Figure 4.1

a. System showing
input and output;

b. pole-zero plot

of the system;

c. evolution of a
system response.
Follow blue arrows
to see the evolution
of the response
component generated
by the pole or zero.
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Figure 4.2
Effect of a real-
axis

pole upon
transient
response
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Figure 4.4
a. First-order

system,
b. pole plot .
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Figure 4.5
First-order
system
response to a
unit

step
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Figure 4.6
Laboratory
results

of a system step
response test

Amplitude

l I I l l l l I -

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Time (seconds)




Figure 4.7
Second-order
systems, pole

plots,
and step

responses
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Figure 4.8
Second-order
step response
components
generated by
complex poles
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Figure 4.9
System for
Example 4.2
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Figure 4.10
Step responses
for second-order
system

damping cases
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Figure 4.11
Second-order
response as a
function of
damping ratio
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Figure 4.12
Systems for

C(s) _

Example 4.4
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Figure 4.13
Second-order
underdamped
responses for
damping ratio
values
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Figure 4.14
Second-order
underdamped
response
specifications
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Figure 4.15 o
Percent 20
overshoot vs.

damping ratio
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Figure 4.16
Normalized rise
time vs. damping
ratio for a
second-order
underdamped
response
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Figure 4.17
Pole plot for an
underdamped
second-order
system
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Figure 4.18

Lines of constant
peak time, T, settling
time, T, , and percent
overshoot, %0S
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Figure 4.19
Step responses
of second-order
underdamped
systems

as poles move:
a. with constant
real part;

b. with constant
Imaginary part;
c. with constant
damping ratio
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Figure 4.20
Pole plot for X EAER
Example 4.6




Figure 4.21
Rotational
mechanical
system for
Example 4.7
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Figure 4.22

The Cybermotion
SR3 security robot

on patrol. The

robot navigates by
ultrasound and path
programs transmitted
from a computer,
eliminating the need
for guide strips on

the floor. It has video
capabilities as well as
temperature, humidity,
fire, intrusion, and gas
sensors.

Courtesy of Cybermotion, Inc.



Figure 4.23

Component responses of
a three-pole system:

a. pole plot;

b. component
responses: nondominant
pole is near

dominant second-order
pair (Case ), far from the
pair (Case Il), and

at infinity (Case III)
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Figure 4.24

Step responses
of system T,(S),
system T,(s), and
system T4(S)
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Figure 4.25
Effect of adding
a zerotoa
two-pole
system
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Figure 4.26 A

Step response 1.5 F
of a
nonminimum-phase Lo
system —

y < 0.5 F
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Figure 4.27
Nonminimum-phase
electrical circuit
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Figure 4.28

Step response

of the

nonminimum-phase
network of Figure 4.27 (c(t))
and normalized step
response of an

equivalent network

without the zero

(-10c,(t))
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Without saturation

Figure 4.29

a. Effect of amplifier
saturation on load

With saturation
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Figure 4.30

a. Effect of
deadzone on
load angular
displacement
response;

b. Simulink block
diagram
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Figure 4.31

a. Effect of backlash
on load angular
displacement
response; 005
b. Simulink block
diagram ; 2
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Figure 4.32
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Figure 4.33
Unmanned
Free-Swimming
Submersible
(UFSS) venhicle

Courtesy of Naval Research Laboratory.



Figure 4.34
Pitch control loop for
the UFSS vehicle
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Figure 4.35
Negative step
response of pitch
control for UFSS
vehicle

Negative pitch angle (radians) response
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Figure 4.36
A ship at sea,
showing roll axis
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Figure P4.1
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Figure P4.2

B | —

Ay

/|




Figure P4.3
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Figure P4.4
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Figure P4.5
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Figure P4.7
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Figure P4.8
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Figure P4.9
(figure continues)
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Figure P4.9
(continued)
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Figure P4.10

Steps in determining
the transfer function
relating output physical
response to the input
visual command

Step 1: Light source on

Step 2: Recognize light source

Step 3: Respond to light source



Figure P4.11
Vacuum robot

lifts
two bags of salt

il

Courtesy of Pacmc Roboaotics, Inc.




Figure P4.12
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Figure P4.13
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Figure P4.14




Figure P4.15
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Figure P4.16
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Figure P4.17

Motor
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For the motor:
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Figure P4.18

V(1)




Figure P4.19




Figure P4.20
Pump diagram
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