fluid are same we can write (by ideal gas   

 = R/Mol. Wt.  

           assumption): H = Cp T ; U =  CV

           Putting relations (3) and (4) in (2) and simplifying we finally obtain 

T  (ideal gas assumption) ………….(4) 



          2

1 2 1

1 2

t

i t t t

VT
V V V
T T

=
 −

+ 
 

 

           Now V2
t = 4V1

t, T1 = 600 K, T2 = 450 K, to calculate T

           Thus T
i 

i

 

 = 480 K.  

 

 



 

 

Example 4.1 

An inventor claims to have devised a cyclic engine which exchanges heat with reservoirs at 

27°C and 327°C, and which produces 0.6 kJ of work for each kJ of heat extracted from the 

hot reservoir. Is the claim believable? If instead he claimed that the delivered work would be 

0.25kJ / kJ of extracted heat, would the engine be feasible? 

 

QH = 1KJ, W= 0.6KJ, TH = 600K, Tc

 Efficiency: 

 = 300K 

0.6actual
H

W
Q

η = =  

( ) 1 0.5c
ideal Carnot

H

T
T

η = − =  

Since actual idealη η> the engine is not possible. 

However for a delivered work of 0.25kJ / kJ of extracted heat the ;actual idealη η< hence the 

engine is feasible.  

 

A rigid vessel of 0.06 m

Example 4.2 
3 volume contains an ideal gas, CV = (5/2)R, at 500 K and 1 bar. (a) 

If 15 kJ of heat is transferred to the gas, determine its entropy change. (b) If the vessel is 

fitted with a stirrer that is rotated by a shaft so that work in the amount of 15 kJ is done on the 

gas, what is the entropy change of the gas if the process is adiabatic? What is ΔStotal

1 1/ 1.443tn PV RT mole= =

? 

 

2 115000 ( )VU Q W Q J nC T T∆ = + = = = −                                         [W=0] 

 Hence T2

 

 = 1000K 

[ ] 2 2
2 1 2 1

1 1

ln / ln / ; butt
P

P TS n C T T R P P
P T

∆ = − =  



      Hence 20.8 /tS J K∆ =   

For second case, the since change of state of the gas is same as in part ‘a’  

20.8 /systemS J K∆ = ; 

0 (as there is no heat effect on the surrounding)surrS∆ =  

       20.8 /t t t
universe system surrS S S J K∆ = ∆ + ∆ = ; (Hence stirring process is irreversible)   

 

An ideal gas, Cp = (7/2)R, is heated in a steady-flow heat exchanger from 70°C to 190°C by 

another stream of the same ideal gas which enters at 320°C. The flow rates of the two streams 

are the same, and heat losses from the exchanger are negligible. Calculate the molar entropy 

changes of the two gas streams for both parallel and countercurrent flow in the exchanger. 

What is ΔS

Example 4.3 

total

Temperature drop of stream ‘B’ in either case of flow is the same as the temperature rise of 

first stream ‘A’ = 120

 in each case? 

oC.  Thus, exit temperture of stream ‘B’ = 200o

Thus in both cases:  

C  

463ln 8.726 /
343A PS C J molK ∆ = = 

 
  

473ln 6.58 /
593B PS C J molK ∆ = = − 

 
 

totalS∴∆ (in both types of flow) = 2.15 /A BS S J molK∆ + ∆ =  
 

Ten kmol per hour of air is throttled from upstream conditions of 25°C and 10 bar to a 

downstream pressure of 1.2 bar. Assume air to be an ideal gas with C

Example 4.4  

P

m
•

 = (7/2)R. (a) What is 

the downstream temperature? (b) What is the entropy change of the air in J/molK? (c) What 

is the rate of entropy generation in W/K?  

 = 10Kmol /hr. 

Since Q, WS

12 2 1 2 1( ) 0; 298PH C T T T T K∆ = − = ⇒ = =

 = 0, the process is isenthalpic 
 

( ) ( )2 1 2 1ln / – ln / 17.63 /PS C T T R P P J molK∆ = =   

Rate of entropy generation: 

GS m S
• •

= ∆  = 48.97 W/K 



 

A steady-flow adiabatic turbine (expander) accepts gas at conditions T

Example 4.5 

1 = 500 K, P1 = 6 

bar, and discharges at conditions T2 = 371 K, P2 = 1.2 bar. Assuming ideal gases, determine 

(per mole of gas) Wactual, Wideal, Wlost, and entropy generation rate. Tsurr = 300 K, CP

 

/R = 

7/2.  

2 1( - );  3753.85 p S SH nC T T W H W J∆ = = ∆ ⇒ = −  

2 2

1 1

ln - ln 4.698 /P
T PS n C R J K
T P

 
∆ = = 

 
 

W ideal H∆ =  - Tσ S∆ = - 5163J 

, 14 .  09 3 ideal S actuallost W W JW − ==  

SG = Wlost / Tσ
 

= 4.698J /K 

A steam turbine operates adiabatically at a power level of 3500 kW. Steam enters the turbine 

at 2400 kPa and 500°C and exhausts from the turbine at 20 kPa. What is the steam rate 

through the turbine, and what is the turbine efficiency? 

Example 4.6 

 SW
•

 = - 3500KW, H2= 2609.9 KJ/Kg, S1= 7.3439 KJ/Kg0K, H1

• •
/Sm W H= ∆

=3462.9 KJ/Kg 

= 4.1 Kg/s;  

Since the process is adiabatic for a reversible process: S1 = S2

Thus S

  

2 = 7.3439 KJ/Kg0

At 20kPa checking the steam table we find that at the exit the steam is ‘wet’, since the 

following condition holds at 20kPa: 

K  

0 0
2( 0.8321 / ) ( 7.9094 / )liq vapS kJ kg K S S kJ kg K= < < =

 
Thus: 2 ( )liqliq vapS S x S S= + −

 
On substituting the values of all the parameters we get:  

x = 0.92. 

Thus for reversible and adiabatic process: 

3
2 ( ) 2.421 10liq
id

liq vap
KJH H x H H
Kg

= + − ×

 

2 1 2 1( ) / ( ) 0.82idH H H Hη = − −   



 

 



Derive an expression for enthalpy change of a gas during an isothermal process assuming using 

the following EOS:

Example 5.1 

( )P V b RT− =  

p
P

VdH C dT V T dP
T

 ∂ = + −   ∂  
 

P (V-b) = RT ⇒
P

V R
T P
∂  = ∂ 

 

dH = Cp p
RTV dP C dT bdP
P

 − = + 
 

dT +  

2 1( )PH C dT b P P∆ = + −∫  

 

Derive an expression for enthalpy change of a gas during an isothermal process assuming 

using the following EOS: Z = 1 + AP

Example 5.2 

r / T

2

0

r

r

PR
r

r
c r rP

dPH ZT
RT T P

 ∂
= −  ∂ 

∫

r 

 

2
2

0

rPR
r r

r r
c r r

AP dPH T AP
RT T P

 
= − − = 

 
∫  

2 1
ig R RH H H H∆ = ∆ + −  

2 1( )ig
r r cH A P P RT= ∆ + −  

 

Derive expressions for H

Example 5.3 
R, SR

General expressions are: 

 from RK-EOS. 

( )1  
V

R

VV

PH RT Z T P dV
T=∞

 ∂ = − + −  ∂  
∫     ..(1) 

ln  
V

R

VV

P RS R Z dV
T V=∞

 ∂ = + −  ∂  
∫      ..(2) 

 
( ) ( )

RT a RT aP
V b V V b V b V V b T

′
= − = −

− + − +
   ..(3) 



Where, 
2 2.50.42748 0.08664;C

C
C C

R Ta b RT
P P

′ = =  

∴  3/2

'
2 ( )V

P R aT P T
T V b V V b T

 ∂  − = +   ∂ − +     
∴ 

- 1/2

'
( )

RT a
V b V V b T
 

− − +   
= 1/2

3 '
2 ( )

a
V V b T+

 

∴ ( ) 3 ' 1
( )2

V
R

V

a dVH RT Z
V V bT =∞

= − +
+∫  

Putting /Z PV RT=  

3–  ln
2

R a V bH PV RT
b V

+ = −   
 

Replacing P we get: 
( ) ( )

3 ln
2

R bRT a a V bH
V b V b b V

+ = − −  − +  
 

Similarly using (2) and (3) one may show: 

( ) ln ln ln
2

R PV V b a V bS R R
RT V bT V

− +   = + −   
   

 

Carbon dioxide at upstream conditions T

Example 5.4 

1 = 350 K and P1

For CO

 = 80 bar is throttled to a 

downstream pressure of 1.2 bar. Estimate the downstream temperature and ΔS of the gas.  

2 3 5
2

1.157/ 5.457 1.045 10 10ig
pC R T

T
−= + × − ×:  

T1 = 350K, P1 = 80 bar, TC = 304.2K, PC

 

 = 73.8 bar and ω = 0.224 

For the process H2 – H1

Now H

 = 0 (Isenthalpic, from energy balance) 

2 – H1 2 1 ...........( )R R igH H H A− + ∆ =  

Tr1 = T1/Tc = 1.151, Pr1 = P1/Pc

 

 = 1.084 

If one assume that at 1.2 bar (at exit), the gas is ideal, then: 
2

1

 
2 10;  then 

T
R ig ig R

p
T

H H C dT H∆ = =∫

….. (B)  



Use generalized correlations for residual properties, and read from relevant figures for 

residual properties to find 1
RH  at given Tr1, & Pr1 and then solve Equation (B) by trial & 

error to get T2  280K  

Thus: 2 2
2 1 1

1 1

ln ln 31.5 /R R ig R
p

T PS S S S S C R J molK
T P

 
∆ = − + ∆ − + − 

 
 

 

Estimate the final temperature and the work required when 1 mol of n-butane is compressed 

isentropically in a steady-flow process from 1 bar and 50

Example 5.5 

o

ω = 0.2, T

C to 7.8 bar.  

c = 425.1 K, Pc

T

 = 37.96 bar  

1 = 323 K, P1 = 1 bar, P2

For the process, 

 = 7.8 bar  

0S∆ =  

T r2 = 0.76017, Pr2 

P

= 0.2052, 

r1

-3 -6 2/ 1.9 36.9 1For n-butane :  0 11.4 10ig
pC R T T= + × − ×

 = 0.02639; hence we assume that at state 1 the residual properties are zero as the gas is at 

ideal state. 

 

Using generalized correlations for state 2 and reading from relevant figures for residual 

properties one finally obtains the following residual property values at ‘2’: 

From generalized correction at point ‘2’
( )

0.5679
oR

C

H
RT

= − ,   
( )

0.05210
oR

C

S
RT

= −  

2

1

2
2 1

1

ln
T R R

pT

PdTS C R S S
T P

∆ = − + −∫  

Assume T2 S∆and solve iteratively with = 0 to obtain the final value of  T2 

Next use generalized correlation figures for residual enthalpies; whereby at point ‘2’: 

which is = 381K. 

0.30330
R

c

H
RT

= −  

W = 2 1( )ig R R
cH H RT H H∆ = ∆ + −  

    
2

1

2 1( )
T

ig R R
p c

T

C dT RT H H= + −∫  

Finally, 5678W =  J/mol 

 

 

 



Calculate the changes in enthalpy and entropy per mole when a mixture of 70 mole % 

ethylene (1) and 30 mole% propylene (2) at 323K and 10 bar is taken to 60 bar and 600 K 

using the generalized compressibility factor approach. 

Example 5.6 

 3 6 2 9 3
1 4.196 154.565 10 81.076 10 16.813 10ig

pC x T x T x T− − −= + − + ; 

 3 6 2 9 3
2 3.305 235.821 10 117.58 10 22.673 10ig

pC x T x T x T− − −= + − +  

Use pure species data to compute those of mixture. 

Thus,  

(1 = ethylene, 2 = Propylene)  

Similarly  

 

At state 1,  

Now,   

From Tables at given Tr,mix and Pr,mix

 

 

 

  

 

 At state 1  

and   

Thus,  

Similarly on repeating the calculation for state 2, T = 600K, P = 60 bar, we obtain  

 

Now,  

  

Thus,  



Where,  

For component 1, 

  

Similarly, 

 

 

Similarly,  

Hence,  

 

 

Now,  

 

Final answer on substitution of all parameters  

 

 

 

A certain gas is compressed adiabatically from 293 K and 135 KPa to 550 KPa. What is the 

work needed? What is the final T

Example 5.7 

2

For the gas: C

? Assume ideal gas behavior. Compressor η = 0.8. 

p
ig = 1.65 + 8.9 x 10-3T – 2.2 x 10-6 T

     For rev. process ∆S = S

2 

2-S1

     Flow process thus lead to: 

 = 0 

       (1)    (2)  ∆S = ∫ ∫−
2

1

2

1

T

T

P

P

ig
p P

dPR
T
dTC ∴∆  

         sW  

∴ ∫
2T

293

(1.65 + 8.9 x 10-3 T – 2.2 x 10-6 T2

T
dT) = 8.314 ln 550

135
 
 
 

 

⇒ T2
reversible

        

 (by iteration) ~ 395 K 



By first Law    Q (=0) + Ws

∴ W

 = ∆H 

s (isentropic, reversible) = H2 – H1 ∫
2

1

T

T

ig
pC = dT 

∴
395

reversible 3 6 2
S

293

W [1.65 8.9 x 10 T 2.2 x 10 T ) dT− −= + −∫ ~ 3960 J/mol. 

∴ Thus actual work needed = ηW rev
S  

  = 3960/0.8 = 4950 J/mol 

∴ ∫=∆=
2

1

T

T

ig
p

rev
S dTC  H  W  

∴ 4950 = 
2

3 6 2

293

[1.65 8.9  10 2.2 10 ] 
irrevT

x T x T dT− −+ −∫  

 ⇒ T2 (actual) ~ 420oK ⇒ 147o

 

C 

 

 



Consider a solution of two species S1/S2 at 25

Example 6.1 
oC such that x1 1V = 0.4. If = 40 x 10-6 m3

2V

/mol, 

find . The solution specific gravity is = 0.90 and the molecular weights of the species are 

32 and 18 respectively. 

Molar mass of solution = x1M1 + x2M2

 = 0.4 x 32 + 0.6 x 18 

 (M = MW) 

 = 23.433 gm/mol = 23.6 x 10-3

Solution molar volume = 

 kg/mol 

Density
massMolar 

⇒ 

  = 
3

3

23.6 10 /
900 /
x kg mol

kg m

−

= 26.2 x 10-6 m3

Now V = x

/mol 

1 221 V xV +  

 ⇒ ( ) 6

2 1 1 2

26.2 -  0.4  40  10
( ) /

0.6
x x

V V x V x
−

= − =   

  = 17.0 x 10-6 m3/mol. 

The molar enthalpy of a binary solution is given by:  

Example 6.2 

V = 500 x1 + 1000 x2 + x1x2 (50 x1+40x2) cm3

1 1, and .V V ∞

/mol. Find the expressions for   

 
Putting x1 = 1- x2

V = 500 + 550 x

; it follows: 

2 – 60 x2
2 + 10 x2

2
2 2

2

550 120 30 dV x x
dx

= − +

3 

  

1 2
2

dVV V x
dx

= −  

= 500 x1 + 1000 x2 + x1x2 (500x1 + 40 x2) -x2 [550 – 120 x2 + 30 x2
2

Putting x

] 

2 = 1-x1

 

; and simplifying: 
3

1 1 1540 60 x 20 xV = − +       

1
1 10

lim 540 J / mol
x

V V∞

→
= =  

 



Alternately one may also use the generic definitions: 

2

1
1 , ,n T P

nVV
n

∂
=
∂

 

V = 500 + 550 x2 – 60 x2
2 + 10 x2

Putting x

3 

2 = 1-x1 

V = 1000 – 460 x

and simplifying: 

1 – 30 x1
2 – 10 x1

V = 1000 – 460 

3 

3

3
1

2

2
11

n
n10

n
n30

n
n

−−  

Where, n = n1 + n2

2

1
1

  
n

nVV
n

∂
=

∂

 (moles of mixture) 

 ;   note that:  
21

 
n

nV
n

∂
∂

= 1 

2

2 3
1 1 1

1 2 3
1

10  1000 460 30  
n

n n nV n
n n n n
  ∂

= − − −  ∂   
 

 = 
2

2 3
1 1

1 2
1

10  1000 460 30  
n

n nn n
n n n
 ∂

− − − ∂  
 

 = 640 – 60 
2 3
1 1
2 320n n

n n
+  

 = 640 – 60 x1
2 + 20 x1

3

The same exercises may be carried for obtaining 

 … [same as the earlier expression] 

2.V  

What is the change in entropy when 0.6 m

Example 6.3 
3 of CO2 and 0.4 m3 of N2, each at 1 bar and 25o

For an ideal gas, mole fraction = volume fraction  

C 

blend to form a gas mixture at the same conditions? Assume ideal gases. 

CO2 (1) / N2(2); y1 = 0.6, y2

 

=0.4 

( ) ln 5.5 /mix i iS R y y J molK∆ = − ∑ =  

 

Estimate the fugacity of ethane at 122.2 K and 5 bar using the truncated virial EOS.  

Example 6.4 

For ethane Tc = 305.4K, Pc

  

 = 48.84 bar, ω = 0.099 

 

Now,  



 

 

 

 

Estimate the fugacity of ammonia vapor at 4.0 MPa and 321K assuming that it obeys the RK 
equation of state.  

 

 

Example 6.5 

Now,  

 

In the above equation T = 321.55K, V is not known.  

So solve RK-EOS for Vvapour

V

 at the given temperature and pressure, i.e., at P =1.95 MPa, T = 
321.55 K (see example 2.3)  

vapour turns out to be ≈ 1.1987 * 10-3 m3

Thus on substitution in eq. (1) ln ϕ = -0.1189 → ϕ = 0.888 

 

/mol 

 

Estimate the fugacity of methane at 32C and 9.28 bar. Use the generalized correlation 

approach.  

Example 6.6 

For methane Tc = 190.7 K, Pc

For given T

 = 46.41 bar, ω = 0.011 

 

r and Pr, read off ϕ0 and ϕ1

Then   

 

 from figures of fugacity coefficients.  

Example 6.7 



Estimate the fugacity of cyclopentane at 110 C and 275 bar. At 110 C the vapor pressure of 

cyclopentane is 5.267 bar. 

For cyclopentane Tc = 511.8 K, Pc = 45.02 bar, ω = 0.196, Zc = 0.273, Vc = 258 cm/mol, 

Tn

T = 383K, P = 275 bar, P

 = 322.4 K 
3

T

(383K) = 5.267 bar 

r 0.117sat sat
r CP P P= = = 0.7486,  

Calculate fsat

Virial EOS 

 at the given Vapour pressure by 

ln sat sat sat sat satBP RT f Pφ φ⇒ = ⇒ =  

Here T = 383K, B is obtained as in problem 18, by B0, B1

Final ϕ
 . 

S

Now by Rackett equation 

 = 0.9 
0.2857(1- ) nbrTsat

C CV V Z=  

( )

3

322.4 / 54.8 0.63 97.092

.exp 10.79

sat
nbr

sat sat sat sat sat

cmT V
mol

f P V P P RT barφ

= = ⇒ =

 ∴ = − = 

 

For the following system compute the species fugacity coefficients for an equimolar mixture 

at 20 bar and 500K.  

Example 6.8 

 Tc P (K) c V ( 

bar) 
c X 103 (m3 Z/mol) ω c yi 

Propane (1) 369.9 42.57 0.2 0.271 0.153 0.4 

Pentane (2)  469.8 33.75 0.311 0.269 0.269 0.6 

 

P = 20 bar, T = 500 K, y1 = y2

 

 = 0.5 

 

 

 

 



 

 

 

 

 

 

 

Similarly, for pure components   

Following the same procedure above (K11 = K22= 0), [Kij

B

 = 0 if  i = j] it may be shown that: 

11 = - 1.1833×10-4 m3/mol, B22 = - 3.4407×10-4 m3

 Thus: 

 

 

 

 

/ mol 

Similarly, 

 

 

 

Calculate the fugacities of ethylene and propylene in a mixture of 70 mole percent ethylene 

and 30 mole percent propylene at 600 K and 60 bar. Assume that the mixture follows the 

Redlich-Kwong equation of state. 

Example 6.9 

 



 Tc P (K)  c ( bar) 

Ethylene (1) 283.1 51.17 

Propylene (2) 365.1 46.0 

 

R-K parameters for pure species and mixture are obtained first  

 

 

Similarly,  

 

 

 

Now, solve for Z from cubic EOS, 

 

 

It follows,  

 

 

 

Since  one real root only exists,  

 

 

 

 



 

  

 

 

 

 

Methanol (1)-acetone (2) system is described by the Van Laar activity coefficient model. At 

60

Example 6.10 

0
12 210.47; 0.78A A= =C, the model parameters are . Estimate the activity coefficients for a 

solution containing 10mole% of methanol.   

12 21
1 22 2

12 1 21 2

21 2 12 1

ln ; ln

1 1

A A

A x A x
A x A x

γ γ= =
   
+ +   

   

 

For x1 = 0.1, γ1 = 1.5219, γ2

 

 = 1.0032 

Use of Regular Solution Model to estimate activity coefficients for an equimolar  benzene (1)  

/ cyclohexane (2) solution 350

Example 6.11 

oK. The solubility parameters are: δ1 = 9.2 (cal/cm3)1/2; δ2 = 

8.2 (cal/cm3)1/2. The molar volumes: V1
L = 88 cm3/mol; V2

L = 107 cm3

Volume fraction =

/mol   

( )1 1 1 1 1 2 2/  L L Lx V x V x VΦ = +  = 88 / (88 + 107) = 0.45 

2 11 0.55Φ = −Φ =   

[ ]22 2 2
1 1 2 1 2 ln ( ) 88  0.55 9.2 –  8.2LRT V xγ δ δ= Φ − =   

R = 1.987 cal/mol, T = 350o

Hence ln γ

K 

1 = 0.038 ⇒ γ1

Similarly RT ln 

 = 1.04 

2γ  = 2 2
2 1 1 2( )LV δ δΦ −  

Hence γ2

 

 = 1.03 

 

 



Use UNIFAC model to estimate activity coefficients for an equimolar n-pentane (1) /acetone 

(2) solution 350

Example 6.12 

o

( )

( )

3
11 22 12

12 12 11 22

2
11 1 2 12

1

2
22 2 1 12

2

963, 1523, 52 /
2

exp

exp

S

S

B B B cm mol
B B B

B P P Py
RT

B P P Py
RT

δ

δ

δ

= − = − =
∴ = − − =

 − +
 Φ =
  
 − +
 Φ =
  

K. 

 

Follow the algorithm provided in the text for bubble pressure calculation. 
 
Final Answer: 1 285.14 , 0.812, 0.188bP KPa y y= = =  

 



Consider the ternary system: Acetone (1) / Acetonitrile (2) / Nitromethane (3) for which: 

Example 7.1 

1
2940.46ln 14.5463

237.22
SP

t
= −

+ ; 2
2940.46ln  14.5463

237.22
SP

t
= −

+ ; 3
2972.64ln 14.2043

209.00
SP

t
= −

+  

0( ); ( ).S
iP KPa t C  

Calculate: (a) P, {yi} for a temperature = 80oC, x1 = 0.3, x2 = 0.3 (b) P, {xi}, for t = 70oC, y1 

= 0.5, y2

(a)  For 80

 = 0.3. 

oC, P1
S = 195.75, P2

S = 97.84, P3
S

  108.3S
i iP x P KPa= =∑

 = 50.32 KPa. Thus:  

 

 Next: 

/  S
i i iy x P P=  

Thus: 

1 2 30.54,  0.27,  0.19y y y= = =  

(b) For 70oC, P1
S = 144.77, P2

S = 70.37, P3
S

1/ / 81.4 KPaS
k kP y P= =∑

 = 43.80 KPa 

 

Next: 

/ S
i i ix y P P=  

Thus: 

1 2 30.28,  0.34,  0.38x x x= = =  

A liquid mixture containing equimolar amounts of benzene (1) /toluene (2) and ethylbenzene 

(3) is flashed to conditions of T = 110

Example 7.2 

oC, P = 90 kPa, determine the equilibrium mole 

fractions {xi} and {yi

0ln ( )
( )

sat BP Pa A
t K C

= −
+

} of the liquid and vapor phase formed and the molar fraction V of the 

vapor formed. Assume that Raoult’s law applies.  

 A B C 

Benzene 13.8594 2773.78 -53.08 

Ethylbenzene 14.0045 3279.47 -59.95 

Toluene 14.0098 3103.01 -53.36 

At T = 383K, the saturation vapour pressures are: 1 2 3  233.2;     99.1; 47.1S S SP P P kPa= = =  

Thus: 1 1 2 3/   2.6;  similarly 1.1; 0.52SK P P K K= = = =  



For flash   
1

1
1 ( 1)

n
i i

i i

Z K
V K=

=
+ −∑  

Thus: 1 1 2 2 3 3

1 2 3

1 ..(1)
1 ( 1) 1 ( 1) 1 ( 1)

Z K Z K Z K
V K V K V K

+ + =
+ − + − + −  

1 2 3 0.33Z Z Z= = =  

On substituting the values of  and i iK Z by solving eqn. (1) on obtains: V = 0.834 

 
Example 7.3

Methanol (1)-acetone (2) forms an azeotrope at 760 Torr with

  

1x = 0.2, T = 55.70C. Using van 

Laar model predict the bubble pressure for a system with for x1 = 0.1 at 55.70

10 1 10 2log 8.0897 [1582.271/ ( 239.726)]; log 7.1171 [1210.595 / ( 229.664)]s sP t P t= − + = − +

C.  

 

0( ); ( )s
iP torr t C  

At 55.70
1 2541.75 ; 745.5s sP torr P torr= =C 

 
We assume that the vapour phase is ideal. Hence the VL equation is given by: 

S
i i i iy P x Pγ=  

At the azeotropic condition: i iy x=  

Hence,  

  / S
i iP Pγ =  

Thus 1 1 1.4313, ln  0.3607γ γ= =  and 2 21.0318, ln  0.0137γ γ= =  

The Van Laar parameters are estimated next using the azeotropic composition given by

1 20.2 and 0.8 :x x= =  

2

2 2
12 1

1 1

lnln 1 0.4786
ln

xA
x

γγ
γ

 
= + = 

 
 

 
2

1 1
21 2

2 2

lnln 1 0.7878
ln

xA
x

γγ
γ

 
= + = 

 
 

Thus 12 21
1 22 2

12 1 21 2

21 2 12 1

ln ; ln

1 1

A A

A x A x
A x A x

γ γ= =
   
+ +   

   

 

For x1 = 0.1, γ1 = 1.5219, γ2

757.62s
i i iP x Pγ∴ = ∑ =

 = 1.0032 

torr, 1 1 1 1 / 0.1067sy x P Pγ= =  
Example 7.4 



For a binary, the activity coefficients are 2
1 2ln Axγ =  and 2

2 1ln .Axγ =  Show that the system 

forms an azeotrope when ( )2 1ln /s sA P P>   

Again 1 1 2 2,s sP P P Pγ γ= =  

2 2
1 2 1 2 1 2ln ; lns sAx P P Ax P Pγ γ= = = =  

( ) ( )2 2
2 1 2 1ln s sA x x P P∴ − =  

or ( ) ( ) ( )2 1 1 2 11 2 ln s sA x x A x P P− = − =  

or ( )1 2 1
1 11 ln
2

s sx P P
A

 = −  
 

For azeotropy  0 < x1

If x

 <1  

1 ( )2 1ln s sA P P= = 0, then  

If x1 ( )2 1ln s sA P P= − = 1, then  

Thus for azeotropy to exist 2 1ln s sA P P>  

 

Estimate the vapour pressure of a substance “A’ using PR-EoS, at T = 428

Example 7.5 
oK. For the 

substance A: TC = 569.4 K, PC

T

 = 2.497 MPa, = 24.97 bar  ω = 0.398. 

r

At this temperature for starting the iteration, assume P

 = 0.7514 
sat

f

 = 0.215 MPa 

ω = 0.37464 + 1.54226ω - 0.26992 ω2

α

 = 0.94570 

PR ( ) 2
1 1 rf Tω
 + −  = = 1.2677         

( )232 2

5

0.45724  8.314 . /  569.4 1.26770.45724
24.97  10  

o
C PR

C

x Pa m mol K x xR Ta
P x

α
= =  

   = 5.2024 Pa.m6/mol

5

0.07780 0.07780  8.314  569.4 
24.97 10

C

C

RT x xb
P x

= =

2 

= 1.4750 x 10-4 m3

( )
( )

6
2

2
5.2024  0.215  10/

8.314  428.0
x xA aP RT

x
= =

/mol 

= 8.8398 x 10

Assuming P = P

-2 

sat:  



-4 61.4750  10  0.215  10/
8.314  428
x x xB bP RT

x
= = = 8.9151 x 10

Z

-3 

3 α+ Z2 β + Z + γ γ = 0 

α = -1+B = -0.9911 

β = A-2B-3B2 = 7.0329 x 10

γ = -AB + B

-2 
2+B3 = -7.0789 x 10

On solving Z

-4 

1 = 0.9151,  Z2 = 1.2106 x 10-2, Z3 = 6.39 x 10

Thus Z

-2 
V = 0.9151, ZL = 1.2106 x 10-2

Now by PR-EoS: 

. 

( ) (1 2)
ln (  –  1) – ln  – ln

2 2 (1 2)
Z BaZ Z B

bRT Z B
φ

 + + = −  
+ −  

 

∴∴ Putting Z = Z

ln 

L 
Lφ φL = (1.2106 x 10-2) -1-ln [1.2106 – 8.9151 x 10-3

  – 

] 

-3

-4 -3

5.2024 0.9151  8.9151  10 (1 2)  ln  
2 2   1.475  10  8.314  428 0.9151  8.9151  10 (1 2)

xx
x x x x x

 + + 
 

+ +  
 

 0.0978 0.90 0.19L L Lf P MPaφ φ= − ⇒ = ⇒ = = = –0.0978 ⇒ φL = 0.90 ⇒ fL = φL

Similarly putting Z = Z

P = 

0.19 MPa 
V gives ln φV ⇒ = -0.0821 ⇒ φV

or f

 = 0.9212 
V

→

 = 0.1981 

→  If fL > fV, assumed value of P (=Psat) < actual Psat

→ If f

  
L < fV, assumed value of P (=Psat) > actual Psat

P

  

(revised)
 

V

L

f
f= P  

For the present case Prevised
1981.0
195.0 = 0.215 x = 0.2116 MPa 

Use revised ‘P’ to recalculate A, B, {Zi

A = aP/(RT)

}; thus: 
2 = 8.6999 x 10-2 ; B = bP/RT = 8.7742 x 10

∴ α = -6.8568 x 10

-3 
-4; β = 6.922 x 10-2; γ = -6.8568 x 10

Resolving f(z) = 0 ⇒ Z

-4 

1 = 0.9166; Z2 = 6.2907 x 10-4; Z3 = 1.1711 x 10

Hence new Z

-2 
V = 0.9166; ZL = 1.1711 x 10

Using Z = Z

-2 
V and Z = ZL

New 

 respectively 

φ φV = 0.9225 ⇒ fV

Similarly φ

 = (0.9225 x 0.2116) = 0.1952 MPa 
L = 0.9224 ⇒ fL ~ 0.1952 MPa 



Thus Psat ~ 0.2116 MPa  (at 428o

 

K). 

A vapour mixture contains 20mol% methane (1), 30mol% ethane (2) , and rest propane (3), at 

30

Example 7.6 

0

Assume    

C. Determine the dew composition. 

 read off the K factors from the charts. 

      

 

 

 

 

Hence dew pressure = 2.15 MPa. The dew composition therefore corresponds to the values of 
xi 

 

computed above. 

For the system of methane (1) and butane (2) compute the bubble pressure for a liquid phase 

composition of x

Example 7.7 

1

P (guessed):  40.8 bar 

 = 0.2 at a temperature of 310K, using the PR-EOS.  

y1 (guessed) = 0.85; y2

First consider calculation of the species fugacity coefficients for the liquid phase as T, P and 

x

 = 0.15;  

1

T = 310K, P = 40.8bar 

 (=0.2) are all know. For this one needs to solve for the cubic EOS with liquid phase 

compositions.  

For each species the following estimates are made: 

                              Table 1 

Parameter Methane (1) Butane (2) 

f 3.9310 x 10ω 6.7229 x 10-3 -3 



a (Pa.m-6/mol2 0.198207 ) 1.811717 

b (m3 0.000027 /mol) 0.000072 

With x1

2 1/2 2 6 2
1 1 1 2 1 2 2 22 ( ) 1.3592 . /ma x a x x a a x a Pa m mo l−= + + =

 = 0.2, it follows that 

 

3
1 1 2 2 0.000063 /mb x b x b m mol= + =   

2 2 0.8304m
m

a PA
R T

= =  

0.10m
m

b PB
RT

= =  

With the above values of A and B solve the cubic PR-EOS. The roots are as: 

1

2

3

0.1471
0.3764 0.5899
0.3764 0.5899

Z
Z i
Z i

=
= +
= −

 

The feasible root for the liquid phase is: ZL

Now using the generalized expression for species fugacity coefficients for PR-EOS: 

 = 0.1471 



(1 2)ln ( 1) ln( ) 2 ln
2 2 (1 2)

i m i i
i

m m mm

b a b a Z BZ Z B
b b ab RT Z B

φ
   + +

= − − − + −   
+ −     

 

Using: Z= ZL = 0.1471; B = B


1 1 1

1

1

2

(1 2)ln ( 1) ln( ) 2 ln
2 2 (1 2)

ˆwhence :  4.0271
ˆSimilarly:  0.0932

L
L L m m

m L
m m mm m

L

L

a Z Bb b aZ Z B
b b ab RT Z B

φ

φ

φ

   + +
= − − − + −   

+ −     

=

=

m 

 

Next compute the fugacity coefficients for the vapour phase. The calculations are the same as 

above except that xi is replaced with yi

With y

. (Note that the pure component properties remain the 

same as in Table 1, since the T and R are the same, i.e, 310K and 40.8bar, respectively. 

1

2 1/2 2 6 2
1 1 1 2 1 2 2 22 ( ) 0.3323 . /          ma y a y y a a y a Pa m mo l−= + + =

 = 0.85, it follows that 

 

3
1 1 2 2 0.000033 /mb y b y b m mol= + =   

2 2 0.2030m
m

a PA
R T

= =  

0.0528m
m

b PB
RT

= =  

 



With the above values of A and B solve the cubic PR-EOS. The roots are as: 

1

2

3

0.8537   
0.0467 0.0833
0.0467 0.0833    

Z
Z i
Z i

=
= +
= −

 

The feasible root for the liquid phase is: ZV

Now using the generalized expression for species fugacity coefficients for PR-EOS: 

 = 0.8537 



(1 2)ln ( 1) ln( ) 2 ln
2 2 (1 2)

i m i i
i

m m mm

b a b a Z BZ Z B
b b ab RT Z B

φ
   + +

= − − − + −   
+ −     

 

Using: Z= ZV = 0.8537; B = B


1 1 1

1

1

2

(1 2)ln ( 1) ln( ) 2 ln
2 2 (1 2)

ˆwhence :   0.9399
ˆSimilarly:  0.5184

V
V V m m

m V
m m mm m

V

V

a Z Bb b aZ Z B
b b ab RT Z B

φ

φ

φ

   + +
= − − − + −   

+ −     

=

=

m 

 

Therefore: 

 

1 1
1

1 1

1 1 1

2 2
2

2 2

2 2 2

ˆ 4.0271 4.2846ˆ 0.9399
0.8569
ˆ 0.0932 0.1798ˆ 0.5184
0.1438

Thus : 1.0007

L

V

L

V

i
i

yK
x

y K x

yK
x

y K x
y

φ
φ

φ
φ

= = = =

= =

= = = =

= =

=∑

 

Therefore we may terminate the iteration at this point. 

Bubble Pressure = 40.8bar 

y1

 

 = 0.8569 

A concentrated binary solution containing mostly species 2 (but x

Example 7.8 

2 ≠ 1) is in equilibrium with 

a vapor phase containing both species 1 and 2. The pressure of this two-phase system is 1 bar; 

the temperature is 298.0K. Determine from the following data good estimates of x1 and y1. 

H1
sat
2P = 200 bar; = 0.10 bar. 

= 200 bar, = 0.1 bar, = 1 bar 



Assume that vapor phase is ideal at  = 1 bar. Assume Lewis - Randall rule applies to 

concentrated species and Henry’s law to dilute species then: 

  And    

Now    

Or   Solving gives,  and  



Consider the reaction: C

Example 8.1 

2H4(g) + H2O(g) → C2H5OH(g). If an equimolar mixture of 

ethylene and water vapor is fed to a reactor which is maintained at 500 K and 40 bar 

determine the degree of conversion, assuming that the reaction mixture behaves like an ideal 

gas. Assume the following ideal gas specific heat data: Cp
ig = a + bT + cT2 + dT3 + eT–2

Species 

 

(J/mol); T(K). 

a bx10 cx103 dx106 ex109 -5 

C2H 20.691 4 205.346 – 99.793 18.825 - 

H2 4.196 O 154.565 – 81.076 16.813 - 

C2H5 28.850 OH 12.055 - - 1.006 

 

From standard tables ΔH0
R,298 ≈ -52.7 KJ; ΔG0

R,298

 Now 

 = 14.5 KJ 

0 0 0
298

298

T

T PH H C dT∆ = ∆ + ∆∫  ----------------------  (A) 

 
0 0 2 3 2

, /P i P iC C a bT CT dT e Tα∆ = ∑ = ∆ + ∆ + ∆ + ∆ + ∆  ------------- (B) 

 Where: 

  , ,i i i ia a b b etcα α∆ = ∑ ∆ = ∑  

 For example Δa = 20.691 – 4.196 -28.850 = -12.355 

     Δb = (205.346 – 154.565 – 12.055) x 10-3 = 3.8726 x 10-2

Similarly     Δc = -1.8717 x 10

  
-5 ; Δd = 2.012 x 10-9 ; Δe = -1.006 x 10

Putting B in A and integrating A we get: 

5 

2 5
0 2 3

9
4 5

3.8726 10 1.8717 1050.944( ) 12.355
2 3

2.012 10 1.006 10
4

TH KJ T T T

T T

− −

−

× ×
∆ = − − + − +

×
+ ×

…………..(C)

 

By Vant Hoff equation: 
0 0

2

( )T Td G RT H
dT RT

∆ ∆
= −    

00 0
298

2
298(298)

T
T TGG H dT

RT R RT
∆∆ ∆

∴ − = − ∫         -------------------------------------------------   D 

We already know 0
TH∆ from (C); putting C in D and integrating we obtain: 

2 5 9
0 2 3 4

5

3.8726 10 1.8718 10 2.012 1050.944 12.355 ln
2 6 12

1.006 10 56.681
2

TG T T T T T

T
T

− − −× × ×
∆ = − + − + −

×
+ +

 



Putting T=500k, 0
TG∆ = 11.43kJ 

 

Consider the following reaction:  A(g) + B(g) = C(g) + 3D(g) CH

Example 8.2  

4 + H2O → CO + 3H

Intially the following number of moles are introduced in the reactor. Obtian the mole fraction 

expressions in terms of reaction coordinate.  

2 

0,An = 2 mol, 0,Bn = 1 mol, 0,Cn = 1 mol 0,Dn = 4 mol 

i  = -i = -1-1+1+3 = 2α α∑  

no oi
i

n∑ = = 2+ 1 +1 + 4 = 8 

oi ii
i

o

nny
n n

α ξ
αξ

+
= =

+
 

∴∴ 2 
8 2Ay ξ

ξ
−

=
+

;   1
8 2By ξ

ξ
−

=
+

;  1
8 2Cy ξ

ξ
+

=
+

;  
2

4+ 
8 2Hy ξ

ξ
=

+
 

 

Consider the following simultaneous reactions. Express the reaction mixture composition as 

function of the reaction co-ordinates. All reactants and products are gaseous. 

Example 8.3  

A + B = C + 3D   ..(1) 

A + 2B = E + 4D   ..(2)  

Initial number of moles:  

0,An = 2 mol; 0,Bn = 3 mol 

Let the reaction co-ordinates for each reaction be 1 2andξ ξ respectively.  

j A B C D E αj=Σαi,j 

1 - 1 -1 1 3 0 2 

2 -2 -2 0 4 1 2 

 

  , 
 

io j i j j
i

o j j j

n
y

n
α ξ
α ξ

+
=

+
∑
∑

; no

∴ 

 = 2+3 = 5 

1 2 1 2 1

1 2 1 2 1 2

2 3 2   ;   ;   
5 2 2 5 2 2 5  2 2A B Cy y yξ ξ ξ ξ ξ

ξ ξ ξ ξ ξ ξ
− − − −

= = =
+ + + + + +

 



 1 2 2

1 2 1 2

3 4 ;  
5  2 2 5  2 2D Ey yξ ξ ξ

ξ ξ ξ ξ
+

= =
+ + + +

 

 

Consider the reaction : C

Example 8.4  

2H4(g) + H2O(g) → C2H5OH(g). If an equimolar mixture of 

ethylene and water vapor is fed to a reactor which is maintained at 500 K and 40 bar 

determine the equilibrium constant, assuming that the reaction mixture behaves like an ideal 

gas. Assume the following ideal gas specific heat data: Cp
ig = a + bT + cT2 + dT3 + eT–2

Species 

 

(J/mol); T(K). 

a bx10 cx103 dx106 ex109 -5 

C2H 20.691 4 205.346 – 99.793 18.825 - 

H2 4.196 O 154.565 – 81.076 16.813 - 

C2H5 28.850 OH 12.055 - - 1.006 

 

From standard tables ΔH0
R,298 ≈ -52.7 KJ; ΔG0

R,298

 Now 

 = 14.5 KJ 

0 0 0
298

298

T

T PH H C dT∆ = ∆ + ∆∫  ----------------------  (A) 

 
0 0 2 3 2

, /P i P iC C a bT CT dT e Tα∆ = ∑ = ∆ + ∆ + ∆ + ∆ + ∆  ------------- (B) 

 Where: 

  , ,i i i ia a b b etcα α∆ = ∑ ∆ = ∑  

 For example Δa = 20.691 – 4.196 -28.850 = -12.355 

     Δb = (205.346 – 154.565 – 12.055) x 10-3 = 3.8726 x 10-2

Similarly     Δc = -1.8717 x 10

  
-5 ; Δd = 2.012 x 10-9 ; Δe = -1.006 x 10

Putting B in A and integrating A we get: 

5 

2 5
0 2 3

9
4 5

3.8726 10 1.8717 1050.944( ) 12.355
2 3

2.012 10 1.006 10
4

TH KJ T T T

T T

− −

−

× ×
∆ = − − + − +

×
+ ×

…………..(C)

 

By Vant Hoff equation: 
0 0

2

( )T Td G RT H
dT RT

∆ ∆
= −    

00 0
298

2
298(298)

T
T TGG H dT

RT R RT
∆∆ ∆

∴ − = − ∫         -------------------------------------------------   D 

We already know 0
TH∆ from (C); putting C in D and integrating we obtain: 



2 5 9
0 2 3 4

5

3.8726 10 1.8718 10 2.012 1050.944 12.355 ln
2 6 12

1.006 10 56.681
2

TG T T T T T

T
T

− − −× × ×
∆ = − + − + −

×
+ +

 

Putting T=500k, 0
TG∆ = 11.43kJ 

Hence K500

 

 = exp [ -1143/8.314 x 1000] = 0.064 

Consider the reaction: C

Example 8.5  

2H4(g) + H2O(g) → C2H5OH(g). If an equimolar mixture of 

ethylene and water vapor is fed to a reactor which is maintained at 500 K and 40 bar 

determine the degree of conversion, assuming that the reaction mixture behaves like an ideal 

gas. Assume the following ideal gas specific heat data: Cp
ig = a + bT + cT2 + dT3 + eT–2

Species 

 

(J/mol); T(K). 

a bx10 cx103 dx106 ex109 -5 

C2H 20.691 4 205.346 – 99.793 18.825 - 

H2 4.196 O 154.565 – 81.076 16.813 - 

C2H5 28.850 OH 12.055 - - 1.006 

 

From standard tables ΔH0
R,298 ≈ -52.7 KJ; ΔG0

R,298

 Now 

 = 14.5 KJ 

0 0 0
298

298

T

T PH H C dT∆ = ∆ + ∆∫  ----------------------  (A) 

 
0 0 2 3 2

, /P i P iC C a bT CT dT e Tα∆ = ∑ = ∆ + ∆ + ∆ + ∆ + ∆  ------------- (B) 

 Where: 

  , ,i i i ia a b b etcα α∆ = ∑ ∆ = ∑  

 For example Δa = 20.691 – 4.196 -28.850 = -12.355 

     Δb = (205.346 – 154.565 – 12.055) x 10-3 = 3.8726 x 10-2

Similarly     Δc = -1.8717 x 10

  
-5 ; Δd = 2.012 x 10-9 ; Δe = -1.006 x 10

Putting B in A and integrating A we get: 

5 

2 5
0 2 3

9
4 5

3.8726 10 1.8717 1050.944( ) 12.355
2 3

2.012 10 1.006 10
4

TH KJ T T T

T T

− −

−

× ×
∆ = − − + − +

×
+ ×

…………..(C)

 

By Vant Hoff equation: 
0 0

2

( )T Td G RT H
dT RT

∆ ∆
= −    



00 0
298

2
298(298)

T
T TGG H dT

RT R RT
∆∆ ∆

∴ − = − ∫         -------------------------------------------------   D 

We already know 0
TH∆ from (C); putting C in D and integrating we obtain: 

2 5 9
0 2 3 4

5

3.8726 10 1.8718 10 2.012 1050.944 12.355 ln
2 6 12

1.006 10 56.681
2

TG T T T T T

T
T

− − −× × ×
∆ = − + − + −

×
+ +

 

Putting T=500k, 0
TG∆ = 11.43kJ 

Hence K500

α = Σα

 = exp [ -1143/8.314 x 1000] = 0.064 

i

∴

 = 1-1-1 = -1 

K = KϕKyPα ; Kϕ

    P = 40bar  

=1(since ideal gas assumption is made) 

Component ni0 n(exit) yi

C2H4 1 1-ε (1-ε )/(2-ε) 

(exit) 

H2O 1 1-ε (1-ε )/(2-ε) 

C2H5OH 0 ε                       (ε )/(2-ε)   

nt

( ) ( ){ }
( )
( )2 5 2 4 2 2 2

2(2 )
11 2

y C H OH C H H OK K y y y
ξ ξξ ξ

ξξ ξ

−−
∴ = = = =

−− −

 (at exit) = 2-ε 

 

 

Now K = KϕKyPα = (1) Ky P-1

( ) ( )240 ; 2 1y yK K K ξ ξ ξ∴ = = − −

  

 

( )
( ) 5002

2
40 40 0.064 2.56

1yK K
ξ ξ

ξ

−
∴ = = × = × =

−
 

On solving ξ = 0.47 

Thus ( ) ( )
2 4 2

1 2 0.3464C H H Oy yξ ξ= − − = =  

  ( )
2 5

2 0.3072C H OHy ξ ξ= − =  
 

The following two independent reactions occur in the steam cracking of methane at 1000 K 

and 1 bar: CH

Example 8. 6 

4(g) + H2O(g) → CO(g) + 3H2(g); and CO(g) + H2O(g) → CO2(g) + H2(g). 

Assuming ideal gas behaviour determine the equilibrium composition of the gas leaving the 



reactor if an equimolar mixture of CH4 and H2

 Let ξ

O is fed to the reactor, and that at 1000K, the 

equilibrium constants for the two reactions are 30 and 1.5 respectively.   

1 and ξ2

Comp n

 be the reaction co-ordinate for the two reactions, we have 

i0 nexit  y

CH
exit 

4 1 1 - ξ1   (1 - ξ1) / 2(1 + ξ1

H

) 

2O 1 1 – ξ 1 – ξ2  (1 – ξ1 – ξ2) / 2(1 + ξ1

CO 0 ξ

) 

1 – ξ2  (ξ1 – ξ2) / 2(1 + ξ1

CO

) 

2 0 ξ2  ξ2 / 2(1 + ξ1

H

) 

2 0 3 ξ1 + ξ2  (3 ξ1 + ξ2) / 2(1 + ξ1

   

) 

 Total moles at equilibrum: 2(1 + ξ1

 

) 

 

K = KϕKyPα (for each reaction); Kϕ

Thus 

 = 1.0 (ideal gas assumption); P = 1 bar 

( )
( )

( )
( )

( )
( )

( )
( )

3

1 2 1 2 1 2 1 2
1

1 1 1 1

3 3
2 1 2 1 2 1 2 1

K
ξ ξ ξ ξ ε ξ ξ ξ

ξ ξ ξ ξ
       − + − +

=        + + + +       
 

               
( )( )

( ) ( )( )

3
1 2 1 2

2
1 1 1 2

3
30

4 1 1 1
ξ ξ ξ ξ

ξ ξ ξ ξ

− +
= =

+ − − −
    …………………………….   A 

Similarly ( )
( )( )

1 2 2
2

1 2 1 2

3
1.5

1
K

ξ ξ ξ
ξ ξ ξ ξ

+
= =

− − −
           ……………………………….   B 

A and B needs to be solved simultaneously; a simple way to do this is to  

(i) Assume 2ε  , calculate 1ε  using B 

(ii) Use 2ξ and 1ξ  in A to check if K1

(iii) If 

 = 30 

1 30,K ≠ assume new 2ε and go to step 1 

Using the above algorithm, one finally obtains: 1ξ  = 0.7980, 2ξ  = 0.0626.  

Thus: 
2 4 2 2

0.0174, 0.0562, 0.0388, 0.2045, 0.6831CO CH H O CO Hy y y y y= = = = =  

 

The gas n-pentane (1) is known to isomerise into neo-pentane (2) and iso-pentane (3) 

according to the following reaction scheme: 

Example 8.7 

1 2 2 3 3 1; ;P P P P P P  

  

. 3 moles of 



pure n-pentane is fed into a reactor at 400
o

 

K and 0.5 atm. Compute the number of moles of 

each species present at equilibrium.  

 

 

       

     

  

 

We use here the method of undetermined Lagrangian Multipliers. 

     The set of equation to be solved are: 

     15, 36C HA A= =  

      For P1
1 5 129600 ln 0C H

i

n
RT n RT RT

λ λ 
+ + + = ∑ 

:  

For P2 2 5 128900 ln 0C H

i

n
RT n RT RT

λ λ 
+ + + = ∑ 

:  

For P3
3 5 128200 ln 0C H

i

n
RT n RT RT

λ λ 
+ + + = ∑ 

:  

Atomic mass balance for C: ( )1 2 35 15n n n+ + =  

For H: ( )1 2 312 36n n n+ + =  

            n1 + n2 + n3 

Alternately: 

= 10 

1
5 129600 ln 0C Hy

RT RT RT
λ λ

+ + + =  ………………….     (A) 

 2
5 128900 ln 0C Hy

RT RT RT
λ λ

+ + + =  …………………. (B) 

 T = 400K 

 3
5 128200 ln 0

RT
C Hy

RT RT
λ λ

+ + + =  …………………. (C) 

 and y1 + y2 + y3

 It follows from (A) – (C), y

 = 1 …………………. (D) 

2 / y1 = 2.41; y3 / y2

 Using eqn. (D) y

 = 2.41 

1 = 0.108, y2 = 0.29, y3

 

 = 0.63 

Species 

Example 8.8 

0
fG∆ at 400

o
K (Cal/mol)  

P 9600  1 

P 8900  2 

P 8200  3 

 



Consider the liquid phase reaction: A(l) + B(l) → C(l) + D(l). At 50oC, the equilibrium 

constant is 0.09. Initial number of moles, nA,0 = 1 mole; nB,0

∴K = ∴

 = 1 mol Find the equilibrium 

conversion. Assume ideal solution behaviour. 

( ) ( )

1.0

-1  
  expi i i

i i

P V
x

RT
γ γ

γ
   
  

    

∑


 

Also, γi

Hence K = π 

 = 1 (ideal solution) 

( ) i

ix γ  

xA = xB = (1-ξ)/2 ; xC = xD

∴ K = x

 = ξ / 2 

C xD / xA xB = [ξ/(1- ξ)]

⇒ 0.09 = [ξ/(1- ξ)]

2 

Thus, ξ

2 

e

 

 = 0.23 

Consider the following reaction: A(s) + B(g) → C(s) + D(g). Determine the equilibrium 

fraction of B which reacts at 500

Example 8.9 

oC if equal number of moles of A and B are introduced into 

the reactor initially. The equilibrium constant for the reaction at 500o

The reaction is:  

C is 2.0. 

( ) ( ) ( ) ( )A s B g C s D g+ → + ; basis 1 mole of A & B each initially 

   

C D A BK a a a a=  

For solids:  1a =  

 Thus: 

  ; 0, 1D B yK a a K K P and Kα
φ φα= = = =  

yK K∴ =  
If one assumes equimolar feed of reactants: 

(1 );  B Dy yξ ξ= − =  

2.0 0.67
1yK K ξ ξ

ξ
∴ = = = ⇒ =

−
  

Thus 67% of B reacts. 

 



Use the van Laar activity coefficient expression to predict the compositions of co-existing 
liquid phases (I and II) comprised of two partially miscible liquids (1) and (2) at 50

Example 9.1 

o

12 21
1 2 12 21

2 212 1 21 2

21 2 12 1

ln ; ln ; 2.5; 3.5
[1 ] [1 ]

A A A AA x A x
A x A x

γ γ= = = =
+ +

C and 4 
bar. At these conditions the van Laar equations are given by: 

  

Solution: 

This system is a binary; however, there are 2 phases since ‘1’ and ‘2’ are partially miscible. 
One of the phases (I) is rich in component ‘1’ (with some ‘2’ dissolved in it); while the 
second phase (II) is rich in component ‘2’ (with some ‘1’ dissolved in it). Estimates of the 
composition of both phases are required. We use two equations of type 9.34 as there are 2 
components. 

For component 1: 

1 1 1 1 1 1
2 21 1

1 1

exp( ) exp( )
[1 ] [1 ]

(1 ) (1 )

I I I II II II
I II

I II

x x x x
x x

x x

α αγ γ
α α

β β

= = =
+ +

− −

   ..(a) 

For component 2: 

2 2 2 2 2 2
2 22 2

2 2

exp( ) exp( )
[1 ] [1 ]

(1 ) (1 )

I I I II II II
I II

I II

x x x x
x x

x x

β βγ γ
β β

α α

= = =
+ +

− −

   ..(b) 

Lastly 1 2 1I Ix x+ =          ..(c) 

And: 1 2 1II IIx x+ =           ..(d)  

 

Equations I – IV need to be solved simultaneously using a suitable algorithm to obtain the 
final solution: 1 10.12, 0.85I IIx x= = ; and 2 20.88, 0.15I IIx x= =   

  



Example 9.2 

Estimate solubility of a solid A in a liquid B at 300o

( ) ( )1/2 1/23 3100 / ; 125 / ; 9.5 cal / cc ; 7.5 cal / cc .L L
A B A BV cm mol V cm mol δ δ= = = =

K, using (i) ideal solution 

assumption, (ii) regular solution model for liquid-phase. The following data are 

available:  

Heat of fusion for A: 17.5 kJ/mol. Melting point for A = 350o

 

K. 

Assuming that solid-phase is pure naphthalene (which is in equilibrium with 

solution of naphthalene in hexane),  z1 = 1, γ1S

,

,

1 1ln ln m

fus
T A

A A
m A

H
x

R T T
γ

  ∆
= − − −      

 = 1, we start with the simplified 

equation: 

  

For ideal solution the above equation reduces to: 

,

,

1 1ln m A

fus
T

A
m A

H
x

R T T

 ∆  
= − −      

  

Using the data provided: 17500 1 1ln
8.314 300 350Ax   = − −      

Thus, the ideal solubility xA

By Regular solution theory: 

 = 0.38.
       

2 2 ln ( )L
A A A A BRT Vγ δ δ= − Φ  

∴ ( )22

ln  1  
A

L fus
A B A B

A
m

V H Tx
RT RT T
δ δ  Φ − ∆

= − − − 
  

    ..(1) 

Also  
L

B b
B L L

A A B B

x V
x V x V

Φ =
+

       ..(2) 

T = 300 K, 
1mT = 350o

( ) ( )1/2 1/23 3100 / ; 125 / ; 9.5 cal / cc ; 7.5 cal / cc .L L
A B A BV cm mol V cm mol δ δ= = = =

K 

 Solution 

algorithm: 

(1) Assume xA (to start with assume xA

(2) Calculate Φ

 = 0) 

B

(3) Use equation (1) to calculate new x

 from eqn 2 

(4) If x

A 

A,i+1 – xA,i < 0.01, xA,i+1 is the solution or else, return to step ‘1’. 



The final converged value for 0.08Ax ≈   

Note that the result differs significantly from that obtained by assuming ideal 

solution behaviour for the liquid phase. 

 

Example 9.3 

Compute the eutectic composition and temperature for a mixture of two substances A and B 

using the following data: 

 

 

 

Property A B 
Normal Tm (o 180 K) 181 

fusH∆  (J/mol) 6600 9075 
  
We use the ideal solution behaviour for the liquid phase. The following equation then holds at 

the eutectic point: 

, ,

, ,

exp exp 1
fus fus

m A m BA B

m A m B

T T T TH H
RT T RT T

   − −   ∆ ∆
+ =      

         
     

On substituting all relevant data: 

6600 180 9075 180exp exp 1
8.314 180 8.314 181

T T
x T x T

   − −   + =            
 

On solving by trial and error, ( ) 0150T eutectic K≈  

The eutectic composition is found from the following equation:  

exp A

A

fus
mA

A
m

T THx
RT T

 − ∆
=   

     

Substituting all the available data with T = 1500

0.5.Ax ≈

K, the eutectic composition is found to be:  

 

 

Example 9.4 



A certain solid A has a vapour pressure of 0.01 bar at 3000

We start with the following equation: 

K. Compute its solubility at the 

same temperature in a gas B at a pressure of 1.0bar. The molar volume of the solid is 

125cc/mol. 

( ) ˆexp
S sat

A Asat sat
A A A A

V P P
P y P

RT
φ φ

 −
  =
  

        

Since 210 , 1.0sat sat
A AP bar φ−= ≈

 
Further as the total system pressure is 1.0bar, it follows that  

ˆ 1.0Aφ ≅

 
Thus the solubility of the solid at the system pressure is given by: 

( )
( / ) exp

S sat
A Asat

A A

V P P
y P P

RT

 −
 =
    

Substituting all relevant data the solubility is: 
21.05 10 .Ay x −=  
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Assignment for Chapter 2 

1. Express the volume expansivity and the isothermal compressibility as functions of density ρ and 
its partial derivatives. For water at 323K (50

 (Answers are in parenthesis) 

oC) and 1 bar, κ = 44.18x10-6 bar-1. To what 
pressure must water be compressed at 323 K (50o

2.  For liquid water the isothermal compressibility is given by: 

C) to change its density by 1%? Assume that 
κ is independent of P. [226.2 bar] 

)bP(V
c
+

=κ  

where c, b are functions of temperature only. If 1 kg of water is compressed isothermally and 
reversibly from 1 to 500 bars at 333K, how much work is required? At 333K, b = 2700 bar and 
c = 0.125 cm-3 g-1

3.  Calculate the reversible work done in compressing 0.0283 m
. [0.516 J/gm] 

3 of mercury at a constant 
temperature of 0oC from 1 atm to 3000 atm. The isothermal compressibility of mercury at 0oC 
is: κ = 3.9 x 10-6 -0.1 x 10-9 P; where P is in atm and κ is in atm-1

4. A substance for which κ is a constant undergoes an isothermal, mechanically reversible process 
from initial state (P

. [0.52J] 

1, V1) to final state (P2, V2

1 1 2 2 1 2( ) /PV PV V V κ− + −

), where V is molar volume. (a) Starting with the 
definition of κ, show that the path of the process is described by: V = A(T) exp(-κP); (b) 
Determine an exact expression which gives the isothermal work done on 1 mol of this constant 
-κ  substance. [ ] 

5. For methyl chloride at 373.15 K (100oC) the second and third virial coefficient s are: B = -242.5 
cm3 mol-1; C = 25 200 cm6 mol-2. Calculate the work of mechanically reversible, isothermal 
compression of 1 mol of methyl chloride 1 bar to 55 bars at 100o

21 B CZ
V V

= + +

C. Base calculations on the 

following form of the virial equation:  [12.62 kJ/mol, 12.596 kJ/mol] 

6.  Calculate V for sulfur hexafluoride at 75oC and 15 bar by the following equations: (a) The 
truncated virial equation with the following experimental values of virial coefficients: B = -194 
cn3 mol-1; C = 15300 cm6 mol-2 (b) The truncated virial equation, with a value of B from the 
generalized Pitzer correlation. (c) The Redlich/Kwong equation (d) The Soave/Redlich/Kwong 
equation (e) The Peng/Robinson equation. [1722, 1734, 1714, 1727, 1701cm3/mol]; For sulfur 
hexafluoride, Tc = 318.7 K, Pc = 37.6 bar, Vc = 198 cm3 mol-1 ω, and = 0.286. 

7. Use the Soave/Redlich/Kwong equation to calculate the molar volumes of saturated liquid and 
saturated vapor for propane at 40C for which the vapour pressure is 13.71 bar. [104.7, 1480.7 
cm3/mol] 

8. A 30-m3 tank contains 14 m3 of liquid n-butane in equilibrium with its vapor at 298.15 K 
(25o

9. A rigid 0.35-m

C). Estimate the mass of n-butane vapor in the tank. The vapor pressure of n-butane at the 
given temperature is 2.43 bar. [98.2 kg] 

3 vessel at 25oC and 2200kpa holds ethane; what pressure develops if it is heated 
to 220o

10. To what pressure does one fill a 0.15-m
C? [42.7 bar] 

3 vessel at 25o

11. Liquid water at 25

C for storing 40 kg of ethylene in it? [79.7 
bar] 

oC and 1 bar fills a rigid vessel. If heat is added to the water until its 
temperature reaches 50oC, what pressure is developed? The average value of β between 25 and 
50oC is 36.2 x 10-5 K-1. The value of κ at 1 bar and 50oC is 4.42 x 10-5 bar-1, and may be 
assumed independent of P. The specific volume of liquid water at 25oC is 1.0030 cm3 g-1

12. A two-phase system of liquid water and water vapor in equilibrium at 8000 kPa consists of 
equal volumes of liquid and vapor. If the total volume is 0.15 m

. [206 
bar] 

3, what is the total enthalpy Ht 
and what is the total entropy St? [80173.5kJ, 192.15 kJ/K]  
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Assignment on Chapter 3 

1. 2.5 kJ of work must be delivered isobarically on a rod from a piston/cylinder containing air at at 500 
kPa. What is value of diameter cylinder needed to restrict the rod motion to maximum 0.5 m? [0.113 
m] 

(Note: Answers are given in the square brackets) 

2. A gas initially at 1 MPa, 500°C is contained in a piston-cylinder arrangement of initial volume of 0.1 
m3

3. A cylinder has 0.1kg of air with a 5 kg piston on top. A valve at the bottom of cylinder is opened to 
let out the air out and the piston (dia = 2.5cm) drops by 0.25m. What is the work involved in the 
process?  [– 0.0245kJ] 

. The gas expanded isothermally to a final pressure of 100 kPa. Determine the work. [230.3 kJ] 

4. A chiller cools liquid water (Sp. Ht = 4.2 J/gmK) for air-conditioning purposes. Assume 2.5 kg/s 
water at 20oC and 100 kPa is cooled to 5o

5. Helium gas expands from 125 kPa, 350 K and 0.25 m

C in a chiller. How much heat transfer (kW) is needed? 
[156.75 kW] 

3

6. For the following conditions of water determine the state: (i) T=60C; V=5000cm

 to 100 kPa in a polytropic process with γ = 
1.667. How much work does it give out? [4.09 kJ]  

3/gm (ii) T=60C; 
V=10000cm3/gm (iii) T=80C; V=0.5cm3/gm (iv) T=90C; P= 200kPa (v) P = 100 kPa, T = 150C (vi) 
U = 2000kJ /kg, T=40C (vii) U = 2500kJ /kg, T=70C (viii) U = 3000kJ /kg, V=240cm3/gm (ix) H = 
3500kJ /kg, V=240cm3

7. A piston-cylinder assembly contains 0.1 kg wet steam of quality 0.75 (X) at 100 kPa. If 150 kJ 
energy is added as heat while the pressure of the steam is held constant determine the final state of 
steam and work done by the steam. [State of steam: Superheated; W = 25.567 kJ] 

/gm (x) H = 3300kJ /kg, P=1300kPa. (Use P-V diagrams to arrive at the 
answer). 

8. In a particular engine cylinder one mole of an ideal gas (γ=1.4) is compressed from 25oC and 0.1 
MPa till its volume is reduced to 1/12 of the original value. The process of compression can be 
approximated to follow the relation PV1.25 = constant. Determine the work and heat interactions. 
Also calculate the final temperature and pressure of the gas. [T2

9. An adiabatic compressor operating under steady-state conditions receives air (ideal gas) at 0.1 MPa 
and 300 K and discharges at 1 MPa. If the flow rate of air through the compressor is 2 mol/s, 
determine the power consumption of the compressor. [16.25 kW]  

 = 554.7 K, Q = -3.201 kJ] 

10. A rigid and insulated tank of 2 m3 capacity is divided into two equal compartments by a partition. 
One compartment contains an ideal gas at 600 K and 1 MPa while the second compartment contains 
the same gas at 300 K and 0.1 MPa. Determine the final temperature and pressure of the gas in the 
tank if the partition gets punctured. Assume γ=1.4 for the gas. [Tf = 550 K, Pf

11. A 10 m high cylinder, cross-sectional area 0.1 m
 = 0.55 MPa]   

2, has a mass less piston at the bottom with water at 
20°C on top of it, shown in figure below. Air at 300 K, volume 0.3 m3, under the piston is heated so 
that the piston moves up, spilling all the water out. Find the total heat transfer to the air needed. 
[220.7 kJ] 

 
12. A piston/cylinder contains 0.001 m3 air at 300 K, 150 kPa. The air is now compressed in a process in 

which PV12.5

13. A nozzle receives 0.1 kg/s steam at 1 MPa, 400

 = C to a final pressure of 600 kPa. Find the work performed by the air and the heat 
transfer. [W = -0.192 kJ, Q = -0.072 kJ] 

oC with negligible velocity. The exit is at 500 kPa, 
350oC and the flow is adiabatic. Find the nozzle exit velocity and the exit area. [ue = 438.7 m/s, A = 
1.3 cm2

14. A diffuser has air entering at 100 kPa, 300 K, with a velocity of 200 m/s. The inlet cross-sectional 
area of the diffuser is 100 mm

]   

2. At the exit, the area is 860 mm2, and the exit velocity is 20 m/s. 
Determine the exit pressure and temperature of the air. [Pe = 123.92 kPa, Te = 319.74 K] 
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15. An exhaust fan in a building should be able to move 2.5 kg/s air at 98 kPa, 20o

16. Helium in a steel tank is at 250 kPa, 300 K with a volume of 0.1 m

C through a 0.4 m 
diameter vent hole. How high a velocity must it generate and how much power is required to do 
that? [V = 17.1 m/s, W = 0.366 kW] 

3. It is used to fill a balloon. When 
the tank pressure drops to 150 kPa the flow of helium stops by itself. If all the helium still is at 300 
K how big a balloon can one get? Assume the pressure in the balloon varies linearly with volume 
from 100 kPa (V = 0) to the final 150 kPa. How much heat transfer did take place? [V=0.0667m3

17. In a steam generator, compressed liquid water at 10 MPa, 30°C, enters a 30-mm diameter tube @ 3 
L/s. Steam at 9 MPa, 400°C exits a tube of same diameter. Find heat transfer rate to the water. [8973 
kW] 

; Q 
= 13.334 kJ] 

18. An insulated tank of volume 1 m3 contains saturated steam at 1 bar. This tank is connected to a line 
carrying superheated steam at 2 MPa and 3000C and filled to a pressure of 2 MPa. Determine the 
state and quantity of steam in the tank at the end of the filling operation. [6.43 kg; P = 2 MPa, T = 
418 0

19. Consider a piston-cylinder containing 0.2m
C] 

3 of gas at 0.3MPa. Atmospheric pressure (0.1MPa) and 
an external spring holds the piston at equilibrium initially. The gas is heated to a state P=0.6MPa, 
Vt=0.5m3

20. An insulated piston-cylinder system has air at 400kPa & 500K. Through an inlet pipe to the cylinder 
air at certain temperature T(K)  and pressure P (kPa) is supplied reversibly into the cylinder till the 
volume of the air in the cylinder is 3 times the initial volume. The expansion occurs isobarically at 
400kPa. At the end of the process the air temperature inside the cylinder is 400K. Assume ideal gas 
behaviour compute the temperature of the air supplied through the inlet pipe. [91

. Assuming ideal gas, calculate work needed and the potential energy change for the spring. 
[0.135MJ] 

0

21. An adiabatic air compressor takes in air at 25C and 0.1MPa and discharges at 1MPa. If the 
compressor efficiency is 80% find the exit air temperature, assuming ideal gas behaviour. [372

C] 

o

22. An insulated & evacuated tank has a piston and spring as shown in the figure; it is connected to a 
steam line carrying steam at 2 MPa and 300

C]. 

0C. Initially the spring is just touching the piston exerting 
no force. When the valve is opened steam enters the tank till the pressure rises to 2.0 MPa. 
Determine the state of steam inside the tank. Chose the tank, the piston and spring as the control 
volume. [364 0

 
C] 

 Steam: 2 MPa, 3000

23. A closed system containing an ideal gas initially at a temperature T

C 
 

1 is compressed adiabatically till 
its temperature rises to T2. At this temperature the gas receives heat Q2 from a hot reservoir under 
isothermal conditions. Next it undergoes an adiabatic expansion till its temperature returns to T1. At 
this temperature the gas releases Q1 heat to another reservoir under isothermal conditions so that the 
gas returns to its initial state. If the efficiency of the cycle is defines as the ratio of the net work 
output to the net heat absorbed, show that it is = 1 – (T1/ T2

24. A cylinder (volume 0.1m
). 

3) contains nitrogen at 14.0MPa and 300K. The cylinder outlet valve 
develops a minute leak allowing the gas to escape slowly to the ambient atmosphere (pressure = 
0.1MPa), till the gas cylinder pressure reduces to 2.0MPa, and a low-pressure alarm fitted to the 
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cylinder sounds. Determine the amount of gas that escapes the cylinder during the process. For 
simplification assume ideal gas behaviour and that the gas escaping from the cylinder has a constant 
temperature of (Ti + Tf)/2, where Ti and Tf

25. An insulated gas cylinder containing N

 are the initial and final temperatures of gas within the 
cylinder. For the gas γ = 1.4. [428.5moles] 

1 moles of gas initially at P1 and T1 is filled with the same 
gas from a high pressure source at a constant pressure Pin and temperature Tin. Assuming ideal gas 
behaviour show that at any time during the filling process the cylinder pressure P and the 
temperature T ( ) /[ ( )]P t P t Tα β+ =are related by the following equation form: ; where T(0

1 1 1[ ( / ) ( / ); 1/ ]i iP T P T Tα γ β γ= − =

K). 
Determine the actual expressions for the constants in the above 
equation.  

26. A water tank of volume 1.0m3 (with an inlet and an outlet) contains a substance whose concentration 
needs to be reduced to 1% of its initial concentration by allowing pure water to flow steadily through 
the tank. Assuming that the tank water is perfectly mixed, calculate the mass of water that needs to 
flow through the tank (Sp. Gravity = 1.0). [4605kg] 



 

Chapter 4 Assignment 

1. A rigid vessel of 0.06 m

(Answers are in parenthesis) 
 

3 volume contains an ideal gas, CV = (5/2)R, at 500 K and 1 
bar. (a) If 15 kJ of heat is transferred to the gas, determine its entropy change. (b) If 
the vessel is fitted with a stirrer that is rotated by a shaft so that work in the amount 
of 15 kJ is done on the gas, what is the entropy change of the gas if the process is 
adiabatic? What is ΔStotal

2. An ideal gas, Cp = (7/2)R, is heated in a steady-flow heat exchanger from 70°C to 
190°C by another stream of the same ideal gas which enters at 320°C. The flow rates 
of the two streams are the same, and heat losses from the exchanger are negligible. 
Calculate the molar entropy changes of the two gas streams for both parallel and 
countercurrent flow in the exchanger. What is ΔS

 ? (20.8J/k, 20.8J/K) 

total

3. One mole of an ideal gas, C

 in each case? (2.15J/molK, 
same in both cases) 

P = (7/2)R and CV

4. A mass m of liquid water at temperature T

 = (5/2)R, is compressed adiabatically 
in a piston cylinder device from 2 bar and 25°C to 7 bar. The process is irreversible 
and requires 35% more work than a reversible, adiabatic compression from the same 
initial state to the same final pressure. What is the entropy change of the gas? 
(2.914J/molK) 

1 is mixed adiabatically and isobarically 
with an equal mass of liquid water at temperature T2. Assuming constant CP

1 2

1 2

( ) / 22 lntotal
G P

T TS S mC
TT

 +
∆ = =  

  

, show 

that:  and prove that this is positive. What would be 

the result if the masses of the water were different, say, m1 and m2
5. A reversible cycle executed by 1 mol of an ideal gas for which C

? 
P = (5/2)R and CV 

= (3/2)R consists of the following: Starting at T1 = 700 K and P1 = 1.5 bar, the gas 
is cooled at constant pressure to T2 = 350 K. From 350 K and 1.5 bar, the gas is 
compressed isothermally to pressure P2

6.  One mole of an ideal gas is compressed isothermally but irreversibly at 130°C from 
2.5 bar to 6.5 bar in a piston cylinder device. The work required is 30% greater than 
the work of reversible, isothermal compression. The heat transferred from the gas 
during compression flows to a heat reservoir at 25°C. Calculate the entropy changes 
of the gas, the heat reservoir, and ΔS

. The gas returns to its initial state along a 
path for which PT = constant. What is the thermal efficiency of the cycle? (0.07) 

total

7. Ten kmol per hour of air is throttled from upstream conditions of 25°C and 10 bar to 
a downstream pressure of 1.2 bar. Assume air to be an ideal gas with C

. (–7.94J/molK, 13.96J/molK, 6.02J/molK) 

P

8.  A steady-flow adiabatic turbine (expander) accepts gas at conditions T

 = (7/2)R. 
(a) What is the downstream temperature? (b) What is the entropy change of the air in 
J/molK? (c) What is the rate of entropy generation in W/K? (d) If the surroundings 
are at 20°C, what is the lost work? (298K, 17.63J/molK, 48.9W/K, 5.2kJ/mol) 

1 = 500 K, P1 
= 6 bar, and discharges at conditions T2 = 371 K, P2 = 1.2 bar. Assuming ideal 
gases, determine (per mole of gas) Wactual, Wideal, Wlost, and entropy generation 
rate.Tsurrounding, = 300 K, CP

9. An ideal gas at 2500 kPa is throttled adiabatically to 150 kPa at the rate of 20 mol/s. 
Determine rates of entropy generation and lost work if T

/R = 7/2. (3753.8J,   –5163J, 1409J, 4.7J/K) 

surrounding

10. A vessel, divided into two parts by a partition, contains 4 mol of nitrogen gas at 
75

 = 300 K 
(0.468kW/K, 140.3kW) 

oC and 30 bar on one side and 2.5 mol of argon gas at 130oC and 20 bar on the 



 

other. If the partition is removed and the gases mix adiabatically and completely, 
what is the change in entropy? Assume nitrogen to be an ideal gas with Cv = (5/2)R 
and argon to be an ideal gas with Cv

11. A stream of nitrogen flowing at the rate of 2 kg s
 = (3/2)R. [38.3J/K] 

-1 and a stream of hydrogen flowing 
at the rate of 0.5 kgs-1 mix adiabatically in a steady-flow process. If the gases are 
assumed ideal, what is the rate of entropy increase as a result of the process? 
[1411W/K] 



 

Chapter 5 Assignment 

1. Steam expands isentropically in a converging-diverging nozzle from inlet conditions of 
1400 kPa, 598K, and negligible velocity to a discharge pressure of 140 kPa. At the 
throat the cross-sectional area is 6 cm

(Answers are in parenthesis) 
 

2

2. Steam expands adiabatically in a nozzle from inlet conditions of 9 bar, 488K, and a 
velocity of 70m/s to a discharge pressure of 2.4bar where its velocity is 609.6 m/s. What 
is the state of the steam at the nozzle exit? (0.987) 

. Determine the mass flow rate of the steam and 
the state of the steam at the exit of the nozzle. (1.08kg/s, 0.966) 

3. Carbon dioxide at upstream conditions T1 = 350 K and P1

4. A steam turbine operates adiabatically at a power level of 3500 kW. Steam enters the 
turbine at 2400 kPa and 500°C and exhausts from the turbine as saturated vapor at 20 
kPa. What is the steam rate through the turbine, and what is the turbine efficiency? 
(4.1kg/s, 0.819) 

 = 80 bar is throttled to a 
downstream pressure of 1.2 bar. Estimate the downstream temperature and ΔS of the 
gas. (280K, 31.5J/molK) 

5. Isobutane expands adiabatically in a turbine from 5000 kPa and 250°C to 500 kPa at the 
rate of 0.7 kmol/s. If the turbine efficiency is 0.80, what is the power output of the 
turbine and what is the temperature of the isobutane leaving the turbine? (4663kW, 
458K) 

6. Saturated steam at 125 kPa is compressed adiabatically in a centrifugal compressor to 
700 kPa at the rate of 2.5 kg/s. The compressor efficiency is 78%. What is the power 
requirement of the compressor and what are the enthalpy and entropy of the steam in its 
final state? (3156.6kJ/kg, 7.45kJ/kgK, 1173kW). 

7. Derive an expression for enthalpy change of a gas during an isothermal process 

assuming that: 2 ( )aP V b RT
TV

 + − = 
 

   [
1 2 2 1

1 1 1 1: (3 )( - ) ( - )
- -

Ans a RTb
V V V b V b

+ ] 
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Chapter 6 Assignment 

1. The molar volume (cm

(Answers are in parenthesis) 

3 mol1) of a binary liquid mixture at T and P is given by: V = 
120x1 + 70x2 + (15x1 + 8x2)x1x2

3 /cm mol (a) Find expressions for the partial molar 
volumes of species 1 and 2 at T and P. (b) (c) Show that these expressions satisfy the 
Gibbs/Duhem equation. (d) Show that 

1 11 1 1 2 1 0( / ) ( / ) 0x xdV dx dV dx= == =  (e) Calculate V1, 

V2

2. For a ternary solution at constant T and P, the composition dependence of molar property 
M is given by: M = x

, , and . [ ; ;  

, all in ] 

1M1 + x2M2 + x3M3 + x1x2x3C; where M1, M2,and M3

M

 are the 
values of M for pure species 1, 2, and 3, and C is a parameter independent of 
composition. Determine expressions for 1 M, 2 M, and 3

M

. As a partial check on your 
results, verify that they satisfy the summability relation. For this correlating equation, 
what are the i (1 2 )i i j k iM M Cx x x= + − at infinite dilution? [ ; i i j kM M Cx x∞ = + ] 

3. For a particular binary liquid solution at constant T and P, the molar enthalpies of 
mixtures are represented by the equation: H = x1(a1+b1x1) + x2(a2+b2x2); where the ai 
and bi i iH H x= Σ are constants. Since the equation has the form of ; it might be that iH = 
ai+bixi

4. Say that for a binary solution the heat (enthalpy of mixing) data is available in the form 

. Show whether this is true. 

1. .mixH vs x∆ Show that the partial molar enthalpies are given by the following equations: 

1 1 2 2 2 2
2 2

( ) ( )
; and, (1 )mix mix

mix mix
d H d H

H H H x H H H x
dx dx
∆ ∆

− = ∆ − − = ∆ + −   

5. Show that: 2 2

1 2

2 ,

( / )
mix

T P

H xH x
x

∂
= −

∂
 

6. For a ternary system (containing A, B, and C) show that: 

(i)
, , , ,

(1 )
A A B

A BT P x T P xB A

M MM M x x
x x

   ∂ ∂
= + − −   ∂ ∂   

 

(ii) 
, , , ,

(1 )
A A C

A CT P x T P xC A

M MM M x x
x x

  ∂ ∂
= + − −   ∂ ∂   

 

7. Prove the following identities: (a)
,

i
i i

T n

A P
P
µ

µ
∂ = −  ∂ 

, (b) 
, ,

i i
i i

T n P n

U P T
P T
µ µ

µ
∂ ∂   = − −   ∂ ∂   

 

partial molar Helmholtz's free energy
= partial molar internal energy
= partial molar Gibss free energy (chemical potential)

i

i

i

A
U
µ

=

 

∞
1V ∞

2V 2 3
1 1 1 1128 2 20 14V x x x= − − + 2 3

2 1 170 14V x x= + + 1 2120; 70V V= =

1 2128; 84V V∞ ∞= = 3 /cm mol
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8. When one mole of sulphuric acid (1) is added to ‘n’ moles of water at 250

17860( ) .
1.7893

nQ cal
n

=
+

C the heat 

evolved is calculated according to the equation:  Assuming that the 

molar enthalpies of both the components are zero at 250

1 2
[ 6981.5 / ; 1395.0 / ]H cal mol H cal mol= − = −

C, compute the partial molar 
enthalpies for a mixture containing 1 mole of sulphuric acid and three moles of water. 

 

9. The heat of mixing for octanol(1)/decane(2) is given by: [ ]1 2 1 2
( ) /

mix
H x x A B x x J mol∆ = + −  

Where, 012974 51.05 ; 8728.8 34.13 ; ( ).A T B T T K= − + = −  (i) Compute the partial molar 
enthalpies of each component for an equi-molar solution at 300K (assuming pure 
component enthalpies to be zero). (ii) A mixture containing 20mol% of octanol is mixed 
with another containing 80mol% octanol in a steady flow isothermal mixer. How much 
heat needs to be added or removed from the mixer? 

1 2
[ 917.8 / ; 257.7 / ; 211.4 / ]H J mol H J mol J mol of mixture= =  

10. The Berthelot EOS is given by: ( )2

aP V b RT
TV

 + − = 
 

; Show that the fugacity 

coefficient is: 2 2
2ln ln lnb a V b V a

V b V V bRT V RT V
φ −   = − − − −   − −   

  

11. Estimate the fugacity of methane at 32C and 9.28 bar. Use the generalized 
compressibility factor correlation. [9.15bar] 

12. Determine the ratio of the fugacity in the final state to that in the initial state for steam 
undergoing the isothermal change of state: from 9000 kPa and 400 C to 300 kPa. [0.04] 

13. Estimate the fugacity of n-Pentane at its normal-boiling point temperature and 200 bar. 
[2.4bar] 
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Chapter 7 Assignment 

1. Assuming the validity of Raoult’s law, do the following calculations for the 
benzene(1)/toluene(2) system: (a) Given x

(Answers are in parenthesis) 

VLE by Raoult’s Law 

1 = 0.33 and T = 100oC, find y1

1 0.545y =
 and P 

[P= 109.12kPa, ]; 1 0.545y =  (b) Given y1 = 0.33 and T = 100oC, find x1

1 0.169x =
 

and P [T= 92.04kPa, ]; (c) Given x1 = 0.33 and P= 120kPa, find y1

1 0.542y =
 and T 

[T= 103.4C, ] (d) Given y1 = 0.33 and P = 120kPa, find x1

1 0.173x =
 and T. [T= 

109.16C, ] (e) Given T =  105oC and P = 120kPa, find x1 and y1[x1 = 
0.33, y1 = 0.485] (f) For part (e) if the overall mole fraction of benzene is 
z1

2. Assuming Raoult’s law to apply to the system n-pentane(1)/n-heptane(2). (a) 

What are the values of x

=0.3685, what molar fraction of the system is vapour? [V=0.231] 

1 and y1at T = 55o 




 + sat

2Psat
1P

2
1C and P=  ? [x1 = 0.5, y1 = 

0.915] (b) If we plot vapor molar fraction V vs. overall composition z1, is the plot 
linear / non-linear? [Linear] (c) For T = 55oC and z1 = 0.5, If V = 0.5 find: P, x1, 
and y1.[Approximate values are P ~ 50kPa, x1 ~ 0.2 and y1

3. A single-stage liquid/vapor separation for the benzene(1)/ethylbenzene(2) 
system must produce phases of the following equilibrium compositions. For x

 = 0.8] 

1 
= 0.35, y1 = 0.70, determine the T and P in the separator. What additional 
information is needed to compute the relative molar amounts of liquid and 
vapor leaving the separator? Assume that Raoult’s law applies.[T=134C, 
P=207kPa, need zi

4. A liquid mixture containing equimolar amounts of benzene(1)/toluene(2) and 
ethylbenzene(3) is flashed to conditions T and P. For T = 110

] 

oC, P = 90 kPa, 
determine the equilibrium mole fractions {xi} and {yi} of the liquid and vapor 
phase formed and the molar fraction V of the vapor formed. Assume that 
Raoult’s law applies.[V=0.834, x1 = 0.143, y1 = 0.371, x2 = 0.306, y1

5. A liquid mixture of 25mol% pentane(1), 45mol% hexane(2) and 30mol% 
heptane(3) initially at high pressure and 69

 =0.339]. 

0C is partially vaporized by 
isothermally lowering the pressure to 1atm. Find the relative amounts of liquid 
and vapour in the system and the compositions. [L=0.564, x1= 0.142, x2= 0.448, 
y1= 0.390, y2

0
1ln ( ); ( )SP bar t K= 0.453] The vapour pressure relations are { }: 

1 2 3ln 10.422 26799 / ; ln 10.456 29676 / ; ln 11.431 35200 /S S SP RT P RT P RT= − = − = −   
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Non-ideal System VLE 

6. For the system ethyl ethanoate(1)/n-heptane(2) at 70oC, ln γ1
2
2x = 0.95 ;ln γ2

2
1x

 = 

0.95 ; sat
1P = 79.80 kPa; sat

2P = 40.50 kPa, (a) Make a BUBL P calculation for T = 
70oC, x1 = 0.05. [P=47.97kPa, y1 = 0.196] (b) Make a DEW P calculation for T = 
70oC, y1 = 0.05. [P=42.19kPa, x1 = 0.0104], (c) What is the azeotrope composition 
and pressure at T = 70oC? [Paz =47.97kPa, x1az = y1az

7. A liquid mixture of cyclohexanone(1)/phenol(2) for which x

 = 0.857] 

1 = 0.6 is in 
equilibrium with its vapor at 144oC. Determine the equilibrium pressure P and 
vapor composition y1 from the following information: ln γ1

2
2x = A ; ln γ2

2
1x

 = 

A At 417.15 K (144oC), P1sat= 75.20 and P2sat= 31.66 kPa. The system forms an 
azeotrope at 417.15 K (144oC) for which x1az = y1az = 0.294. [P=38.19kPa, y1

8. For the acetone (1)/methanol (2) system a vapor mixture for which z

 = 
0.844] 

1 = 0.25 is 
cooled to temperature T in the two-phase region and flows into a separation 
chamber at a pressure of 1 bar. If the composition of the liquid product is to be 
x1 = 0.175, what is the required value of T, and what is the value of y1? For 
liquid mixtures of this system to a good approximation: ln γ1

2
2x = 0.64 ; ln γ2

2
1x

 = 

0.64 [T =59.4C, y1

9. The following is a rule of thumb: For a binary system in VLE at low pressure, 
the equilibrium vapor-phase mole fraction y

 = 0.307] 

1 corresponding to an equimolar 
liquid mixture is approximately y1 1 1 2/( )sat sat satP P P+ = ; where Pisat is a pure-
species vapor pressure. Clearly, this equation is valid if Raoult’s law applies. 
Prove that it is also valid for VLE described by with: ln γ1

2
2x = A  and ln γ2

2
1x

 = 

A  

10. For a distillation column separating ethyl-ether(1)/ ethanol(2) into essentially 
pure components at 1atm, find the range of values of α12

Data: ln P

 (relative volatility).  

1
s = 9.25-2420.72 /(T-45.72), lnP2

s = 12.17 - 3737.60 / (T-44.17), where 
P (bar),   T(K), For the liquid phase, GE/x1x2 RT = A21 x1  + A12 x2 ,  
 A12= 0.1665+233.74/T;A21 = 0.5908+197.55/T.       

[α12 1 1x →( ) = 2.2, α12 2 1x →( ) = 8.64] 
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11. Find if Benzene(1)/Cyclohexane(2) forms an azeotrope at 77.6oC. The following 
data are available for use of Regular Solution theory. At 77.6oC, P1s = 745 mm 
Hg, P2s = 735 mm Hg. [(x1)az

Species(i) 
 = 0.525]  

Vi δ(cc/mole) i(cal/cc)1/2 
Benzene 89 9.2 

Cyclohexane 109 8.2 

High Pressure VLE and Henry’s Law 

12. A vapour mixture contains 20mol% methane, 30mol% ethane, and rest propane, 
at 300C. Determine the dew composition. [x1 = 0.0247, x2 

13. A liquid mixture of 50mol% pentane and 50mol% heptane initially at low 
temperature is heated at a constant pressure of 1 atm until 50mol% of the liquid 
is vapourized. Calculate the relevant compositions and the temperature.[ x

= 0.1648] 

1= 
0.274, y1= 0.726, T = 341.70

14. A vapor mixture of 40 mole percent ethylene and 60 mole percent propylene at 
40C and 500 kPa is isothermally compressed. Determine the pressure at which 
condensation begins and the composition of the first drop of liquid that forms. 
[2.65MPa] 

K] 

 
15. A liquid mixture of 25 mole percent ethylene and 75 mole percent propylene at -

40C is kept in a piston-cylinder assembly. The piston exerts a constant pressure 
of 1 MPa. Compute the bubble temperature and composition. [ – 8.50

 
C] 

16. A system formed of methane (1) and a light oil(2) at 200 K and 30 bar consists of 
a vapour phase containing 95 mol-% methane and a liquid phase containing oil 
and dissolved methane. The fugacity of the methane is given by Henry's law, 
and at the temperature of interest Henry's constant is H1

 

 = 200 bar. Assuming 
ideal solution in gas phase estimate the equilibrium mole fraction of methane 
in the liquid phase. Use virial EOS for gas phase. [0.118] 

17. Using PR-EOS: Compute the dew pressure for methane (1) / butane (2) system 
at 310K with y1=0.80 [Dew P=23.6 bar, x1

 

=0.1094]  
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Chapter 8 Assignment 

1. Calculate the standard Gibbs free energy change and the equilibrium constant at 
298K for the following reaction: C

(Answers are in parenthesis) 
 

2H5OH(g) + (1/2)O2(g) → CH3CHO(g) + 
H2O(g). [– 188.9kJ; 1.4x1038

 
] 

2. Assuming that ∆Ho is constant in the temperature range 298 – 800 K, estimate the 
equilibrium constant at 800 K for the reaction of Problem 1. [4.3x1014

 
] 

3. Ethanol can be produced according to the reaction: C2H4(g) + H2O(g) → 
C2H5

If an equimolar mixture of ethylene and water vapor is fed to a reactor which is 
maintained at 1000 K and 1 bar determine the degree of conversion, assuming 
that the reaction mixture behaves like an ideal solution. Assume the following 
ideal gas specific heat data: C

OH(g) 

pig = a + bT + cT2 + dT3 + eT–2

Species 

 (J/mol); T(K) [0.5] 
 

a bx10 cx103 dx106 ex109 -5 
C2H 20.691 4 205.346 – 99.793 18.825 - 
H2 4.196 O 154.565 – 81.076 16.813 - 

C2H5 28.850 OH 12.055 - - 1.006 
 

4. Calculate the degree of conversion and the composition of the reaction mixture if 
N2(g) and H2(g) are fed in the mole ratio of 1:5 at 800 K and 100 bar for the 
synthesis of ammonia. Assume that equilibrium is established and the reaction 
mixture behaves like an ideal gas. Cpig = a + bT + cT2 + dT3 + eT–2

 

 (J/mol); T(K) 
[0.2356] 

Species a bx10 cx103 dx106 ex109 -5 
N 20.270 2 4.930 - - 0.333 
H 27.012 2 3.509 - - 0.690 

NH 29.747 3 25.108 - - – 1.546 
 

5. Calculate the degree of conversion if the feed to an ammonia synthesis reactor is 
a mixture of N2(g), H2(g) and NH3

 

(g) in the mole ratio 1:3:0.1 at 800 K and 100 
bar. Assume that the reaction mixture behaves like an ideal gas. [0.1235] 

6. The following two independent reactions occur in the steam cracking of methane 
at 1000 K and 1 bar: CH4(g) + H2O(g) → CO(g) + 3H2(g); and CO(g) + H2O(g) → 
CO2(g) + H2(g). Assuming ideal gas behaviour determine the equilibrium 
composition of the gas leaving the reactor if an equimolar mixture of CH4 and 
H2O is fed to the reactor, and that at 1000K, the equilibrium constants for the two 
reactions are 30 and 1.5 respectively.      [ε1 = 0.8; ε2

 
 = 0.06] 
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7. Consider the following reaction: Fe(s) + H2O(g) → FeO(s) + H2(g). Assuming that 
equilibrium is achieved, determine the fraction of H2O which decomposes at 
1000oC. The equilibrium constant for the reaction at 1000o

 
C is 1.6. [61.5%] 

8. Show that: 
0

2
ye e

P y

K d H
T RT dK
ε ε∂  = ∆ ∂ 

 and ( )ye e

T y

K d
P P dK
ε ε ν∂  = − ∂ 

 

9. The gas stream from a sulfur burner is composed of 15-mol-% SO2, 20-mol-% O2, 
and 65-mol-% N2. This gas stream at 1 bar and 480oC enters a catalytic converter, 
where the SO2 is further oxidized to SO3. Assuming that the reaction reaches 
equilibrium, how much heat must be removed from the converter to maintain 
isothermal conditions? Base your answer on 1 mol of entering gas. [Ans: εe

 

 = 
0.1455, Q = – 14314 J/mol]  

10. For the cracking reaction:C3H8(g)→C2H4(g)+CH4(g); the equilibrium conversion 
is negligible at 300 K, but becomes appreciable at temperatures above 500 K. For 
a pressure of 1 bar, determine (a) The fractional conversion of propane at 625 K. 
(b) The temperature at which the fractional conversion is 85%. [Ans: εe

   

 = 0.777, T 
= 647K]   

11. The following isomerization reaction occurs in the liquid phase: A → B; where A 
and B are miscible liquids for which: GE / RT = 0.1xAxB 298

oG∆. (a) If = –1000 J/mol, 
what is the equilibrium composition of the mixture at 298oK? [xA = 0.3955] (b) 
What is the answer for ‘a’ if one assumes that A and B form an ideal solution? [xA

 

 
= 0.4005]. 

12. Feed gas to a methanol synthesis reactor is: 75-mol-% H2, 15-mol-% CO, 5-mol-% 
CO2, and 5-mol-% N2. The system comes to equilibrium at 550 K and 100 bar 
with respect to the following reactions: 2H2(g) + CO(g) → CH3OH(g); and H2(g) 
+ CO2(g) → CO(g) + H2O(g). Assuming ideal gases, determine the composition 
of the equilibrium mixture. [Ans: K1 = 6.749x10 – 4; K2 = 1.726x10 – 2; ε1 = 0.1186; 
ε2 = 8.8812x10 – 3

 
]. 


