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Wave Properties of Particles

In a scanning electron microscope, an electron beam that scans a specimen causes secondary
electrons to be ejected in numbers that vary with the angle of the surface. A suitable data display
suggests the three-dimensional form of the specimen. The high resolution of this image of a red
spider mite on a leaf is a consequence of the wave nature of moving electrons.
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PARTICLE IN A BOX
Why the energy of a trapped particle is
quantized
UNCERTAINTY PRINCIPLE I
We cannot know the future because we cannot
know the present
UNCERTAINTY PRINCIPLE II
A particle approach gives the same result
APPLYING THE UNCERTAINTY PRINCIPLE
A useful tool, not just a negative statement
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discovery of the particle properties of waves and the 1924 speculation that

particles might show wave behavior. It is one thing, however, to suggest a rev-
olutionary concept to explain otherwise mysterious data and quite another to suggest
an equally revolutionary concept without a strong experimental mandate. The latter is
just what Louis de Broglie did in 1924 when he proposed that moving objects have
wave as well as particle characteristics. So different was the scientific climate at the
time from that around the turn of the century that de Broglies ideas soon received
respectful attention, whereas the earlier quantum theory of light of Planck and Einstein
had been largely ignored despite its striking empirical support. The existence of de
Broglie waves was experimentally demonstrated by 1927, and the duality principle they
represent provided the starting point for Schrodinger’s successful development of

L ooking back, it may seem odd that two decades passed between the 1905

quantum mechanics in the previous year.

3.1 DE BROGLIE WAVES

A moving body behaves in certain ways as though it has a wave nature

A photon of light of frequency » has the momentum

_w _h
b C A

since Av = ¢. The wavelength of a photon is therefore specified by its momentum

according to the relation

Photon wavelength A= —
p

G.D

De Broglie suggested that Eq. (3.1) is a completely general one that applies to material
particles as well as to photons. The momentum of a particle of mass m and velocity v

is p = ymy, and its de Broglie wavelength is accordingly

De Broglie h
wavelength ymu

Louis de Broglie (1892-1987),
although coming from a French
family long identified with diplo-
macy and the military and initially
a student of history, eventually
followed his older brother
Maurice in a career in physics. His
doctoral thesis in 1924 contained
the proposal that moving bodies
have wave properties that com-
plement their particle properties:
these “seemingly incompatible
conceptions can each represent an

(3.2)

aspect of the truth. . . . They may serve in turn to represent
the facts without ever entering into direct conflict.” Part of
de Broglie’s inspiration came from Bohr’s theory of the hydro-
gen atom, in which the electron is supposed to follow only cer-
tain orbits around the nucleus. “This fact suggested to me the
idea that electrons . . . could not be considered simply as par-
ticles but that periodicity must be assigned to them also.” Two
years later Erwin Schrodinger used the concept of de Broglie
waves to develop a general theory that he and others applied
to explain a wide variety of atomic phenomena. The existence
of de Broglie waves was confirmed in diffraction experiments
with electron beams in 1927, and in 1929 de Broglie received
the Nobel Prize.
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The greater the particle’s momentum, the shorter its wavelength. In Eq. (3.2) vy is the
relativistic factor

1

Y 1 — vz / Cz
As in the case of em waves, the wave and particle aspects of moving bodies can never
be observed at the same time. We therefore cannot ask which is the “correct” descrip-
tion. All that can be said is that in certain situations a moving body resembles a wave
and in others it resembles a particle. Which set of properties is most conspicuous depends
on how its de Broglie wavelength compares with its dimensions and the dimensions of
whatever it interacts with.

Example 3.1

Find the de Broglie wavelengths of (a) a 46-g golf ball with a velocity of 30 m/s, and (b) an
electron with a velocity of 107 m/s.

Solution
(a) Since v << ¢, we can let y = 1. Hence

Ao 663X 107%] s
mv  (0.046 kg)(30 m/s)

=48X%X 10" m

The wavelength of the golf ball is so small compared with its dimensions that we would not
expect to find any wave aspects in its behavior.

(b) Again v << ¢, so withm = 9.1 X 10731 kg, we have

h 6.63X10 "] s 0
A= —— = - - =73%x10 " m
mv 9.1 X 10 kg)(10° m/s)

The dimensions of atoms are comparable with this figure—the radius of the hydrogen atom, for
instance, is 5.3 X 10~ m. It is therefore not surprising that the wave character of moving elec-
trons is the key to understanding atomic structure and behavior.

Example 3.2

Find the kinetic energy of a proton whose de Broglie wavelength is 1.000 fm = 1.000 X
107" m, which is roughly the proton diameter.

Solution

A relativistic calculation is needed unless pc for the proton is much smaller than the proton rest
energy of Eg = 0.938 GeV. To find out, we use Eq. (3.2) to determine pc:

he (4136 X 107" eV - 5)(2.998 X 10° m/s)

¢ = (ymv)c = — =1.240 X 10° eV
P Y A 1.000 X 107" m

1.2410 GeV

Since pc > E a relativistic calculation is required. From Eq. (1.24) the total energy of the proton is

E=VE +p’=V(0.938 GeV)> + (1.2340 GeV)* = 1.555 GeV
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The corresponding kinetic energy is

KE = E — Ey = (1.555 — 0.938) GeV = 0.617 GeV = 617 MeV

De Broglie had no direct experimental evidence to support his conjecture. However,
he was able to show that it accounted in a natural way for the energy quantization—
the restriction to certain specific energy values—that Bohr had had to postulate in his
1913 model of the hydrogen atom. (This model is discussed in Chap. 4.) Within a few
years Eq. (3.2) was verified by experiments involving the diffraction of electrons by
crystals. Before we consider one of these experiments, let us look into the question of

what kind of wave phenomenon is involved in the matter waves of de Broglie.

3.2 WAVES OF WHAT?
Waves of probability

In water waves, the quantity that varies periodically is the height of the water surface.
In sound waves, it is pressure. In light waves, electric and magnetic fields vary. What

is it that varies in the case of matter waves?

The quantity whose variations make up matter waves is called the wave function,
symbol W (the Greek letter psi). The value of the wave function associated with a mov-
ing body at the particular point x, y, z in space at the time t is related to the likelihood

of finding the body there at the time.

Max Born (1882-1970) grew up in
Breslau, then a German city but to-
day part of Poland, and received a
doctorate in applied mathematics at
Gottingen in 1907. Soon afterward
he decided to concentrate on
physics, and was back in Gottingen
in 1909 as a lecturer. There he
worked on various aspects of the
theory of crystal lattices, his “cen-
tral interest” to which he often re-
turned in later years. In 1915, at
Planck’s recommendation, Born became professor of physics in
Berlin where, among his other activities, he played piano to
Einstein’ violin. After army service in World War I and a period
at Frankfurt University, Born was again in Gottingen, now as pro-
fessor of physics. There a remarkable center of theoretical physics
developed under his leadership: Heisenberg and Pauli were
among his assistants and Fermi, Dirac, Wigner, and Goeppert
were among those who worked with him, just to name [uture
Nobel Prize winners. In those days, Born wrote, “There was com-
plete freedom of teaching and learning in German universities,
with no class examinations, and no control of students. The Uni-
versity just offered lectures and the student had to decide for
himself which he wished to attend.”

Born was a pioneer in going [rom “the bright realm of classi-
cal physics into the still dark and unexplored underworld of the
new quantum mechanics;” he was the first to use the latter term.
From Born came the basic concept that the wave function ¥ of
a particle is related to the probability of finding it. He began with
an idea of Einstein, who “sought to make the duality of particles
(light quanta or photons) and waves comprehensible by inter-
preting the square of the optical wave amplitude as probability
density for the occurrence of photons. This idea could at once
be extended to the W-function: [W|* must represent the proba-
bility density for electrons (or other particles). To assert this was
easy; but how was it to be proved? For this purpose atomic scat-
tering processes suggested themselves.” Borns development of
the quantum theory of atomic scattering (collisions of atoms with
various particles) not only verified his “new way of thinking about
the phenomena of nature” but also founded an important branch
of theoretical physics.

Born left Germany in 1933 at the start of the Nazi period,
like so many other scientists. He became a British subject and
was associated with Cambridge and then Edinburg universities
until he retired in 1953. Finding the Scottish climate harsh and
wishing to contribute to the democratization of postwar Germany,
Born spent the rest of his life in Bad Pyrmont, a town near
Gottingen. His textbooks on modern physics and on optics were
standard works on these subjects for many years.



96

Chapter Three

The wave function W itself, however, has no direct physical significance. There is a
simple reason why ¥ cannot by interpreted in terms of an experiment. The probabil-
ity that something be in a certain place at a given time must lie between 0 (the object
is definitely not there) and 1 (the object is definitely there). An intermediate proba-
bility, say 0.2, means that there is a 20% chance of finding the object. But the ampli-
tude of a wave can be negative as well as positive, and a negative probability, say —0.2,
is meaningless. Hence W by itself cannot be an observable quantity.

This objection does not apply to [W|?, the square of the absolute value of the wave
function, which is known as probability density:

The probability of experimentally finding the body described by the wave function
W at the point x, y, 2, at the time t is proportional to the value of [W]* there at t.

A large value of [¥|* means the strong possibility of the body’s presence, while a small
value of |W|* means the slight possibility of its presence. As long as [W|* is not actually
0 somewhere, however, there is a definite chance, however small, of detecting it there.
This interpretation was first made by Max Born in 1926.

There is a big difference between the probability of an event and the event itself. Al-
though we can speak of the wave function W that describes a particle as being spread
out in space, this does not mean that the particle itself is thus spread out. When an ex-
periment is performed to detect electrons, for instance, a whole electron is either found
at a certain time and place or it is not; there is no such thing as a 20 percent of an elec-
tron. However, it is entirely possible for there to be a 20 percent chance that the elec-
tron be found at that time and place, and it is this likelihood that is specified by [W|*.

W. L. Bragg, the pioneer in x-ray diffraction, gave this loose but vivid interpreta-
tion: “The dividing line between the wave and particle nature of matter and radiation
is the moment ‘now.” As this moment steadily advances through time it coagulates a
wavy future into a particle past. . . . Everything in the future is a wave, everything in
the past is a particle.” If “the moment ‘now’ ” is understood to be the time a measure-
ment is performed, this is a reasonable way to think about the situation. (The philoso-
pher Sgren Kierkegaard may have been anticipating this aspect of modern physics when
he wrote, “Life can only be understood backwards, but it must be lived forwards.”)

Alternatively, if an experiment involves a great many identical objects all described
by the same wave function ¥, the actual density (number per unit volume) of objects
at x, y, z at the time t is proportional to the corresponding value of |¥|*. Tt is instruc-
tive to compare the connection between W and the density of particles it describes with
the connection discussed in Sec. 2.4 between the electric field E of an electromagnetic
wave and the density N of photons associated with the wave.

While the wavelength of the de Broglie waves associated with a moving body is
given by the simple formula A = h/ymuv, to find their amplitude W as a function of
position and time is often difficult. How to calculate ¥ is discussed in Chap. 5 and
the ideas developed there are applied to the structure of the atom in Chap. 6. Until
then we can assume that we know as much about W as each situation requires.

3.3 DESCRIBING A WAVE
A general formula for waves
How fast do de Broglie waves travel? Since we associate a de Broglie wave with a moving

body, we expect that this wave has the same velocity as that of the body. Let us see if
this is true.
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If we call the de Broglie wave velocity v,, we can apply the usual formula
v, = VA

to find v,. The wavelength A is simply the de Broglie wavelength A = h/ymuv. To find
the frequency, we equate the quantum expression E = hv with the relativistic formula
for total energy E = ymc” to obtain

hv = ymc?
ymc?
V =
h

The de Broglie wave velocity is therefore

De Bl-*oglie phase v = DA = ('ymcz )( h ) _ i (3.3)
velocity P h ymu v

Because the particle velocity v must be less than the velocity of light ¢, the de Broglie
waves always travel faster than light! In order to understand this unexpected result, we
must look into the distinction between phase velocity and group velocity. (Phase ve-
locity is what we have been calling wave velocity.)

Let us begin by reviewing how waves are described mathematically. For simplicity
we consider a string stretched along the x axis whose vibrations are in the y direction,
as in Fig. 3.1, and are simple harmonic in character. If we choose t = 0 when the
displacement y of the string at x = 0 is a maximum, its displacement at any future
time ¢ at the same place is given by the formula

y = A cos 2wt G4

SANVA VA S
N VARV RN

Vibrating string

(a)

ANV VA Y
NV

y =A cos 21wt

(b)

Figure 3.1 (a) The appearance of a wave in a stretched string at a certain time. (b) How the
displacement of a point on the string varies with time.
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Figure 3.2 Wave propagation.

where A is the amplitude of the vibrations (that is, their maximum displacement on
either side of the x axis) and v their frequency.

Equation (3.4) tells us what the displacement of a single point on the string is as a
function of time t. A complete description of wave motion in a stretched string, how-
ever, should tell us what y is at any point on the string at any time. What we want is
a formula giving y as a function of both x and t.

To obtain such a formula, let us imagine that we shake the string at x = 0 when
t = 0, so that a wave starts to travel down the string in the +x direction (Fig. 3.2).
This wave has some speed v, that depends on the properties of the string. The wave
travels the distance x = w,t in the time t, so the time interval between the formation
of the wave at x = 0 and its arrival at the point x is x/v,. Hence the displacement y
of the string at x at any time t is exactly the same as the value of y at x = 0 at the
earlier time t — x/v,. By simply replacing t in Eq. (3.4) with t — x/v,, then, we have
the desired formula giving y in terms of both x and ¢:

Wave formula y = A cos Zwv(t — i) 3.5)

Up

As a check, we note that Eq. (3.5) reduces to Eq. (3.4) at x = 0.
Equation (3.5) may be rewritten

v

VX
y = A cos 217<vt - —)
2

Since the wave speed v, is given by v, = vA we have
Wave formula y = A cos 277(1/[ - %) (3.6)

Equation (3.6) is often more convenient to use than Eq. (3.5).

Perhaps the most widely used description of a wave, however, is still another form
of Eq. (3.5). The quantities angular frequency @ and wave number k are defined by
the formulas
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Angular frequency w = 27y (3.7
2T w

Wave number k= — = — (3.8)
A U,

The unit of w is the radian per second and that of k is the radian per meter. An-
gular frequency gets its name from uniform circular motion, where a particle that moves
around a circle v times per second sweeps out 27 rad/s. The wave number is equal
to the number of radians corresponding to a wave train 1 m long, since there are 27 rad
in one complete wave.

In terms of w and k, Eq. (3.5) becomes

Wave formula y = A cos (wt — kx) (3.9

In three dimensions k becomes a vector k normal to the wave fronts and x is re-
placed by the radius vector r. The scalar product k - r is then used instead of kx in
Eq. (3.9).

3.4 PHASE AND GROUP VELOCITIES

A group of waves need not have the same velocity as
the waves themselves

The amplitude of the de Broglie waves that correspond to a moving body reflects the
probability that it will be found at a particular place at a particular time. It is clear that
de Broglie waves cannot be represented simply by a formula resembling Eq. (3.9),
which describes an indefinite series of waves all with the same amplitude A. Instead,
we expect the wave representation of a moving body to correspond to a wave packet,
or wave group, like that shown in Fig. 3.3, whose waves have amplitudes upon which
the likelihood of detecting the body depends.

A familiar example of how wave groups come into being is the case of beats.
When two sound waves of the same amplitude but of slightly different frequencies
are produced simultaneously, the sound we hear has a frequency equal to the aver-
age of the two original frequencies and its amplitude rises and falls periodically.
The amplitude fluctuations occur as many times per second as the difference be-
tween the two original frequencies. If the original sounds have frequencies of,
say, 440 and 442 Hz, we will hear a fluctuating sound of frequency 441 Hz with
two loudness peaks, called beats, per second. The production of beats is illustrated
in Fig. 3.4.

A way to mathematically describe a wave group, then, is in terms of a superposi-
tion of individual waves of different wavelengths whose interference with one another
results in the variation in amplitude that defines the group shape. If the velocities of
the waves are the same, the velocity with which the wave group travels is the common
phase velocity. However, if the phase velocity varies with wavelength, the different
individual waves do not proceed together. This situation is called dispersion. As a
result the wave group has a velocity different from the phase velocities of the waves
that make it up. This is the case with de Broglie waves.

-~
Wave group

Figure 3.3 A wave group.
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Figure 3.4 Beats are produced by the superposition of two waves with different frequencies.

It is not hard to find the velocity v, with which a wave group travels. Let us sup-
pose that the wave group arises from the combination of two waves that have the same
amplitude A but differ by an amount Aw in angular frequency and an amount Ak in
wave number. We may represent the original waves by the formulas

y1 = A cos (wt — kx)
¥, = Acos [(w + Aw)t — (k + AR)x]

The resultant displacement y at any time ¢ and any position x is the sum of y, and y..
With the help of the identity

cos a + cos B = 2 cos 3(a + B) cos (@ — B)
and the relation
cos(—0) = cos 0
we find that

y=y1ty
= 2A cos 7 [Qw + Aw)t — 2k + AR)x] cos H(Aw t — Ak x)

Since Aw and Ak are small compared with w and k respectively,

2w + Aw = 2w
2k + Ak = 2k

and so

A Ak
Beats y = 2A cos (wt — kx) cos (th - TX) (3.10)
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Equation (3.10) represents a wave of angular frequency w and wave number k
that has superimposed upon it a modulation of angular frequency ;Aw and of wave
number +Ak.

The effect of the modulation is to produce successive wave groups, as in Fig. 3.4.
The phase velocity v, is

Phase velocity v, = % (3.11)

and the velocity v, of the wave groups is

Ao

Group velocity v, = E (3.12)

When w and k have continuous spreads instead of the two values in the preceding
discussion, the group velocity is instead given by

)

Group velocity VT (3.13)

Depending on how phase velocity varies with wave number in a particular situa-
tion, the group velocity may be less or greater than the phase velocities of its member
waves. If the phase velocity is the same for all wavelengths, as is true for light waves
in empty space, the group and phase velocities are the same.

The angular frequency and wave number of the de Broglie waves associated with a
body of mass m moving with the velocity v are

2mymc?
w =27y =
h
Angular frequency of 2mmc’
i = (3.14)
de Broglie waves V1 — /¢
2 2mymu
k = ——= ——
A h
Wave number of _ 2mmu
de Broglie waves Ve e (3.15)

Both w and k are functions of the body’ velocity v.
The group velocity v, of the de Broglie waves associated with the body is

Y = do _ do/dv
s dk dk/dv
N d_w B 2mmu
ow d'U - h(]. _ UZ/C2)3/2
dk 2mm

v W1 — v2/2)?
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Figure 3.5 Because the wave-
lengths of the fast electrons in an
electron microscope are shorter
than those of the light waves in
an optical microscope, the elec-
tron microscope can produce
sharp images at higher magnifi-
cations. The electron beam in an
electron microscope is focused
by magnetic fields.

Electron micrograph showing bacteriophage viruses in an

Electron Microscopes

he wave nature of moving electrons is the basis of the electron microscope, the first of

which was built in 1932. The resolving power of any optical instrument, which is limited
by diffraction, is proportional to the wavelength of whatever is used to illuminate the specimen.
In the case of a good microscope that uses visible light, the maximum useful magnification is
about 500X; higher magnifications give larger images but do not reveal any more detail. Fast
electrons, however, have wavelengths very much shorter than those of visible light and are eas-
ily controlled by electric and magnetic fields because of their charge. X-rays also have short wave-
lengths, but it is not (yet?) possible to focus them adequately.

In an electron microscope, current-carrying coils produce magnetic fields that act as lenses
to focus an electron beam on a specimen and then produce an enlarged image on a fluorescent
screen or photographic plate (Fig. 3.5). To prevent the beam from being scattered and thereby
blurring the image, a thin specimen is used and the entire system is evacuated.

The technology of magnetic “lenses” does not permit the full theoretical resolution of electron
waves (o be realized in practice. For instance, 100-keV electrons have wavelengths of 0.0037 nm,
but the actual resolution they can provide in an electron microscope may be only about 0.1 nm.
However, this is still a great improvement on the ~200-nm resolution of an optical microscope,
and magnifications of over 1,000,000X have been achieved with electron microscopes.

1 -

An electron microscope.

Escherichia coli bacterium. The bacterium is approximately

1 um across.
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and so the group velocity turns out to be

De Broglie group B
velocity g =V (3.16)
The de Broglie wave group associated with a moving body travels with the same
velocity as the body.

The phase velocity v, of de Broglie waves is, as we found earlier,

. w C
De Bl-’oghe phase (3.3)
velocity

This exceeds both the velocity of the body v and the velocity of light ¢, since v < c.
However, v, has no physical significance because the motion of the wave group, not
the motion of the individual waves that make up the group, corresponds to the mo-
tion of the body, and v, < ¢ as it should be. The fact that v, > ¢ for de Broglie waves
therefore does not violate special relativity.

Example 3.3

An electron has a de Broglie wavelength of 2.00 pm = 2.00 X 10~"* m. Find its kinetic energy
and the phase and group velocities of its de Broglie waves.

Solution
(a) The first step is to calculate pc for the electron, which is

he (4136 X 107"7 eV - 5)(3.00 X 10° m/s) 5
— = — =6.20 X 10 eV
A 2.00 X 107" m

pc

= 620 keV

The rest energy of the electron is Eg = 511 keV, so

KE=F —Ey= VE+ (po)* — Eo = V(511 keV)? + (620 keV)? — 511 keV
= 803 keV — 511 keV = 292 keV

(b) The electron velocity can be found from
Eo

1 —v?/

Ej 11 keV \2
v=ofl - == =¢ 1—(5—6) = 0.771c¢
E 803 keV

Hence the phase and group velocities are respectively

E =

to be

¢ A

v, = — = = 1.30c
v 0.77lc
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Figure 3.6 The Davisson-Germer
experiment.

3.5 PARTICLE DIFFRACTION

An experiment that confirms the existence of de Broglie waves

A wave effect with no analog in the behavior of Newtonian particles is diffraction. In
1927 Clinton Davisson and Lester Germer in the United States and G. P Thomson in
England independently confirmed de Broglies hypothesis by demonstrating that elec-
tron beams are diffracted when they are scattered by the regular atomic arrays of crys-
tals. (All three received Nobel Prizes for their work. J. J. Thomson, G. P’s father, had
earlier won a Nobel Prize for verifying the particle nature of the electron: the wave-
particle duality seems to have been the family business.) We shall look at the experi-
ment of Davisson and Germer because its interpretation is more direct.

Davisson and Germer were studying the scattering of electrons from a solid using
an apparatus like that sketched in Fig. 3.6. The energy of the electrons in the primary
beam, the angle at which they reach the target, and the position of the detector could
all be varied. Classical physics predicts that the scattered electrons will emerge in all
directions with only a moderate dependence of their intensity on scattering angle and
even less on the energy of the primary electrons. Using a block of nickel as the target,
Davisson and Germer verified these predictions.

In the midst of their work an accident occurred that allowed air to enter their ap-
paratus and oxidize the metal surface. To reduce the oxide to pure nickel, the target
was baked in a hot oven. After this treatment, the target was returned to the appara-
tus and the measurements resumed.

Now the results were very different. Instead of a continuous variation of scattered
electron intensity with angle, distinct maxima and minima were observed whose
positions depended upon the electron energy! Typical polar graphs of electron intensity
after the accident are shown in Fig. 3.7. The method of plotting is such that the intensity
at any angle is proportional to the distance of the curve at that angle from the point
of scattering. If the intensity were the same at all scattering angles, the curves would
be circles centered on the point of scattering.

Two questions come to mind immediately: What is the reason for this new effect?
Why did it not appear until after the nickel target was baked?

De Broglies hypothesis suggested that electron waves were being diffracted by the
target, much as x-rays are diffracted by planes of atoms in a crystal. This idea received

g
g
=)
=]
(3}
3 .
< 7
— 5 ° //
“\//
7
P
40V 44V 48V 54V 60V 64V 68 V

Figure 3.7 Results of the Davisson-Germer experiment, showing how the number of scattered elec-
trons varied with the angle between the incoming beam and the crystal surface. The Bragg planes of
atoms in the crystal were not parallel to the crystal surface, so the angles of incidence and scattering
relative to one family of these planes were both 65° (see Fig. 3.8).
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support when it was realized that heating a block of nickel at high temperature causes
the many small individual crystals of which it is normally composed to form into a
single large crystal, all of whose atoms are arranged in a regular lattice. .

Let us see whether we can verify that de Broglie waves are responsible for the findings
of Davisson and Germer. In a particular case, a beam of 54-eV electrons was directed
perpendicularly at the nickel target and a sharp maximum in the electron distribution

54-eV electrons

occurred at an angle of 50° with the original beam. The angles of incidence and 500 7
scattering relative to the family of Bragg planes shown in Fig. 3.8 are both 65°. The 4\,"
spacing of the planes in this family, which can be measured by x-ray diffraction, is z
0.091 nm. The Bragg equation for maxima in the diffraction pattern is Single crystal
of nickel
nA = 2dsin 6 (2.13)

Figure 3.8 The diffraction of the
Here d = 0.091 nm and 6 = 65°. For n = 1 the de Broglie wavelength A of the  de Broglic waves by the target is

diffracted electrons is responsible for the results of
Davisson and Germer.

A = 2dsin 0 = (2)(0.091 nm)(sin65°) = 0.165 nm

Now we use de Broglies formula A = h/ymv to find the expected wavelength of
the electrons. The electron kinetic energy of 54 eV is small compared with its rest en-
ergy mc” of 0.51 MeV, so we can let y = 1. Since

KE = tmv’

the electron momentum mv is

mv =V 2mKE
=V@)©.1 % 107! kg)(54 eV)(1.6 X 1077 J/eV)
=40 X 10 **keg - m/s

The electron wavelength is therefore

h 6.63 X 10 *J-
A= o 10 J'S 166 % 107" m = 0.166 nm
mv 4.0 X 10" “" kg - m/s

which agrees well with the observed wavelength of 0.165 nm. The Davisson-Germer
experiment thus directly verifies de Broglie’s hypothesis of the wave nature of moving
bodies.

Analyzing the Davisson-Germer experiment is actually less straightforward than in-
dicated above because the energy of an electron increases when it enters a crystal by
an amount equal to the work function of the surface. Hence the electron speeds in the
experiment were greater inside the crystal and the de Broglie wavelengths there shorter
than the values outside. Another complication arises from interference between waves
diffracted by different families of Bragg planes, which restricts the occurrence of maxima
to certain combinations of electron energy and angle of incidence rather than merely
to any combination that obeys the Bragg equation.

Electrons are not the only bodies whose wave behavior can be demonstrated. The
diffraction of neutrons and of whole atoms when scattered by suitable crystals has been
observed, and in fact neutron diffraction, like x-ray and electron diffraction, has been
used for investigating crystal structures.
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Figure 3.9 A particle confined to
a box of width L. The particle is
assumed to move back and forth
along a straight line between the
walls of the box.

1 ——

Figure 3.10 Wave functions of a
particle trapped in a box L wide.

1
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]
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Counts

Neutron diffraction by a quartz crystal. The peaks represent directions in which con-
structive interference occurred. (Courtesy Frank J. Rotella and Arthur J. Schultz, Argonne
National Laboratory)

3.6 PARTICLE IN A BOX
Why the energy of a trapped particle is quantized

The wave nature of a moving particle leads to some remarkable consequences when
the particle is restricted to a certain region of space instead of being able to move freely.
The simplest case is that of a particle that bounces back and forth between the walls of
a box, as in Fig. 3.9. We shall assume that the walls of the box are infinitely hard, so the
particle does not lose energy each time it strikes a wall, and that its velocity is sufficiently
small so that we can ignore relativistic considerations. Simple as it is, this model situation
requires fairly elaborate mathematics in order to be properly analyzed, as we shall learn in
Chap. 5. However, even a relatively crude treatment can reveal the essential results.

From a wave point of view, a particle trapped in a box is like a standing wave in a
string stretched between the box’s walls. In both cases the wave variable (transverse
displacement for the string, wave function ¥ for the moving particle) must be 0 at
the walls, since the waves stop there. The possible de Broglie wavelengths of the par-
ticle in the box therefore are determined by the width L of the box, as in Fig. 3.10.
The longest wavelength is specified by A = 2L, the next by A = L, then A = 2L/3,
and so forth. The general formula for the permitted wavelengths is

De Broglie oL
wavelengths of Ay, = o n= 1,2,3,... 3.17)
trapped particle

Because mv = h/A, the restrictions on de Broglie wavelength A imposed by the

width of the box are equivalent to limits on the momentum of the particle and, in turn,
to limits on its kinetic energy. The kinetic energy of a particle of momentum mv is

(mv)? _ h?

2m 2m\?

KE = tmv? =

The permitted wavelengths are A, = 2L/n, and so, because the particle has no potential
energy in this model, the only energies it can have are
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n*h?
Particle in a box E, = 3 n=123,... (3.18)
8mL

Each permitted energy is called an energy level, and the integer n that specifies an
energy level E, is called its quantum number.

We can draw three general conclusions from Eq. (3.18). These conclusions apply
to any particle confined to a certain region of space (even if the region does not have
a well-defined boundary), for instance an atomic electron held captive by the attraction
of the positively charged nucleus.

1 A trapped particle cannot have an arbitrary energy, as a free particle can. The fact
of its confinement leads to restrictions on its wave function that allow the particle to
have only certain specific energies and no others. Exactly what these energies are de-
pends on the mass of the particle and on the details of how it is trapped.

2 A trapped particle cannot have zero energy. Since the de Broglie wavelength of the
particle is A = h/mv, a speed of v = 0 means an infinite wavelength. But there is no
way to reconcile an infinite wavelength with a trapped particle, so such a particle must
have at least some kinetic energy. The exclusion of E = 0 for a trapped particle, like
the limitation of E to a set of discrete values, is a result with no counterpart in classi-
cal physics, where all non-negative energies, including zero, are allowed.

3 Because Planck’s constant is so small—only 6.63 X 107 °* ] - s—quantization of en-
ergy is conspicuous only when m and L are also small. This is why we are not aware
of energy quantization in our own experience. Two examples will make this clear.

Example 3.4

An electron is in a box 0.10 nm across, which is the order of magnitude of atomic dimensions.
Find its permitted energies.

Solution

Here m = 9.1 X 1071 kgand L = 0.10 nm = 1.0 X 1071 m, so that the permitted electron
energies are

. (n*)(6.63 X 10 J - 5)
" (8)(9.1 X 10 kg)(1.0 X 107 m)
= 38n% eV

— —18 2
— = 6.0 X 107'%n? ]

The minimum energy the electron can have is 38 eV, corresponding to n = 1. The sequence of
energy levels continues with E; = 152 eV, E; = 342 eV, E; = 608 eV, and so on (Fig. 3.11). If
such a box existed, the quantization of a trapped electron’s energy would be a prominent feature
of the system. (And indeed energy quantization is prominent in the case of an atomic electron.)

Example 3.5

A 10-g marble is in a box 10 cm across. Find its permitted energies.
Solution

Withm =10g=1.0 X 107 kgand L = 10 cm = 1.0 X 10” ' m,

(n*)(6.63 X 107> ] - s)?
(8)(1.0 X 1072 kg)(1.0 X 10~ " m)?
5.5 X 107%n? ]

E, =

700

600

500

400

Energy, eV

n=4

Figure 3.11 Energy levels of an

electron confined
0.1 nm wide.

to a box
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A=2?
AV
— Ax f<—

Ax small
Ap large

(a)
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[« Ax >
Ax large
Ap small

(b)

Figure 3.12 (@) A narrow de
Broglie wave group. The position
of the particle can be precisely
determined, but the wavelength
(and hence the particle's momen-
tum) cannot be established be-
cause there are not enough waves
to measure accurately. (b) A wide
wave group. Now the wavelength
can be precisely determined but
not the position of the particle.

The minimum energy the marble can have is 5.5 X 10~ °* J, corresponding to n = 1. A marble
with this kinetic energy has a speed of only 3.3 X 10" m/s and therefore cannot be experi-
mentally distinguished from a stationary marble. A reasonable speed a marble might have is, say,
% m/s—which corresponds to the energy level of quantum number n = 10°°! The permissible
energy levels are so very close together, then, that there is no way to determine whether the
marble can take on only those energies predicted by Eq. (3.18) or any energy whatever. Hence
in the domain of everyday experience, quantum effects are imperceptible, which accounts for
the success of Newtonian mechanics in this domain.

3.7 UNCERTAINTY PRINCIPLE 1

We cannot know the future because we cannot know the present

To regard a moving particle as a wave group implies that there are fundamental limits
to the accuracy with which we can measure such “particle” properties as position and
momentum.

To make clear what is involved, let us look at the wave group of Fig. 3.3. The par-
ticle that corresponds to this wave group may be located anywhere within the group
at a given time. Of course, the probability density [¥|* is 2 maximum in the middle of
the group, so it is most likely to be found there. Nevertheless, we may still find the
particle anywhere that [¥]* is not actually 0.

The narrower its wave group, the more precisely a particle’s position can be speci-
fied (Fig. 3.12a). However, the wavelength of the waves in a narrow packet is not well
defined; there are not enough waves to measure A accurately. This means that since
A = h/ymuv, the particles momentum ymuv is not a precise quantity. If we make a series
of momentum measurements, we will find a broad range of values.

On the other hand, a wide wave group, such as that in Fig. 3.12b, has a clearly
defined wavelength. The momentum that corresponds to this wavelength is therefore
a precise quantity, and a series of measurements will give a narrow range of values. But
where is the particle located? The width of the group is now too great for us to be able
to say exactly where the particle is at a given time.

Thus we have the uncertainty principle:

[t is impossible to know both the exact position and exact momentum of an ob-
ject at the same time.

This principle, which was discovered by Werner Heisenberg in 1927, is one of the
most significant of physical laws.

A formal analysis supports the above conclusion and enables us to put it on a quan-
titative basis. The simplest example of the formation of wave groups is that given in
Sec. 3.4, where two wave trains slightly different in angular frequency @ and wave
number k were superposed to yield the series of groups shown in Fig. 3.4. A moving
body corresponds to a single wave group, not a series of them, but a single wave group
can also be thought of in terms of the superposition of trains of harmonic waves. How-
ever, an infinite number of wave trains with different frequencies, wave numbers, and
amplitudes is required for an isolated group of arbitrary shape, as in Fig. 3.13.

At a certain time t, the wave group W(x) can be represented by the Fourier integral

V() = J:g(k) cos kx dk (3.19)
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Figure 3.13 An isolated wave group is the result of superposing an infinite number of waves with dif-
ferent wavelengths. The narrower the wave group, the greater the range of wavelengths involved. A
narrow de Broglie wave group thus means a well-defined position (Ax smaller) but a poorly defined
wavelength and a large uncertainty Ap in the momentum of the particle the group represents. A wide
wave group means a more precise momentum but a less precise position.

where the function g(k) describes how the amplitudes of the waves that contribute to
W(x) vary with wave number k. This function is called the Fourier transform of W(x),
and it specifies the wave group just as completely as W(x) does. Figure 3.14 contains
graphs of the Fourier transforms of a pulse and of a wave group. For comparison, the
Fourier transform of an infinite train of harmonic waves is also included. There is only
a single wave number in this case, of course.

Strictly speaking, the wave numbers needed to represent a wave group extend from
k =0 to k = o, but for a group whose length Ax is finite, the waves whose ampli-
tudes g(k) are appreciable have wave numbers that lie within a finite interval Ak. As
Fig. 3.14 indicates, the narrower the group, the broader the range of wave numbers
needed to describe it, and vice versa.

The relationship between the distance Ax and the wave-number spread Ak depends
upon the shape of the wave group and upon how Ax and Ak are defined. The minimum
value of the product Ax Ak occurs when the envelope of the group has the familiar
bell shape of a Gaussian function. In this case the Fourier transform happens to be a
Gaussian function also. If Ax and Ak are taken as the standard deviations of the
respective functions W(x) and g(k), then this minimum value is Ax Ak = . Because
wave groups in general do not have Gaussian forms, it is more realistic to express the
relationship between Ax and Ak as

Ax Ak =" (3.20)

I | W  AAAAAAA- + —L»x

—\\—-
— L AL

L s>k

(@) (b) © (d)

> <
<

Figure 3.14 The wave functions and Fourier transforms for (a) a pulse, (b) a wave group, (¢) a wave
train, and (d) a Gaussian distribution. A brief disturbance needs a broader range of frequencies to
describe it than a disturbance of greater duration. The Fourier transform of a Gaussian function is
also a Gaussian function.
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Gaussian Function

hen a set of measurements is made of some quantity x in which the experimental errors

are random, the result is often a Gaussian distribution whose form is the bell-shaped
curve shown in Fig. 3.15. The standard deviation o of the measurements is a measure of the
spread of x values about the mean of x,, where o equals the square root of the average of the
squared deviations from xo. If N measurements were made,

o [1 &
Standard deviation 7=\ Zl(xl — Xo)?

1

The width of a Gaussian curve at half its maximum value is 2.350.
The Gaussian function f(x) that describes the above curve is given by

. . 1
Gaussian function fx) = ——¢~—x0/207
oV2m

where f(x) is the probability that the value x be found in a particular measurement. Gaussian
functions occur elsewhere in physics and mathematics as well. (Gabriel Lippmann had this to
say about the Gaussian function: “Experimentalists think that it is a mathematical theorem while
mathematicians believe it to be an experimental fact.”)

The probability that a measurement lie inside a certain range of x values, say between x; and
X, is given by the area of the f(x) curve between these limits. This area is the integral

P = [ S0 e

An interesting questions is what fraction of a series of measurements has values within a stan-
dard deviation of the mean value x,. In this case x; = xo — 0 and x, = xo + o, and

Xot+ o
Pxoio' = f f(x) dx = 0.683
Hence 68.3 percent of the measurements fall in this interval, which is shaded in Fig. 3.15. A
similar calculation shows that 95.4 percent of the measurements fall within two standard
deviations of the mean value.

fx)
1.0

0.5

X0 X

Figure 3.15 A Gaussian distribution. The probability of finding a value of x is given by the Gaussian
function f(x). The mean value of x is x, and the total width of the curve at half its maximum value
is 2.350, where o is the standard deviation of the distribution. The total probability of finding a value
of x within a standard deviation of x, is equal to the shaded area and is 68.3 percent.
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The de Broglie wavelength of a particle of momentum p is A=h/p and the
corresponding wave number is

21 21p
k= —=—"
A h
In terms of wave number the particle’s momentum is therefore
e
P 2

Hence an uncertainty Ak in the wave number of the de Broglie waves associated with the
particle results in an uncertainty Ap in the particles momentum according to the formula

h Ak
Ap = —
P 27
Since Ax Ak = 5, Ak = 1/(2Ax) and
Uncertainty h
e Ax Ap = —— (3.21)
principle 4q7

This equation states that the product of the uncertainty Ax in the position of an ob-
ject at some instant and the uncertainty Ap in its momentum component in the x di-
rection at the same instant is equal to or greater than h/4.

If we arrange matters so that Ax is small, corresponding to a narrow wave group,
then Ap will be large. If we reduce Ap in some way, a broad wave group is inevitable

and Ax will be large.

Werner Heisenberg (1901-1976)
was born in Duisberg, Germany,
and studied theoretical physics at
Munich, where he also became an
enthusiastic skier and moun-
taineer. At Gottingen in 1924 as an
assistant to Max Born, Heisenberg
became uneasy about mechanical
models of the atom: “Any picture
of the atom that our imagination
is able to invent is for that very
reason defective,” he later remarked. Instead he conceived an
abstract approach using matrix algebra. In 1925, together with
Born and Pascual Jordan, Heisenberg developed this approach
into a consistent theory of quantum mechanics, but it was so
difficult to understand and apply that it had very little impact
on physics at the time. Schrodingers wave formulation of
quantum mechanics the following year was much more suc-
cessful; Schrodinger and others soon showed that the wave and
matrix versions ol quantum mechanics were mathematically
equivalent.

In 1927, working at Bohr’ institute in Copenhagen, Heisen-
berg developed a suggestion by Wolfgang Pauli into the uncer-
tainty principle. Heisenberg initially felt that this principle was
a consequence of the disturbances inevitably produced by any

il

measuring process. Bohr, on the other hand, thought that the
basic cause of the uncertainties was the wave-particle duality,
so that they were built into the natural world rather than solely
the result of measurement. After much argument Heisenberg
came around to Bohr’s view. (Einstein, always skeptical about
quantum mechanics, said after a lecture by Heisenberg on the
uncertainty principle: “Marvelous, what ideas the young people
have these days. But I don't believe a word of it.”) Heisenberg
received the Nobel Prize in 1932.

Heisenberg was one of the very few distinguished scientists
to remain in Germany during the Nazi period. In World War 11
he led research there on atomic weapons, but little progress had
been made by the war’s end. Exactly why remains unclear, al-
though there is no evidence that Heisenberg, as he later claimed,
had moral qualms about creating such weapons and more or
less deliberately dragged his feet. Heisenberg recognized early
that “an explosive of unimaginable consequences” could be de-
veloped, and he and his group should have been able to have
gotten farther than they did. In fact, alarmed by the news that
Heisenberg was working on an atomic bomb, the U.S. govern-
ment sent the former Boston Red Sox catcher Moe Berg to shoot
Heisenberg during a lecture in neutral Switzerland in 1944.
Berg, sitting in the second row, found himself uncertain from
Heisenberg’s remarks about how advanced the German program
was, and kept his gun in his pocket.
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These uncertainties are due not to inadequate apparatus but to the imprecise charac-
ter in nature of the quantities involved. Any instrumental or statistical uncertainties that
arise during a measurement only increase the product Ax Ap. Since we cannot know ex-
actly both where a particle is right now and what its momentum is, we cannot say any-
thing definite about where it will be in the future or how fast it will be moving then. We
cannot know the future for sure because we cannot know the present for sure. But our igno-
rance is not total: we can still say that the particle is more likely to be in one place than
another and that its momentum is more likely to have a certain value than another.

H-Bar

The quantity h/27 appears often in modern physics because it turns out to be the
basic unit of angular momentum. It is therefore customary to abbreviate h/2 by the
symbol 7 (“h-bar”):

h
i=——=1054%x10"]-s
2

In the remainder of this book 7 is used in place of h/27. In terms of 7, the uncer-
tainty principle becomes

Uncertainty

%
Ax Ap = —
Xp 3

(3.22)

principle

Example 3.6

A measurement establishes the position of a proton with an accuracy of =1.00 X 10~ *! m. Find
the uncertainty in the proton’s position 1.00 s later. Assume v << c.

Solution

Let us call the uncertainty in the proton’s position Axy at the time ¢t = 0. The uncertainty in its
momentum at this time is therefore, from Eq. (3.22),

Ap =
P ZAXQ

Since v << ¢, the momentum uncertainty is Ap = A(mv) = m Av and the uncertainty in the
proton’s velocity is

A 7
Aav= L= 2
m 2m Axg
The distance x the proton covers in the time ¢ cannot be known more accurately than
7t
Ax =tAv= ———
2m Axg

Hence Ax is inversely proportional to Axo: the more we know about the proton’s position at
t = 0, the less we know about its later position at t > 0. The value of Ax at t = 1.00 s is

(1.054 X 107" ] - $)(1.00 s)
(2)(1.672 X 107" kg)(1.00 X 107" m)

=315X10°m

Ax =

This is 3.15 km—nearly 2 mi! What has happened is that the original wave group has spread
out to a much wider one (Fig. 3.16). This occurred because the phase velocities of the compo-
nent waves vary with wave number and a large range of wave numbers must have been present
to produce the narrow original wave group. See Fig. 3.14.



Wave Properties of Particles

113

2 t
Ml _Wave packet Cl)
/L Classical particle
- X
2
[Pl O
AN
X
12 ®
&
M

Figure 3.16 The wave packet that corresponds to a moving packet is a composite of many individ-
ual waves, as in Fig. 3.13. The phase velocities of the individual waves vary with their wave lengths.
As a result, as the particle moves, the wave packet spreads out in space. The narrower the original
wavepacket—that is, the more precisely we know its position at that time—the more it spreads out
because it is made up of a greater span of waves with different phase velocities.

3.8 UNCERTAINTY PRINCIPLE II

A particle approach gives the same result

The uncertainty principle can be arrived at from the point of view of the particle prop-
erties of waves as well as from the point of view of the wave properties of particles.

We might want to measure the position and momentum of an object at a certain mo-
ment. To do so, we must touch it with something that will carry the required information
back to us. That is, we must poke it with a stick, shine light on it, or perform some sim-
ilar act. The measurement process itself thus requires that the object be interfered with in
some way. If we consider such interferences in detail, we are led to the same uncertainty
principle as before even without taking into account the wave nature of moving bodies.

Suppose we look at an electron using light of wavelength A, as in Fig. 3.17. Each
photon of this light has the momentum h/A. When one of these photons bounces
off the electron (which must happen if we are to “see” the electron), the electron’s

Viewer

Incident
photon Reflected
photon
—_—
Original
momentum
of electron Final \
momentum

of electron

Figure 3.17 An electron cannot be observed without changing its momentum.
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original momentum will be changed. The exact amount of the change Ap cannot be
predicted, but it will be of the same order of magnitude as the photon momentum
h/X. Hence

h
Ap = — 3.23
Y (3.23)

The longer the wavelength of the observing photon, the smaller the uncertainty in the
electron’s momentum.

Because light is a wave phenomenon as well as a particle phenomenon, we cannot
expect to determine the electron’s location with perfect accuracy regardless of the in-
strument used. A reasonable estimate of the minimum uncertainty in the measurement
might be one photon wavelength, so that

Ax = A (3.24)

The shorter the wavelength, the smaller the uncertainty in location. However, if we use

light of short wavelength to increase the accuracy of the position measurement, there will

be a corresponding decrease in the accuracy of the momentum measurement because

the higher photon momentum will disturb the electron’s motion to a greater extent. Light

of long wavelength will give a more accurate momentum but a less accurate position.
Combining Egs. (3.23) and (3.24) gives

AxAp=h (3.25)

This result is consistent with Eq. (3.22), Ax Ap = 7/2.

Arguments like the preceding one, although superficially attractive, must be
approached with caution. The argument above implies that the electron can possess a
definite position and momentum at any instant and that it is the measurement process
that introduces the indeterminacy in Ax Ap. On the contrary, this indeterminacy is
inherent in the nature of a moving body. The justification for the many “derivations” of
this kind is first, they show it is impossible to imagine a way around the uncertainty
principle; and second, they present a view of the principle that can be appreciated in
a more familiar context than that of wave groups.

3.9 APPLYING THE UNCERTAINTY PRINCIPLE

A useful tool, not just a negative statement

Planck’s constant h is so small that the limitations imposed by the uncertainty princi-
ple are significant only in the realm of the atom. On such a scale, however, this principle
is of great help in understanding many phenomena. It is worth keeping in mind that
the lower limit of %/2 for Ax Ap is rarely attained. More usually Ax Ap = 7, or even
(as we just saw) Ax Ap = h.

Example 3.7

A typical atomic nucleus is about 5.0 X 107" m in radius. Use the uncertainty principle to
place a lower limit on the energy an electron must have il it is to be part of a nucleus.
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Solution
Letting Ax = 5.0 X 107° m we have

% 1.054 X 1072%] . s
=

Ap = =
P= SAx 2)(.0 X 107 m)

=1.1x10* kg m/s

If this is the uncertainty in a nuclear electron’s momentum, the momentum p itself must be at
least comparable in magnitude. An electron with such a momentum has a kinetic energy KE
many times greater than its rest energy mc”. From Eq. (1.24) we see that we can let KE = pc
here to a sufficient degree of accuracy. Therefore

KE = pc = (1.1 X 107’ kg - m/s)(3.0 X 10° m/s) = 3.3 X 107"

Since 1 eV = 1.6 X 107'? J, the kinetic energy of an electron must exceed 20 MeV if it is to
be inside a nucleus. Experiments show that the electrons emitted by certain unstable nuclei never
have more than a small fraction of this energy, from which we conclude that nuclei cannot con-
tain electrons. The electron an unstable nucleus may emit comes into being at the moment the
nucleus decays (see Secs. 11.3 and 12.5).

Example 3.8

A hydrogen atom is 5.3 X 107" m in radius. Use the uncertainty principle to estimate the min-
imum energy an electron can have in this atom.

Solution

Here we find that with Ax = 5.3 X 107 m.

Ap =

= — =99 X 10 * kg - m/
2Ax g ms

An electron whose momentum is of this order of magnitude behaves like a classical particle, and
its kinetic energy is

b _ (99 X 10"* kg - m/s)®

KE = = —31
2m (2.1 X 107" kg)

=>54x%x10"9]

which is 3.4 eV. The kinetic energy of an electron in the lowest energy level of a hydrogen atom
is actually 13.6 eV.

Energy and Time

Another form of the uncertainty principle concerns energy and time. We might wish
to measure the energy E emitted during the time interval At in an atomic process. If
the energy is in the form of em waves, the limited time available restricts the accuracy
with which we can determine the frequency v of the waves. Let us assume that the
minimum uncertainty in the number of waves we count in a wave group is one wave.
Since the frequency of the waves under study is equal to the number of them we count
divided by the time interval, the uncertainty Av in our frequency measurement is

Av = —

At
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The corresponding energy uncertainty is

AF = h Av

and so

AEEE or AE At =h

A more precise calculation based on the nature of wave groups changes this result to

Uncertainties in
energy and time

AE At = (3.26)

(SHINN

Equation (3.26) states that the product of the uncertainty AE in an energy meas-
urement and the uncertainty At in the time at which the measurement is made is equal
to or greater than % /2. This result can be derived in other ways as well and is a gen-
eral one not limited to em waves.

Example 3.9

An “excited” atom gives up its excess energy by emitting a photon of characteristic frequency,
as described in Chap. 4. The average period that elapses between the excitation of an atom and
the time it radiates is 1.0 X 10 % s. Find the inherent uncertainty in the frequency of the
photon.

Solution
The photon energy is uncertain by the amount

AE = A 10X 0)s =53x107%]
TO2At T 200x107%s) T

The corresponding uncertainty in the frequency of light is
AE
Av = T =8 X 10° Hz

This is the irreducible limit to the accuracy with which we can determine the frequency of the
radiation emitted by an atom. As a result, the radiation from a group of excited atoms does not
appear with the precise frequency v. For a photon whose frequency is, say, 5.0 X 10'* Hz,
Av/v = 1.6 X 10 ® In practice, other phenomena such as the doppler effect contribute more
than this to the broadening of spectral lines.



117

Exercises

EXERCISES

It is only the first step that takes the effort. —Marquise du Deffand

3.1 De Broglie Waves

1.

10.

11.

12.

A photon and a particle have the same wavelength. Can any-
thing be said about how their linear momenta compare? About
how the photon’s energy compares with the particle’s total
energy? About how the photon’s energy compares with the
particle’s kinetic energy?

Find the de Broglie wavelength of (a) an electron whose speed is
1.0 X 10% m/s, and (b) an electron whose speed is 2.0 X 10% m/s.

Find the de Broglie wavelength of a 1.0-mg grain of sand
blown by the wind at a speed of 20 m/s.

Find the de Broglie wavelength of the 40-keV electrons used in
a certain electron microscope.

By what percentage will a nonrelativistic calculation of the
de Broglie wavelength of a 100-keV electron be in error?

Find the de Broglie wavelength of a 1.00-MeV proton. Is a rela-
tivistic calculation needed?

The atomic spacing in rock salt, NaCl, is 0.282 nm. Find the
kinetic energy (in eV) of a neutron with a de Broglie wave-
length of 0.282 nm. Is a relativistic calculation needed? Such
neutrons can be used to study crystal structure.

Find the kinetic energy of an electron whose de Broglie wave-
length is the same as that of a 100-keV x-ray.

Green light has a wavelength of about 550 nm. Through what
potential difference must an electron be accelerated to have this
wavelength?

Show that the de Broglie wavelength of a particle of mass m
and kinetic energy KE is given by
he

V KE(KE + 2mc?)

Show that if the total energy of a moving particle greatly
exceeds its rest energy, its de Broglie wavelength is nearly the
same as the wavelength of a photon with the same total energy.

A=

(a) Derive a relativistically correct formula that gives the

de Broglie wavelength of a charged particle in terms of the po-
tential difference V through which it has been accelerated.

(b) What is the nonrelativistic approximation of this formula,
valid for eV << mc®?

3.4 Phase and Group Velocities

13.

14.

An electron and a proton have the same velocity. Compare the
wavelengths and the phase and group velocities of their
de Broglie waves.

An electron and a proton have the same kinetic energy.
Compare the wavelengths and the phase and group velocities of
their de Broglie waves.

15.

16.

17.

18.

19.

20.

21.

22,

Verify the statement in the text that, if the phase velocity is the
same for all wavelengths of a certain wave phenomenon (that
is, there is no dispersion), the group and phase velocities are
the same.

The phase velocity of ripples on a liquid surface is V27S/Ap,
where S is the surface tension and p the density of the liquid.
Find the group velocity of the ripples.

The phase velocity of ocean waves is V g\ /2, where g is the
acceleration of gravity. Find the group velocity of ocean waves.

Find the phase and group velocities of the de Broglie waves of
an electron whose speed is 0.900c.

Find the phase and group velocities of the de Broglie waves of
an electron whose kinetic energy is 500 keV.

Show that the group velocity of a wave is given by v, =

dv/d(1/N).

(a) Show that the phase velocity of the de Broglie waves of a
particle of mass m and de Broglie wavelength \ is given by

meA \2
v, =¢ 1+(—)
h

(b) Compare the phase and group velocities of an electron
whose de Broglie wavelength is exactly 1 X 107" m.

In his original paper, de Broglie suggested that E = hv and

p = h/\, which hold for electromagnetic waves, are also valid
for moving particles. Use these relationships to show that the
group velocity v, of a de Broglie wave group is given by dE /dp,
and with the help of Eq. (1.24), verify that v, = v for a particle
of velocity v.

3.5 Particle Diffraction

23.

24.

25.

26.

What effect on the scattering angle in the Davisson-Germer
experiment does increasing the electron energy have?

A beam of neutrons that emerges from a nuclear reactor contains
neutrons with a variety of energies. To obtain neutrons with an
energy of 0.050 eV, the beam is passed through a crystal whose
atomic planes are 0.20 nm apart. At what angles relative to the
original beam will the desired neutrons be diffracted?

In Sec. 3.5 it was mentioned that the energy of an electron en-
tering a crystal increases, which reduces its de Broglie wavelength.
Consider a beam of 54-eV electrons directed at a nickel target.
The potential energy of an electron that enters the target changes
by 26 eV. (a) Compare the electron speeds outside and inside the
target. (b) Compare the respective de Broglie wavelengths.

A beam of 50-keV electrons is directed at a crystal and
diffracted electrons are found at an angle of 50° relative to the
original beam. What is the spacing of the atomic planes of the
crystal? A relativistic calculation is needed for \.
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3.6 Particle in a Box

27.

28.

29.

Obtain an expression for the energy levels (in MeV) of a neu-
tron confined to a one-dimensional box 1.00 X 10~ m wide.
What is the neutron’s minimum energy? (The diameter of an
atomic nucleus is of this order of magnitude.)

The lowest energy possible for a certain particle trapped in a
certain box is 1.00 eV. (a) What are the next two higher ener-
gies the particle can have? (b) If the particle is an electron, how
wide is the box?

A proton in a one-dimensional box has an energy of 400 keV in
its first excited state. How wide is the box?

3.7 Uncertainty Principle I
3.8 Uncertainty Principle II
3.9 Applying the Uncertainty Principle

30.

31.

32.

33.

34.

Discuss the prohibition of E = 0 for a particle trapped in a
box L wide in terms of the uncertainty principle. How does
the minimum momentum of such a particle compare with the
momentum uncertainty required by the uncertainty principle if
we take Ax = [?

The atoms in a solid possess a certain minimum zero-point
energy even at 0 K, while no such restriction holds for the
molecules in an ideal gas. Use the uncertainty principle to
explain these statements.

Compare the uncertainties in the velocities of an electron and a
proton confined in a 1.00-nm box.

The position and momentum of a 1.00-keV electron are simulta-
neously determined. If its position is located to within 0.100 nm,
what is the percentage of uncertainty in its momentum?

(a) How much time is needed to measure the kinetic energy of
an electron whose speed is 10.0 m/s with an uncertainty of no
more than 0.100 percent? How far will the electron have

traveled in this period of time? (b) Make the same calculations

35.

36.

37.

38.

39.

40.

for a 1.00-g insect whose speed is the same. What do these
sets of figures indicate?

How accurately can the position of a proton with v << ¢ be
determined without giving it more than 1.00 keV of kinetic
energy?

(a) Find the magnitude of the momentum of a particle in a
box in its nth state. (b) The minimum change in the particle’s
momentum that a measurement can cause corresponds (o a
change of *1 in the quantum number n. If Ax = L, show that

Ap Ax=17/2.

A marine radar operating at a frequency of 9400 MHz emits
groups of electromagnetic waves 0.0800 us in duration. The
time needed for the reflections of these groups to return
indicates the distance to a target. (a) Find the length of each
group and the number of waves it contains. (b) What is the
approximate minimum bandwidth (that is, spread of frequen-
cies) the radar receiver must be able to process?

An unstable elementary particle called the eta meson has a rest
mass of 549 MeVc® and a mean lifetime of 7.00 X 10~ '?s.
What is the uncertainty in its rest mass?

The frequency of oscillation of a harmonic oscillator of mass m
and spring constant C is » = V' C/m/27. The energy of the
oscillator is E = p?/2m + Cx*/2, where p is its momentum
when its displacement from the equilibrium position is x. In
classical physics the minimum energy of the oscillator is

Epmin = 0. Use the uncertainty principle to find an expression
for E in terms of x only and show that the minimum energy is
actually E, = hv/2 by setting dE/dx = 0 and solving for E .

(a) Verify that the uncertainty principle can be expressed in the
form AL A§ = 7/2, where AL is the uncertainty in the angular
momentum of a particle and A6 is the uncertainty in its
angular position. (Hint: Consider a particle of mass m moving
in a circle of radius r at the speed v, for which L = mvr)

(b) At what uncertainty in L will the angular position of a parti-
cle become completely indeterminate?
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Scanning tunneling micrograph of gold atoms on a carbon (graphite) substrate.
The cluster of gold atoms is about 1.5 nm across and three atoms high.

QUANTUM MECHANICS
Classical mechanics is an approximation of
quantum mechanics
THE WAVE EQUATION
It can have a variety of solutions, including
complex ones
SCHRODINGER’S EQUATION:
TIME-DEPENDENT FORM
A basic physical principle that cannot be derived
from anything else
LINEARITY AND SUPERPOSITION
Wave functions add, not probabilities
EXPECTATION VALUES
How to extract information from a wave
function
OPERATORS
Another way to find expectation values

9.7 SCHRODINGER’S EQUATION:
STEADY-STATE FORM
Eigenvalues and eigenfunctions
5.8 PARTICLE IN A BOX
How boundary conditions and normalization
determine wave functions
5.9 FINITE POTENTIAL WELL
The wave function penetrates the walls, which
lowers the energy levels
5.10 TUNNEL EFFECT
A particle without the energy to pass over a
potential barrier may still tunnel through it
5.11 HARMONIC OSCILLATOR
Its energy levels are evenly spaced

APPENDIX: THE TUNNEL EFFECT



Quantum Mechanics

161

Ithough the Bohr theory of the atom, which can be extended further than was

done in Chap. 4, is able to account for many aspects of atomic phenomena, it

has a number of severe limitations as well. First of all, it applies only to hy-
drogen and one-electron ions such as He ™ and Li**—it does not even work for ordinary
helium. The Bohr theory cannot explain why certain spectral lines are more intense
than others (that is, why certain transitions between energy levels have greater
probabilities of occurrence than others). It cannot account for the observation that
many spectral lines actually consist of several separate lines whose wavelengths differ
slightly. And perhaps most important, it does not permit us to obtain what a really suc-
cessful theory of the atom should make possible: an understanding of how individual
atoms interact with one another to endow macroscopic aggregates of matter with the
physical and chemical properties we observe.

The preceding objections to the Bohr theory are not put forward in an unfriendly
way, for the theory was one of those seminal achievements that transform scientific
thought, but rather to emphasize that a more general approach to atomic phenomena
is required. Such an approach was developed in 1925 and 1926 by Erwin Schrodinger,
Werner Heisenberg, Max Born, Paul Dirac, and others under the apt name of quantum
mechanics. “The discovery of quantum mechanics was nearly a total surprise. It de-
scribed the physical world in a way that was fundamentally new. It seemed to many
of us a miracle,” noted Eugene Wigner, one of the early workers in the field. By the
early 1930s the application of quantum mechanics to problems involving nuclei, atoms,
molecules, and matter in the solid state made it possible to understand a vast body of
data (“a large part of physics and the whole of chemistry,” according to Dirac) and—
vital for any theory—led to predictions of remarkable accuracy. Quantum mechanics
has survived every experimental test thus far of even its most unexpected conclusions.

9.1 QUANTUM MECHANICS

Classical mechanics is an approximation of quantum mechanics

The fundamental difference between classical (or Newtonian) mechanics and quantum
mechanics lies in what they describe. In classical mechanics, the future history of a par-
ticle is completely determined by its initial position and momentum together with the
forces that act upon it. In the everyday world these quantities can all be determined
well enough for the predictions of Newtonian mechanics to agree with what we find.

Quantum mechanics also arrives at relationships between observable quantities, but
the uncertainty principle suggests that the nature of an observable quantity is differ-
ent in the atomic realm. Cause and effect are still related in quantum mechanics, but
what they concern needs careful interpretation. In quantum mechanics the kind of cer-
tainty about the future characteristic of classical mechanics is impossible because the
initial state of a particle cannot be established with sufficient accuracy. As we saw in
Sec. 3.7, the more we know about the position of a particle now, the less we know
about its momentum and hence about its position later.

The quantities whose relationships quantum mechanics explores are probabilities.
Instead of asserting, for example, that the radius of the electron’s orbit in a ground-
state hydrogen atom is always exactly 5.3 X 10~ ' m, as the Bohr theory does, quantum
mechanics states that this is the most probable radius. In a suitable experiment most
trials will yield a different value, either larger or smaller, but the value most likely to
be found will be 5.3 X 107" m.
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Quantum mechanics might seem a poor substitute for classical mechanics. However,
classical mechanics turns out to be just an approximate version of quantum mechanics.
The certainties of classical mechanics are illusory, and their apparent agreement with
experiment occurs because ordinary objects consist of so many individual atoms that
departures from average behavior are unnoticeable. Instead of two sets of physical prin-
ciples, one for the macroworld and one for the microworld, there is only the single set
included in quantum mechanics.

Wave Function

As mentioned in Chap. 3, the quantity with which quantum mechanics is concerned
is the wave function ¥ of a body. While W itself has no physical interpretation, the
square of its absolute magnitude [W|* evaluated at a particular place at a particular time
is proportional to the probability of finding the body there at that time. The linear mo-
mentum, angular momentum, and energy of the body are other quantities that can be
established from W. The problem of quantum mechanics is to determine W for a body
when its freedom of motion is limited by the action of external forces.

Wave functions are usually complex with both real and imaginary parts. A proba-
bility, however, must be a positive real quantity. The probability density [W|* for a com-
plex W is therefore taken as the product ¥*W of ¥ and its complex conjugate W*.
The complex conjugate of any function is obtained by replacing i(=V—1) by —i
wherever it appears in the function. Every complex function ¥ can be written in the
form

Wave function V=A+iB

where A and B are real functions. The complex conjugate ¥* of W is

Complex conjugate P* =A—iB

and so |P|* = W*W = A* — i’B* = A® + B’

since i* = —1. Hence [¥]* = W*W is always a positive real quantity, as required.
Normalization

Even before we consider the actual calculation of ¥, we can establish certain require-
ments it must always fulfill. For one thing, since [W|* is proportional to the probabil-
ity density P of finding the body described by W, the integral of [W|* over all space
must be finite—the body is somewhere, after all. If

f WP dv =0

the particle does not exist, and the integral obviously cannot be o and still mean any-
thing. Furthermore, |W|* cannot be negative or complex because of the way it is de-
fined. The only possibility left is that the integral be a finite quantity if ¥ is to describe
properly a real body.

It is usually convenient to have [W]* be equal to the probability density P of find-
ing the particle described by W, rather than merely be proportional to P If [¥]* is to
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equal P, then it must be true that

Normalization J |W)> dv =1 5.D

since if the particle exists somewhere at all times,
f Pdv=1

A wave function that obeys Eq. (5.1) is said to be normalized. Every acceptable
wave function can be normalized by multiplying it by an appropriate constant; we shall
shortly see how this is done.

Well-Behaved Wave Functions

Besides being normalizable, ¥ must be single-valued, since P can have only one value at
a particular place and time, and continuous. Momentum considerations (see Sec. 5.6)
require that the partial derivatives 9W/dx, 9W/dy, 9W/dz be finite, continuous, and single-
valued. Only wave functions with all these properties can yield physically meaningful
results when used in calculations, so only such “well-behaved” wave functions are ad-
missible as mathematical representations of real bodies. To summarize:

1 ¥ must be continuous and single-valued everywhere.

2 9W/ax, 9W/dy, 0¥ /dz must be continuous and single-valued everywhere.

3 W must be normalizable, which means that ¥ must go to 0 as x = *%, y — *o,
7 — *oo in order that [|[¥]*> dV over all space be a finite constant.

These rules are not always obeyed by the wave functions of particles in model
situations that only approximate actual ones. For instance, the wave functions of a par-
ticle in a box with infinitely hard walls do not have continuous derivatives at the walls,
since ¥ = 0 outside the box (see Fig. 5.4). But in the real world, where walls are never
infinitely hard, there is no sharp change in W at the walls (see Fig. 5.7) and the de-
rivatives are continuous. Exercise 7 gives another example of a wave function that is
not well-behaved.

Given a normalized and otherwise acceptable wave function ¥, the probability that
the particle it describes will be found in a certain region is simply the integral of the
probability density [¥]* over that region. Thus for a particle restricted to motion in the
x direction, the probability of finding it between x; and x, is given by

X3
Probability P, = J |W|* dx (5.2)

X1

We will see examples of such calculations later in this chapter and in Chap. 6.

5.2 THE WAVE EQUATION
It can have a variety of solutions, including complex ones
Schrodinger’s equation, which is the fundamental equation of quantum mechanics in

the same sense that the second law of motion is the fundamental equation of New-
tonian mechanics, is a wave equation in the variable W.
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Before we tackle Schrodinger’s equation, let us review the wave equation

Wave equation —_— = — —= (5.3)

which governs a wave whose variable quantity is y that propagates in the x direction
with the speed v. In the case of a wave in a stretched string, y is the displacement of
the string from the x axis; in the case of a sound wave, y is the pressure difference; in
the case of a light wave, y is either the electric or the magnetic field magnitude.
Equation (5.3) can be derived from the second law of motion for mechanical waves
and from Maxwell’s equations for electromagnetic waves.

Partial Derivatives

S uppose we have a function f(x, y) of two variables, x and y, and we want to know how f
varies with only one of them, say x. To find out, we differentiate f with respect to x while
treating the other variable y as a constant. The result is the partial derivative of f with respect
to x, which is written df/dx

g4
ax dx y=constant

The rules for ordinary differentiation hold for partial differentiation as well. For instance, if
f= o,

— = 2cx
dx
and so, if [ = yxz,
Jd d
Loy
dx dx y=constant

The partial derivative of f = yx* with respect to the other variable, y, is
L (4
ay dy X=constant

Second order partial derivatives occur often in physics, as in the wave equation. To find
9%f/ax*, we first calculate 9f/ax and then differentiate again, still keeping y constant:

Y
ax” 0x \ dx
For f = yx?,
o°f 9
—5 = —Qmw =2
x> ax( y%) Y
- PN
Similarly P x)=0

Solutions of the wave equation may be of many kinds, reflecting the variety of
waves that can occur—a single traveling pulse, a train of waves of constant amplitude
and wavelength, a train of superposed waves of the same amplitudes and
wavelengths, a train of superposed waves of different amplitudes and wavelengths,
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y =A cos o(t —x/v)

Figure 5.1 Waves in the xy plane traveling in the +x direction along a stretched string lying on the
X axis.

a standing wave in a string fastened at both ends, and so on. All solutions must be
of the form

y = F(t + %) (5.4)

where F is any function that can be differentiated. The solutions F(t — x/v) represent
waves traveling in the +x direction, and the solutions F(t + x/v) represent waves trav-
eling in the —x direction.

Let us consider the wave equivalent of a “free particle,” which is a particle that is
not under the influence of any forces and therefore pursues a straight path at constant
speed. This wave is described by the general solution of Eq. (5.3) for undamped (that
is, constant amplitude A), monochromatic (constant angular frequency @) harmonic
waves in the +x direction, namely

y = AeT @tV (5.5)

In this formula y is a complex quantity, with both real and imaginary parts.
Because
e ¥ =cos® —isin 6

Eq. (5.5) can be written in the form

y=Acosw<t—£>—iAsinw(t—£> (5.6)
v v

Only the real part of Eq. (5.6) [which is the same as Eq. (3.5)] has significance in the case
of waves in a stretched string. There y represents the displacement of the string from its
normal position (Fig. 5.1), and the imaginary part of Eq. (5.6) is discarded as irrelevant.

Example 5.1
Verily that Eq. (5.5) is a solution of the wave equation.
Solution

The derivative of an exponential function ¢* is

d d

The partial derivative of y with respect to x (which means t is treated as a constant) from Eq. (5.5)
is therefore
ay iw

v
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and the second partial derivative is

0y 262 2
Pl e
since i* = —1. The partial derivative of y with respect to t (now holding x constant) is
Wy _ .
o ey
and the second partial derivative is
% =i’w’y = —w’y
Combining these results gives
Fy 18y
ax* v’ ot

which is Eq. (5.3). Hence Eq. (5.5) is a solution of the wave equation.

5.3 SCHRODINGER’S EQUATION: TIME-DEPENDENT FORM

A basic physical principle that cannot be derived from anything else

In quantum mechanics the wave function W corresponds to the wave variable y of
wave motion in general. However, W, unlike y, is not itself a measurable quantity and
may therefore be complex. For this reason we assume that W for a particle moving
freely in the +x direction is specified by

P = Ae @t (5.7)
Replacing w in the above formula by 277v and v by Av gives
P = Ae—Zﬂ'i(V[—X/)\) (58)

This is convenient since we already know what v and A are in terms of the total energy
E and momentum p of the particle being described by ¥'. Because

_ 2mh

h
E=hv=2whv and A= —
p P

we have

Free particle P = Ae~ WPE=PO (5.9)

Equation (5.9) describes the wave equivalent of an unrestricted particle of total
energy E and momentum p moving in the +x direction, just as Eq. (5.5) describes, for
example, a harmonic displacement wave moving freely along a stretched string.

The expression for the wave function ¥ given by Eq. (5.9) is correct only for freely
moving particles. However, we are most interested in situations where the motion of
a particle is subject to various restrictions. An important concern, for example, is an
electron bound to an atom by the electric field of its nucleus. What we must now do
is obtain the fundamental differential equation for ¥, which we can then solve for ¥
in a specific situation. This equation, which is Schrodingers equation, can be arrived
at in various ways, but it cannot be rigorously derived from existing physical principles:
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the equation represents something new. What will be done here is to show one route
to the wave equation for ¥ and then to discuss the significance of the result.
We begin by differentiating Eq. (5.9) for ¥ twice with respect to x, which gives

* 2
> T _p_zq,
0x fi
*w
2\1, — _hz
p 952

v iE

R

=LY
i ot

(5.10)

(5.1

At speeds small compared with that of light, the total energy E of a particle is the
sum of its kinetic energy pz/ 2m and its potential energy U, where U is in general a

function of position x and time t:
2

p

E=-—
2m

+ Ulx, t)

(5.12)

The function U represents the influence of the rest of the universe on the particle. Of
course, only a small part of the universe interacts with the particle to any extent; for

Erwin Schrodinger (1887-1961) was
born in Vienna to an Austrian father and
a half-English mother and received his
doctorate at the university there. After
World War 1, during which he served
as an artillery officer, Schrodinger had
appointments at several ~German
universities before becoming professor
of physics in Zurich, Switzerland. Late
in November, 1925, Schrodinger gave a
talk on de Broglies notion that a moving particle has a wave
character. A colleague remarked to him afterward that to deal
properly with a wave, one needs a wave equation. Schrodinger
took this to heart, and a few weeks later he was “struggling with
a new atomic theory. If only I knew more mathematics! I am very
optimistic about this thing and expect that if T can only . . . solve
it, it will be very beautiful.” (Schrodinger was not the only physicist
to find the mathematics he needed difficult; the eminent mathe-
matician David Hilbert said at about this time, “Physics is much
too hard for physicists.”)

The struggle was successful, and in January 1926 the first of
four papers on “Quantization as an Eigenvalue Problem” was
completed. In this epochal paper Schrodinger introduced the
equation that bears his name and solved it for the hydrogen atom,

thereby opening wide the door to the modern view of the atom
which others had only pushed ajar. By June Schrodinger had
applied wave mechanics to the harmonic oscillator, the diatomic
molecule, the hydrogen atom in an electric field, the absorption
and emission of radiation, and the scattering of radiation by
atoms and molecules. He had also shown that his wave me-
chanics was mathematically equivalent to the more abstract
Heisenberg-Born-Jordan matrix mechanics.

The significance of Schrodinger’s work was at once realized.
In 1927 he succeeded Planck at the University of Berlin but left
Germany in 1933, the year he received the Nobel Prize, when
the Nazis came to power. He was at Dublin’s Institute for Ad-
vanced Study from 1939 until his return to Austria in 1956. In
Dublin, Schrodinger became interested in biology, in particular
the mechanism of heredity. He seems to have been the first to
make definite the idea of a genetic code and to identify genes
as long molecules that carry the code in the form of variations
in how their atoms are arranged. Schrodinger’s 1944 book What
Is Life? was enormously influential, not only by what it said but
also by introducing biologists to a new way of thinking—that
of the physicist—about their subject. What Is Life? started James
Watson on his search [or “the secret of the gene,” which he and
Francis Crick (a physicist) discovered in 1953 to be the struc-
ture of the DNA molecule.
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instance, in the case of the electron in a hydrogen atom, only the electric field of the
nucleus must be taken into account.
Multiplying both sides of Eq. (5.12) by the wave function W gives

2

v
=" 4 pw (5.13)
2m

Now we substitute for EW and pz‘lf from Egs. (5.10) and (5.11) to obtain the time-
dependent form of Schrodinger’s equation:

Time-dependent

5di ow h* *W
Schroldlng.er ih— = -2y Uw (5.14)
equation in one at 2m 0x
dimension

In three dimensions the time-dependent form of Schrodinger’s equation is

o e R 2
i T = ——( LA S ",‘f)+ U (5.15)
at 2m\ dx ay 0z

where the particle’s potential energy U is some function of x, y, z, and t.

Any restrictions that may be present on the particles motion will affect the potential-
energy function U. Once U is known, Schrodinger’s equation may be solved for the
wave function W of the particle, from which its probability density [¥|* may be de-
termined for a specified x, y, z, t.

Validity of Schrodinger’s Equation

Schrodinger’s equation was obtained here using the wave function of a freely moving
particle (potential energy U = constant). How can we be sure it applies to the general
case of a particle subject to arbitrary forces that vary in space and time [U =
U(x, y, z, D]? Substituting Eqs. (5.10) and (5.11) into Eq. (5.13) is really a wild leap
with no formal justification; this is true for all other ways in which Schrodinger’s equa-
tion can be arrived at, including Schrodinger’s own approach.

What we must do is postulate Schrodinger’s equation, solve it for a variety of phys-
ical situations, and compare the results of the calculations with the results of experi-
ments. If both sets of results agree, the postulate embodied in Schrodinger’s equation
is valid. If they disagree, the postulate must be discarded and some other approach
would then have to be explored. In other words,

Schrodinger’s equation cannot be derived from other basic principles of physics;
it is a basic principle in itself.

What has happened is that Schrodinger’s equation has turned out to be remarkably
accurate in predicting the results of experiments. To be sure, Eq. (5.15) can be used
only for nonrelativistic problems, and a more elaborate formulation is needed when
particle speeds near that of light are involved. But because it is in accord with experi-
ence within its range of applicability, we must consider Schrodinger’s equation as a
valid statement concerning certain aspects of the physical world.

It is worth noting that Schrodinger’s equation does not increase the number of
principles needed to describe the workings of the physical world. Newton’s second law
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of motion F = ma, the basic principle of classical mechanics, can be derived from
Schrodinger’s equation provided the quantities it relates are understood to be averages
rather than precise values. (Newton’s laws of motion were also not derived from any
other principles. Like Schrodinger’s equation, these laws are considered valid in their
range of applicability because of their agreement with experiment.)

9.4 LINEARITY AND SUPERPOSITION

Wave functions add, not probabilities

An important property of Schrodinger’s equation is that it is linear in the wave function
V. By this is meant that the equation has terms that contain W and its derivatives but
no terms independent of W or that involve higher powers of W or its derivatives. As
a result, a linear combination of solutions of Schrodinger’s equation for a given system
is also itself a solution. If ¥, and W, are two solutions (that is, two wave functions
that satisfy the equation), then

v = al\lfl + az\lfz

is also a solution, where a, and a, are constants (see Exercise 8). Thus the wave func-
tions ¥, and W, obey the superposition principle that other waves do (see Sec. 2.1)
and we conclude that interference effects can occur for wave functions just as they can
for light, sound, water, and electromagnetic waves. In fact, the discussions of Secs. 3.4
and 3.7 assumed that de Broglie waves are subject to the superposition principle.

Let us apply the superposition principle to the diffraction of an electron beam. Fig-
ure 5.2a shows a pair of slits through which a parallel beam of monoenergetic elec-
trons pass on their way to a viewing screen. If slit 1 only is open, the result is the
intensity variation shown in Fig. 5.2b that corresponds to the probability density

Py = |‘I’1|2 = Vi,
If slit 2 only is open, as in Fig. 5.2¢, the corresponding probability density is
Py = |\I’2|2 = WiV,

We might suppose that opening both slits would give an electron intensity variation
described by Py + P5, as in Fig. 5.2d. However, this is not the case because in quantum

Screen

Electrons
/
o o> Slit 2
e
o—>
o—> o—>
o—> o—>
o—>
o—>
o—>
o—>
o—>
e slit 1
o—> o—>
- L L=

EARNE AR AR AR A

(@) b © @ @]

Figure 5.2 (a) Arrangement of double-slit experiment. (b) The electron intensity at the screen with
only slit 1 open. (¢) The electron intensity at the screen with only slit 2 open. (d) The sum of the
intensities of (b) and (c). (¢) The actual intensity at the screen with slits 1 and 2 both open. The wave
functions2 W, and W, add to produce the intensity at the screen, not the probability densities [W,]*
and [P, |*.
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mechanics wave functions add, not probabilities. Instead the result with both slits open
is as shown in Fig. 5.2¢, the same pattern of alternating maxima and minima that oc-
curs when a beam of monochromatic light passes through the double slit of Fig. 2.4.
The diffraction pattern of Fig. 5.2e arises from the superposition W of the wave
functions ¥, and ¥, of the electrons that have passed through slits 1 and 2:

v=v +V,

The probability density at the screen is therefore

:P1+P2+\I,1k/q,2+’\1,§\1,1

The two terms at the right of this equation represent the difference between Fig. 5.2d and
e and are responsible for the oscillations of the electron intensity at the screen. In Sec. 6.8
a similar calculation will be used to investigate why a hydrogen atom emits radiation when
it undergoes a transition from one quantum state to another of lower energy.

9.9 EXPECTATION VALUES

How to extract information from a wave function

Once Schrodinger’s equation has been solved for a particle in a given physical situa-
tion, the resulting wave function W(x, y, z, t) contains all the information about the
particle that is permitted by the uncertainty principle. Except for those variables that
are quantized this information is in the form of probabilities and not specific numbers.

As an example, let us calculate the expectation value (x) of the position of a
particle confined to the x axis that is described by the wave function W(x, t). This
is the value of x we would obtain if we measured the positions of a great many
particles described by the same wave function at some instant ¢t and then averaged
the results.

To make the procedure clear, we first answer a slightly different question: What is
the average position x of a number of identical particles distributed along the x axis in
such a way that there are Ny particles at x;, N, particles at x,, and so on? The average
position in this case is the same as the center of mass of the distribution, and so

— lel + N2X2 + N3X3 + - ZNiXi
%= == (5.16)
N1+N2+N3+"’ —Nj

When we are dealing with a single particle, we must replace the number N; of
particles at x; by the probability P; that the particle be found in an interval dx at x;.
This probability is

P, = ¥ dx (5.17)

where W; is the particle wave function evaluated at x = x;. Making this substitution
and changing the summations to integrals, we see that the expectation value of the
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position of the single particle is

J W[ dx

(x) = F—z (5.18)
[W[* dx

If ¥ is a normalized wave function, the denominator of Eq. (5.18) equals the prob-
ability that the particle exists somewhere between x = — and x = % and therefore
has the value 1. In this case

Expectation value (x) = foo X|\P|Z dx (5.19)
for position - |

Example 5.2

A particle limited to the x axis has the wave function ¥ = ax between x = 0 and x = 1; ¥ = 0
elsewhere. (a) Find the probability that the particle can be found between x = 0.45 and x =
0.55. (b) Find the expectation value {x) of the particles position.

Solution

(a) The probability is

X 0.55 37055
J [W)? dx = a* f x*dx = az[%] =0.0251a*
. 0.45

X 0.45

(b) The expectation value is

x4 ]1 (12

1 1
x) = J x[W|* dx = o f Xdx = az[
0 0 4 Jo 4

The same procedure as that followed above can be used to obtain the expectation
value (G(x)) of any quantity—for instance, potential energy U(x)—that is a function of
the position x of a particle described by a wave function W. The result is

Expectation value (GX)) = J GO)|W|? dx (5.20)

The expectation value {p) for momentum cannot be calculated this way because,
according to the uncertainty principles, no such function as p(x) can exist. If we specify
x, so that A x = 0, we cannot specify a corresponding p since Ax Ap = /2. The same
problem occurs for the expectation value (E) for energy because AEAt = 7i/2 means
that, if we specify ¢, the function E(t) is impossible. In Sec. 5.6 we will see how (p)
and (E) can be determined.

In classical physics no such limitation occurs, because the uncertainty principle can
be neglected in the macroworld. When we apply the second law of motion to the
motion of a body subject to various forces, we expect to get p(x, t) and E(x, t) from
the solution as well as x(t). Solving a problem in classical mechanics gives us the en-
tire future course of the body’s motion. In quantum physics, on the other hand, all we
get directly by applying Schrodinger’s equation to the motion of a particle is the wave
function W, and the future course of the particles motion—like its initial state—is a
matter of probabilities instead of certainties.
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9.6 OPERATORS

Another way to find expectation values

A hint as to the proper way to evaluate (p) and (E) comes from differentiating the free-
particle wave function ¥ = Ae™ @/PEPO wwith respect to x and to t. We find that

or i

- = \I}
0x hp
o i
— = ——FEV¥
ot h

which can be written in the suggestive forms

oo
N 21
4 i ox (5:21)
EP = iha%‘lf (5.22)

Evidently the dynamical quantity p in some sense corresponds to the differential
operator (/i) 9/0x and the dynamical quantity E similarly corresponds to the differ-
ential operator it 9/dt.

An operator tells us what operation to carry out on the quantity that follows it.
Thus the operator if 9/t instructs us to take the partial derivative of what comes after
it with respect to t and multiply the result by if. Equation (5.22) was on the postmark
used to cancel the Austrian postage stamp issued to commemorate the 100th
anniversary of Schrodingers birth.

It is customary to denote operators by using a caret, so that p is the operator that
corresponds to momentum p and E is the operator that corresponds to total energy E.
From Egs. (5.21) and (5.22) these operators are

i oo
Momentum p=—— (5.23)
operator i dx
Total-energy .0
operator b= lﬁE G2b

Though we have only shown that the correspondences expressed in Egs. (5.23)
and (5.24) hold for free particles, they are entirely general results whose validity is
the same as that of Schrodinger’s equation. To support this statement, we can re-
place the equation E = KE + U for the total energy of a particle with the operator
equation

E=KE+U (5.25)

The operator Uis just U(¥). The kinetic energy KE is given in terms of momen-
tum p by
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and so we have

-2 2 2
inetic- . 1 /h 9 \2 A 9
Kinetic-energy KE = D = — (=) === (5.26)
operator 2m 2m\ i 0x 2m ox
Equation (5.25) therefore reads
0 K o°
' ot 2m 9x? ( )

v h? o*w
at 2m ax?

which is Schrodinger’s equation. Postulating Eqs. (5.23) and (5.24) is equivalent to
postulating Schrodinger’s equation.

Operators and Expectation Values

Because p and E can be replaced by their corresponding operators in an equation, we
can use these operators to obtain expectation values for p and E. Thus the expectation
value for p is

* * hoo ho(* ow
= PP =J W*(——)‘If = —f P 2
(p) J—oc Y dx —oo i 0x dx i Joo 0x (5.28)

and the expectation value for E is

00 . oo 8 ] a\If

(E) = f WHEW dx = f ‘P*(iﬁa)\lf dx = if f P o dx (5.29)

Both Egs. (5.28) and (5.29) can be evaluated for any acceptable wave function W (x, t).

Let us see why expectation values involving operators have to be expressed in the
form

o) = [ wepw ax
The other alternatives are

* A (* 09 fi *
f PV dx = — f —P*WP) dx = —[\If*\lf] =0

—c i Joow 0x i e

since ¥* and ¥ must be 0 at x = *oo, and
ﬁ e}
J VW p dx = — \If*\If— dx

which makes no sense. In the case of algebraic quantities such as x and V(x), the order
of factors in the integrand is unimportant, but when differential operators are involved,
the correct order of factors must be observed.
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Every observable quantity G characteristic of a physical system may be represented
by a suitable quantum-mechanical operator G. To obtain this operator, we express G
in terms of x and p and then replace p by (%/i) 9/dx. If the wave function ¥ of the
system is known, the expectation value of G(x, p) is

Expectation value
of an operator

(G, p)) = f VGV dx (5.30)

In this way all the information about a system that is permitted by the uncertainty
principle can be obtained from its wave function W.

5.7 SCHRODINGER’S EQUATION: STEADY-STATE FORM

Eigenvalues and eigenfunctions

In a great many situations the potential energy of a particle does not depend on time
explicitly; the forces that act on it, and hence U, vary with the position of the particle
only. When this is true, Schrodinger’s equation may be simplified by removing all
reference to t.

We begin by noting that the one-dimensional wave function W of an unrestricted
particle may be written

T = Ae—(i/ﬁ)(EL—px) — Ae—(iE/ﬁ)te+(ip/ﬁ)x — ¢e—(iE/h)t (531)
Evidently W is the product of a time-dependent function ¢~/ and a position-
dependent function . As it happens, the time variations of all wave functions of
particles acted on by forces independent of time have the same form as that of an
unrestricted particle. Substituting the W of Eq. (5.31) into the time-dependent form of
Schrodinger’s equation, we find that
. W, 00U .
Fe GE/Mt = _ " —GE/me + Utpe GE/m
v 2m ax* v

Dividing through by the common exponential factor gives
Steady-state

2
Schrodinger equation (;_lf + Zh_rg E-U¢=0 (5.32)
X

in one dimension

Equation (5.32) is the steady-state form of Schrodinger’s equation. In three dimen-
sions it is

Steady-state

Schrodinger LR o’y ER4 2m

+ 28+ L = E- vy = :
equation in three ax* ay” 07> #? (E=U=0 (5.33)
dimensions

An important property of Schrodinger’s steady-state equation is that, if it has one
or more solutions for a given system, each of these wave functions corresponds to a
specific value of the energy E. Thus energy quantization appears in wave mechanics as
a natural element of the theory, and energy quantization in the physical world is re-
vealed as a universal phenomenon characteristic of all stable systems.
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A familiar and quite close analogy to the manner in which energy quantization occurs
in solutions of Schrodinger’s equation is with standing waves in a stretched string of
length L that is fixed at both ends. Here, instead of a single wave propagating indefi-
nitely in one direction, waves are traveling in both the +x and —x directions simul-
taneously. These waves are subject to the condition (called a boundary condition) that
the displacement y always be zero at both ends of the string. An acceptable function
y(x, t) for the displacement must, with its derivatives (except at the ends), be as well-
behaved as ¢ and its derivatives—that is, be continuous, finite, and single-valued. In
this case y must be real, not complex, as it represents a directly measurable quantity.
The only solutions of the wave equation, Eq. (5.3), that are in accord with these various
limitations are those in which the wavelengths are given by

2L
A, = n=20,1,2,3,...
n+1

as shown in Fig. 5.3. It is the combination of the wave equation and the restrictions
placed on the nature of its solution that leads us to conclude that y(x, t) can exist only
for certain wavelengths A,..

Eigenvalues and Eigenfunctions

The values of energy E, for which Schrodinger’s steady-state equation can be solved
are called eigenvalues and the corresponding wave functions i, are called eigen-
functions. (These terms come from the German Eigenwert, meaning “proper or char-
acteristic value,” and Eigenfunktion, “proper or characteristic function.”) The discrete
energy levels of the hydrogen atom

me” 1
Enz_W? n=123,...

are an example of a set of eigenvalues. We shall see in Chap. 6 why these particular
values of E are the only ones that yield acceptable wave functions for the electron in
the hydrogen atom.

An important example of a dynamical variable other than total energy that is found
to be quantized in stable systems is angular momentum L. In the case of the hydro-
gen atom, we shall find that the eigenvalues of the magnitude of the total angular
momentum are specified by

L=VIIl+Dnh 1=0,1,2,...,(n—1)

Of course, a dynamical variable G may not be quantized. In this case measurements
of G made on a number of identical systems will not yield a unique result but instead
a spread of values whose average is the expectation value

- >
G = [ cluf ax
In the hydrogen atom, the electron’s position is not quantized, for instance, so that we
must think of the electron as being present in the vicinity of the nucleus with a cer-
tain probability [* per unit volume but with no predictable position or even orbit in
the classical sense. This probabilistic statement does not conflict with the fact that

A=2L n-01,2,3,. ..
n+1

Figure 5.3 Standing waves in a
stretched string fastened at both
ends.
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experiments performed on hydrogen atoms always show that each one contains a whole
electron, not 27 percent of an electron in a certain region and 73 percent elsewhere.
The probability is one of finding the electron, and although this probability is smeared
out in space, the electron itself is not.

Operators and Eigenvalues

The condition that a certain dynamical variable G be restricted to the discrete values
G,—in other words, that G be quantized—is that the wave functions ¢, of the system
be such that

Eigenvalue equation G, = G, (5.39)

where G is the operator that corresponds to G and each G, is a real number. When
Eq. (5.34) holds for the wave functions of a system, it is a fundamental postulate of
quantum mechanics that any measurement of G can only yield one of the values G,.
If measurements of G are made on a number of identical systems all in states described
by the particular eigenfunction s, each measurement will yield the single value G,.

Example 5.3
An eigenfunction of the operator d*/dx” is ¢ = ¢**. Find the corresponding eigenvalue.
Solution

Here G = d?/dx?, so

. d d

Gp = S () = —[ww] - e =4
But ¢ = ¢, so

G = 4

From Eq. (5.34) we see that the eigenvalue G here is just G = 4.

In view of Egs. (5.25) and (5.26) the total-energy operator E of Eq. (5.24) can also
be written as

e R h o?
Hamiltonian A=-———+U (5.35)
operator 2m ox

and is called the Hamiltonian operator because it is reminiscent of the Hamiltonian
function in advanced classical mechanics, which is an expression for the total energy
of a system in terms of coordinates and momenta only. Evidently the steady-state
Schrodinger equation can be written simply as

Schrodinger’s

Hi, = Ef, (5.36)

equation
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Table 5.1 Operators Associated with Various
Observable Quantities

Quantity Operator
Position, x X
) ho0
Linear momentum, p - —
i ox
Potential energy, U(x) U(x)
" . . p2 hl 32
inetic energy, = — -
& 2m 2m 9x?
J
Total energy, E if B_t
I
Total energy (Hamiltonian form), H -——— +t U
2m dx

so we can say that the various E, are the eigenvalues of the Hamiltonian operator H.
This kind of association between eigenvalues and quantum-mechanical operators is quite
general. Table 5.1 lists the operators that correspond to various observable quantities.

9.8 PARTICLE IN A BOX

How boundary conditions and normalization determine wave functions

To solve Schrodinger’s equation, even in its simpler steady-state form, usually requires
elaborate mathematical techniques. For this reason the study of quantum mechanics
has traditionally been reserved for advanced students who have the required profi-
ciency in mathematics. However, since quantum mechanics is the theoretical structure
whose results are closest to experimental reality, we must explore its methods and ap-
plications to understand modern physics. As we shall see, even a modest mathemati-
cal background is enough for us to follow the trains of thought that have led quantum
mechanics to its greatest achievements.

The simplest quantum-mechanical problem is that of a particle trapped in a box
with infinitely hard walls. In Sec. 3.6 we saw how a quite simple argument yields the
energy levels of the system. Let us now tackle the same problem in a more formal way,
which will give us the wave function s, that corresponds to each energy level.

We may specify the particle’s motion by saying that it is restricted to traveling along
the x axis between x = 0 and x = L by infintely hard walls. A particle does not lose
energy when it collides with such walls, so that its total energy stays constant. From a
formal point of view the potential energy U of the particle is infinite on both sides of
the box, while U is a constant—say 0 for convenience—on the inside (Fig. 5.4). Because
the particle cannot have an infinite amount of energy, it cannot exist outside the box,
and so its wave function ¢ is 0 for x = 0 and x = L. Our task is to find what ¢ is
within the box, namely, between x = 0 and x = L.

Within the box Schrodinger’s equation becomes

2
% + ﬁ—TEw =0 (5.37)

0 L

Figure 5.4 A square potential well
with infinitely high barriers at
each end corresponds to a box
with infinitely hard walls.
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since U = 0 there. (The total derivative dztlf/dxz is the same as the partial derivative
821./1/ dx? because i is a function only of x in this problem.) Equation (5.37) has the
solution

3
5]

= A sin E x + B cos X (5.38)

which we can verify by substitution back into Eq. (5.37). A and B are constants to be
evaluated.

This solution is subject to the boundary conditions that ¢y = 0 for x = 0 and for
x = L. Since cos0 = 1, the second term cannot describe the particle because it does
not vanish at x = 0. Hence we conclude that B = 0. Since sin0 = 0, the sine term
always yields ¢y = 0 at x = 0, as required, but ¢ will be 0 at x = L only when

2mE
7 L=nm n=1,23 ... (5.39)
This result comes about because the sines of the angles 7, 27, 3, . . . are all 0.

From Eq. (5.39) it is clear that the energy of the particle can have only certain val-
ues, which are the eigenvalues mentioned in the previous section. These eigenvalues,
constituting the energy levels of the system, are found by solving Eq. (5.39) for E,,
which gives
n*m’h?

=1,2,3,... 5.40
szz n ’ ’ ) ( )

Particle in a box E, =

Equation (5.40) is the same as Eq. (3.18) and has the same interpretation [see the
discussion that follows Eq. (3.18) in Sec. 3.6].

Wave Functions

The wave functions of a particle in a box whose energies are E, are, from Eq. (5.38)
with B = 0,

Y, = A sin————x (5.41)

Substituting Eq. (5.40) for E, gives

nmwx

P, = A sin (5.42)

for the eigenfunctions corresponding to the energy eigenvalues E,.

It is easy to verify that these eigenfunctions meet all the requirements discussed in
Sec. 5.1: for each quantum number n, ¢, is a finite, single-valued function of x, and
Y, and 9,/ dx are continuous (except at the ends of the box). Furthermore, the integral
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of [if,]|* over all space is finite, as we can see by integrating [i},|* dx from x = 0 to
x =L (since the particle is confined within these limits). With the help of the
trigonometric identity sin?f = (1 — cos26) we find that

o L L
[l ae= [ o ae =2 [ st () e
—o0 0 0

<l e [ () o

A’ L _ 2nmx | (L
= —|x— (—) sin =A (—) (5.43)
2 2nm L 1 2

To normalize ¢ we must assign a value to A such that [if,|* dx is equal to the prob-

ability P dx of finding the particle between x and x + dx, rather than merely propor-
tional to P dx. If [if,|* dx is to equal P dx, then it must be true that

fw [eh | dx =1 (5.44)

Comparing Egs. (5.43) and (5.44), we see that the wave functions of a particle in a

box are normalized if
2
A= |— 4
L (5.45)

The normalized wave functions of the particle are therefore

o 2 . nmx
Particle in a box Y, = 1 sin 3

n=1,2,3,... (5.46)

The normalized wave functions ¢, ¥, and 5 together with the probability densities
i1, |i2]?, and |yfrs]* are plotted in Fig. 5.5. Although #, may be negative as well as
positive, |¢,]> is never negative and, since t, is normalized, its value at a given x is
equal to the probability density of finding the particle there. In every case [i},|* = 0 at
x = 0 and x = L, the boundaries of the box.

At a particular place in the box the probability of the particle being present may be
very different for different quantum numbers. For instance, |f|* has its maximum
value of 2/L in the middle of the box, while |¢,|*> = O there. A particle in the lowest
energy level of n = 1 is most likely to be in the middle of the box, while a particle in
the next higher state of n = 2 is never there! Classical physics, of course, suggests the
same probability for the particle being anywhere in the box.

The wave functions shown in Fig. 5.5 resemble the possible vibrations of a string
fixed at both ends, such as those of the stretched string of Fig. 5.2. This follows from
the fact that waves in a stretched string and the wave representing a moving particle
are described by equations of the same form, so that when identical restrictions are
placed upon each kind of wave, the formal results are identical.

U3

¥

x=0 x=L

Figure 5.5 Wave functions and
probability densities of a particle
confined to a box with rigid walls.
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Example 5.4

Find the probability that a particle trapped in a box L wide can be found between 0.45L and
0.55L for the ground and first excited states.

Solution

This part of the box is one-tenth of the box’s width and is centered on the middle of the box
(Fig. 5.6). Classically we would expect the particle to be in this region 10 percent of the time.
Quantum mechanics gives quite different predictions that depend on the quantum number of
the particle’s state. From Egs. (5.2) and (5.46) the probability of finding the particle between x,
and x, when it is in the nth state is

P = [ Clfac= 2 o o

[ p% 1 . 2nmx ]X‘
=|= - —— sin
L 2nir L

Here x; = 0.45L and x, = 0.55L. For the ground state, which corresponds to n = 1, we have
P, , = 0.198 = 19.8 percent

This is about twice the classical probability. For the first excited state, which corresponds to
n = 2, we have

Py, x, = 0.0065 = 0.65 percent

This low figure is consistent with the probability density of |¢rn|2 = 0atx = 0.5L

[i,]?

[y 12

Figure 5.6 The probability P, , of finding a particle in the box of Fig. 5.5 between x; = 0.45L and
x5 = 0.55L is equal to the area under the |¥]* curves between these limits.
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Example 5.5

Find the expectation value {x) of the position of a particle trapped in a box L wide.

Solution

From Egs. (5.19) and (5.46) we have

. 2 (t NI

2 .2
x) = X dx = — X sin® ——
6 J,m |¢| LJO L

L

4 4nar/L 8(nm/L)*

2 [xz x sin(2nrx/L) 3 cos(2nmrx/L) ]L

0

Since sinnm = 0, cos 2nm = 1, and cos 0 = 1, for all the values of n the expectation value of
X is

0-3()-4

This result means that the average position of the particle is the middle of the box in all quan-
tum states. There is no conflict with the fact that ||> = 0O at L/2 inthe n = 2, 4, 6, . . . states

because {x) is an average, not a probability, and it reflects the symmetry of |¢|* about the middle
of the box.

Momentum

Finding the momentum of a particle trapped in a one-dimensional box is not as straight-
forward as finding (x). Here

and so, from Eq. (5.30),

o= wpwee= [ (2L a
=ﬁ2n77 b onmx nrx

— — — | sin—— cos—— dx
i L L Jo L L

We note that

) 1
fsmax cosax dx = z—smzax
a
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With a = nm/L we have
f , nTx ]L
2 T [sm Ll

since sin® 0 =sin’ n7m =0 n=123 ...

The expectation value (p) of the particles momentum is 0.
At first glance this conclusion seems strange. After all, E = p*/2m, and so we would
anticipate that

M
omentum nah

L

(5.47)

eigenvalues for = V2mE, = *
trapped particle

The = sign provides the explanation: The particle is moving back and forth, and so

its average momentum for any value of n is

_ (+nmh/L) + (—nwh/L)
2

Pav

0

which is the expectation value.

According to Eq. (5.47) there should be two momentum eigenfunctions for every
energy eigenfunction, corresponding to the two possible directions of motion. The gen-
eral procedure for finding the eigenvalues of a quantum-mechanical operator, here p,
is to start from the eigenvalue equation

Py = puthy (5.48)

where each p, is a real number. This equation holds only when the wave functions #,
are eigenfunctions of the momentum operator p, which here is

are not also momentum eigenfunctions, because

ﬁi(\/zsm_nﬂ'x)_ﬁ@ Ecos—nwxqﬁ 1
i dx\V L L i L L L P

To find the correct momentum eigenfunctions, we note that

. el@ _ e—ie 1 . '
sinf)= ——— = —¢" — —e¢
2i 2i 2i
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Hence each energy eigenfunction can be expressed as a linear combination of the two
wave functions

.1 2

—_ £ inmx/L
Momentum A i VL € (5.49)
eigenfunctions for
trapped particle 1 2
l/f; — z z e*mﬂ'x/I_ (550)

Inserting the first of these wave functions in the eigenvalue equation, Eq. (5.48), we
have

PP = pa

id , A1 |2inm o, nmh .
TR T T aNT L L e
h
so that = +n7z (5.51)
Similarly the wave function ¢, leads to the momentum eigenvalues
nwfi
T=— 5.52
p L (5.52)

We conclude that ¢, and ¢, are indeed the momentum eigenfunctions for a parti-
cle in a box, and that Eq. (5.47) correctly states the corresponding momentum
eigenvalues.

9.9 FINITE POTENTIAL WELL

The wave function penetrates the walls, which lowers the energy levels

Potential energies are never infinite in the real world, and the box with infinitely hard
walls of the previous section has no physical counterpart. However, potential wells
with barriers of finite height certainly do exist. Let us see what the wave functions and
energy levels of a particle in such a well are.

Figure 5.7 shows a potential well with square corners that is U high and L wide
and contains a particle whose energy E is less than U. According to classical
mechanics, when the particle strikes the sides of the well, it bounces off without
entering regions I and III. In quantum mechanics, the particle also bounces back
and forth, but now it has a certain probability of penetrating into regions I and III
even though E < U.

In regions I and III Schrodingers steady-state equation is

d? 2

Energy

< >

—X 0 L +X

Figure 5.7 A square potential well
with finite barriers. The energy E
of the trapped particle is less than
the height U of the barriers.
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(

108

¢1 —  —
x=0 x=L
2 -/ N

53

|l/11|2 —

Figure 5.8 Wave [unctions and
probability densities of a particle
in a finite potental well. The
particle has a certain probability
of being found outside the wall.

which we can rewrite in the more convenient form

d x<O0
%_aﬁb:o x>1L (5.33)

where

V2m(U — E)
a= T (5.54)

The solutions to Eq. (5.53) are real exponentials:

Y = Ce™ + De ™ (5.55)
Yy = Fe™ + Ge ™ (5.56)

Both ¢ and ty;; must be finite everywhere. Since e™ ™ — % as x — —% and ¢™ — ©
as x — o, the coefficients D and F must therefore be 0. Hence we have

Yy = Ce™ (5.57)
Y= Ge @ (5.58)

These wave functions decrease exponentially inside the barriers at the sides of the well.
Within the well Schrodinger’s equation is the same as Eq. (5.37) and its solution is
again

E
e (5.59)

‘ E
Y = A sin x + B cos

In the case of a well with infinitely high barriers, we found that B = 0 in order that
¢ =0atx =0and x = L Here, however, ¢ = Cat x = 0 and ¢y = Gat x = L,
so both the sine and cosine solutions of Eq. (5.59) are possible.

For either solution, both ¢ and dis/dx must be continuous at x = 0 and x = L: the
wave functions inside and outside each side of the well must not only have the same
value where they join but also the same slopes, so they match up perfectly. When these
boundary conditions are taken into account, the result is that exact matching only oc-
curs for certain specific values E, of the particle energy. The complete wave functions
and their probability densities are shown in Fig. 5.8.

Because the wavelengths that fit into the well are longer than for an infinite well of
the same width (see Fig. 5.5), the corresponding particle momenta are lower (we re-
call that N\ = h/p). Hence the energy levels E, are lower for each n than they are for a
particle in an infinite well.

9.10 TUNNEL EFFECT

A particle without the energy to pass over a potential barrier may still
tunnel through it

Although the walls of the potential well of Fig. 5.7 were of finite height, they were
assumed to be infinitely thick. As a result the particle was trapped forever even though
it could penetrate the walls. We next look at the situation of a particle that strikes a
potential barrier of height U, again with E << U, but here the barrier has a finite width
(Fig. 5.9). What we will find is that the particle has a certain probability—not
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Figure 5.9 When a particle of energy E < U approaches a potential barrier, according to classical
mechanics the particle must be reflected. In quantum mechanics, the de Broglie waves that correspond
to the particle are partly reflected and partly transmitted, which means that the particle has a finite
chance of penetrating the barrier.

necessarily great, but not zero either—of passing through the barrier and emerging
on the other side. The particle lacks the energy to go over the top of the barrier, but
it can nevertheless tunnel through it, so to speak. Not surprisingly, the higher the
barrier and the wider it is, the less the chance that the particle can get through.

The tunnel effect actually occurs, notably in the case of the alpha particles emit-
ted by certain radioactive nuclei. As we shall learn in Chap. 12, an alpha particle whose
kinetic energy is only a few MeV is able to escape from a nucleus whose potential wall
is perhaps 25 MeV high. The probability of escape is so small that the alpha particle
might have to strike the wall 10° or more times before it emerges, but sooner or later
it does get out. Tunneling also occurs in the operation of certain semiconductor diodes
(Sec. 10.7) in which electrons pass through potential barriers even though their kinetic
energies are smaller than the barrier heights.

Let us consider a beam of identical particles all of which have the kinetic energy E.
The beam is incident from the left on a potential barrier of height U and width L, as
in Fig. 5.9. On both sides of the barrier U = 0, which means that no forces act on the
particles there. The wave function ¢, represents the incoming particles moving to the
right and i;_ represents the reflected particles moving to the left; yy;; represents the
transmitted particles moving to the right. The wave function ¢ represents the parti-
cles inside the barrier, some of which end up in region III while the others return to
region I. The transmission probability T for a particle to pass through the barrier is
equal to the fraction of the incident beam that gets through the barrier. This proba-
bility is calculated in the Appendix to this chapter. Its approximate value is given by

Approximate
transmission T =¢ 2kt (5.60)
probability
where
V2m(U — E
k, = + (5.6

and L is the width of the barrier.



186

Chapter Five

The tungsten probe of a scanning
tunneling microscope.

Example 5.6

Electrons with energies of 1.0 eV and 2.0 eV are incident on a barrier 10.0 eV high and 0.50 nm
wide. (a) Find their respective transmission probabilities. (b) How are these affected if the barrier
is doubled in width?

Solution

(a) For the 1.0-eV electrons

b~ VU =B
Jo YemI Z B
f

V(2)(9.1 X 10 1 k)[(10.0 — 1.0) eVI(1.6 X 10 ¥ J/eV)
1.054 X 107 ] - s

1.6 X 1019 m™!

Since L = 0.50 nm = 5.0 X 107" m, 2k,L = (2)(1.6 X 10" m~")(5.0 X 107" m) = 16,
and the approximate transmission probability is

Tp=¢ 2h=¢1%=11x10"

One 1.0-eV electron out of 8.9 million can tunnel through the 10-eV barrier on the average. For
the 2.0-eV electrons a similar calculation gives T, = 2.4 X 10~ ". These electrons are over twice
as likely to tunnel through the barrier.

(b) 1f the barrier is doubled in width to 1.0 nm, the transmission probabilities become

Th=13x10" T,=51x10"

Evidently T is more sensitive to the width of the barrier than to the particle energy here.

Scanning Tunneling Microscope

he ability of electrons to tunnel through a potential barner is used in an ingenious way in

the scanning tunneling microscope (STM) to study surfaces on an atomic scale of size.
The STM was invented in 1981 by Gert Binning and Heinrich Rohrer, who shared the 1986
Nobel Prize in physics with Ernst Ruska, the inventor of the electron microscope. In an STM, a
metal probe with a point so fine that its tip is a single atom is brought close to the surface of a
conducting or semiconducting material. Normally even the most loosely bound electrons in an
atom on a surface need several electron-volts of energy to escape—this is the work function
discussed in Chap. 2 in connection with the photoelectric effect. However, when a voltage of
only 10 mV or so is applied between the probe and the surface, electrons can tunnel across the
gap between them if the gap is small enough, a nanometer or two.

According to Eq. (5.60) the electron transmission probability is proportional to e -, where
L is the gap width, so even a small change in L (as little as 0.01 nm, less than a twentieth the
diameter of most atoms) means a detectable change in the tunneling current. What is done is
to move the probe across the surface in a series of closely spaced back-and-forth scans in about
the same way an electron beam traces out an image on the screen of a television picture tube.
The height of the probe is continually adjusted to give a constant tunneling current, and the ad-
justments are recorded so that a map of surface height versus position is built up. Such a map
is able to resolve individual atoms on a surface.

How can the position of the probe be controlled precisely enough to reveal the outlines of
individual atoms? The thickness of certain ceramics changes when a voltage is applied across
them, a property called piezoelectricity. The changes might be several tenths of a nanometer
per volt. In an STM, piezoelectric controls move the probe in x and y directions across a surface
and in the z direction perpendicular to the surface.

L
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Silicon atoms on the surface of a silicon crystal form a regular, repeated pattern in this image produced
by an STM.

Actually, the result of an STM scan is not a true topographical map ol surface height but
a contour map of constant electron density on the surface. This means that atoms of different
elements appear differently, which greatly increases the value of the STM as a research tool.

Although many biological materials conduct electricity, they do so by the flow of ions rather
than of electrons and so cannot be studied with STMs. A more recent development, the atomic
force microscope (AFM) can be used on any surface, although with somewhat less resolution
than an STM. In an AFM, the sharp tip of a fractured diamond presses gently against the atoms
on a surface. A spring keeps the pressure of the tip constant, and a record is made of the
deflections of the tip as it moves across the surface. The result is a map showing contours of
constant repulsive force between the electrons of the probe and the electrons of the surface atoms.
Even relatively soft biological materials can be examined with an AFM and changes in them
monitored. For example, the linking together of molecules of the blood protein fibrin, which
occurs when blood clots, has been watched with an AFM.

5.11 HARMONIC OSCILLATOR

Its energy levels are evenly spaced

Harmonic motion takes place when a system of some kind vibrates about an equilib-
rium configuration. The system may be an object supported by a spring or floating in
a liquid, a diatomic molecule, an atom in a crystal lattice—there are countless examples
on all scales of size. The condition for harmonic motion is the presence of a restoring
force that acts to return the system to its equilibrium configuration when it is disturbed.
The inertia of the masses involved causes them to overshoot equilibrium, and the system
oscillates indefinitely if no energy is lost.

In the special case of simple harmonic motion, the restoring force I on a particle
of mass m is linear; that is, F is proportional to the particle’s displacement x from its
equilibrium position and in the opposite direction. Thus

Hooke’s law F = —kx

This relationship is customarily called Hooke’s law. From the second law of motion,
F = ma, we have
d’x
_kx = m—
e
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oscillator ? + ZX = (5.62)
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Figure 5.10 The potential energy
of a harmonic oscillator is pro-
portional to x*, where x is the
displacement from the equilib-
rium position. The amplitude A
of the motion is determined by
the total energy E of the oscillator,
which classically can have any
value.

There are various ways to write the solution to Eq. (5.62). A common one is

x = A cos Qmvt + ¢) (5.63)
where
Frequency of 1 A
harmonic oscillator v=—— |— (5.64)
2 m

is the frequency of the oscillations and A is their amplitude. The value of ¢, the phase
angle, depends upon what x is at the time t = 0 and on the direction of motion then.

The importance of the simple harmonic oscillator in both classical and modern
physics lies not in the strict adherence of actual restoring forces to Hooke’s law, which
is seldom true, but in the fact that these restoring forces reduce to Hookes law for
small displacements x. As a result, any system in which something executes small
vibrations about an equilibrium position behaves very much like a simple harmonic
oscillator.

To verify this important point, we note that any restoring force which is a func-
tion of x can be expressed in a Maclaurin’s series about the equilibrium position
x=0as

F(x) =F + <£> + l(dz_F) 2 4 l(ﬁ) 3 4+
PE =T ) T e ) L T e\ ae )y

Since x = 0 is the equilibrium position, F,—, = 0. For small x the values of x*, x°, . . .
are very small compared with x, so the third and higher terms of the series can be
neglected. The only term of significance when x is small is therefore the second one.
Hence

dF
F(x) = <E>X=Ox

which is Hooke’s law when (dF/dx),—, is negative, as of course it is for any restoring
force. The conclusion, then, is that all oscillations are simple harmonic in character
when their amplitudes are sufficiently small.

The potential-energy function U(x) that corresponds to a Hooke’s law force may be
found by calculating the work needed to bring a particle from x = 0 to x = x against
such a force. The result is

UG = —f:F(x) dx = kfoxx dx = %kxz (5.65)

which is plotted in Fig. 5.10. The curve of U(x) versus x is a parabola. If the energy
of the oscillator is E, the particle vibrates back and forth between x = —A and x =
+A, where E and A are related by E = “kA”. Figure 8.18 shows how a nonparabolic
potential energy curve can be approximated by a parabola for small displacements.
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Even before we make a detailed calculation we can anticipate three quantum-
mechanical modifications to this classical picture:

1 The allowed energies will not form a continuous spectrum but instead a discrete
spectrum of certain specific values only.

2 The lowest allowed energy will not be E = 0 but will be some definite minimum
E = E,.

3 There will be a certain probability that the particle can penetrate the potential well
it is in and go beyond the limits of —A and +A.

Energy Levels

Schrodinger’s equation for the harmonic oscillator is, with U = $hx?,

¢ 2m 1,
—— +|E-= = :
e P (E 5 kx )(ﬁ 0 (5.66)

It is convenient to simplify Eq. (5.75) by introducing the dimensionless quantities

y= (%m)”zx _ /—27;myx (5.67)

2E E_ZE

? y E (5.68)

and a=

where v is the classical frequency of the oscillation given by Eq. (5.64). In making
these substitutions, what we have done is change the units in which x and E are
expressed from meters and joules, respectively, to dimensionless units.

In terms of y and « Schrodinger’s equation becomes

2

d—‘i’ +(a@—y)b=0 (5.69)
dy

The solutions to this equation that are acceptable here are limited by the condition that
¢y — 0 as y — o in order that

[ wpay=

Otherwise the wave function cannot represent an actual particle. The mathematical
properties of Eq. (5.69) are such that this condition will be fulfilled only when

a=2n+1 n=0,12,3,...

Since a = 2E/hv according to Eq. (5.68), the energy levels of a harmonic oscillator
whose classical frequency of oscillation is v are given by the formula

Energy levels of
harmonic oscillator

E,=n+ Dhv n=0,1,2,3,... (5.70)
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Figure 5.11 Potential wells and en-
ergy levels of (a) a hydrogen atom,
() a particle in a box, and (¢) a
harmonic oscillator. In each case
the energy levels depend in a dif-
ferent way on the quantum
number n. Only for the harmonic
oscillator are the levels equally
spaced. The symbol o means “is
proportional t0.”

The energy of a harmonic oscillator is thus quantized in steps of hv.
We note that when n = 0,

Zero-point energy Ey = jhy (5.7D)

which is the lowest value the energy of the oscillator can have. This value is called the

zero-point energy because a harmonic oscillator in equilibrium with its surroundings

would approach an energy of E = Ej and not E = 0 as the temperature approaches 0 K.
Figure 5.11 is a comparison of the energy levels of a harmonic oscillator with those

of a hydrogen atom and of a particle in a box with infinitely hard walls. The shapes

of the respective potential-energy curves are also shown. The spacing of the energy
levels is constant only for the harmonic oscillator.

Wave Functions

For each choice of the parameter a, there is a different wave function ¢,. Each func-
tion consists of a polynomial H,(y) (called a Hermite polynomial) in either odd or
even powers of y, the exponential factor ¢ /2, and a numerical coefficient which is
needed for ¢, to meet the normalization condition

[ WPa=1 n=o12..

The general formula for the nth wave function is

(5.72)

Harmonic 2my
oscillator

g, = % )1/4(2%!)_1/2Hn(y)e_y2/2

The first six Hermite polynomials H,(y) are listed in Table 5.2.

The wave functions that correspond to the first six energy levels of a harmonic
oscillator are shown in Fig. 5.12. In each case the range to which a particle oscillating
classically with the same total energy E, would be confined is indicated. Evidently the
particle is able to penetrate into classically forbidden regions—in other words, to exceed
the amplitude A determined by the energy—with an exponentially decreasing proba-
bility, just as in the case of a particle in a finite square potential well.

It is interesting and instructive to compare the probability densities of a classical har-
monic oscillator and a quantum-mechanical harmonic oscillator of the same energy. The
upper curves in Fig. 5.13 show this density for the classical oscillator. The probability
P of finding the particle at a given position is greatest at the endpoints of its motion,

Table 5.2 Some Hermite Polynomials

n Hn(y) Qn En
0 1 1 “hy
1 2y 3 Shy
2 4y =2 5 Thy
3 8y> — 12y 7 Thy
4 ley" — 48y* + 12 9 Shy
5 32y° — 160y° + 120y 11 Dhy
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where it moves slowly, and least near the equilibrium position (x = 0), where it moves
rapidly.

Exactly the opposite behavior occurs when a quantum-mechanical oscillator is
in its lowest energy state of n = 0. As shown, the probability density [io|* has its
maximum value at x = 0 and drops off on either side of this position. However,
this disagreement becomes less and less marked with increasing n. The lower graph
of Fig. 5.13 corresponds to n = 10, and it is clear that |fo|*> when averaged over
x has approximately the general character of the classical probability P This is
another example of the correspondence principle mentioned in Chap. 4: In the limit
of large quantum numbers, quantum physics yields the same results as classical
physics.

It might be objected that although [¢,|* does indeed approach P when smoothed
out, nevertheless |¢0|* fluctuates rapidly with x whereas P does not. However, this
objection has meaning only if the fluctuations are observable, and the smaller the spac-
ing of the peaks and hollows, the more difficult it is to detect them experimentally.
The exponential “tails” of [if,0]* beyond x = = A also decrease in magnitude with
increasing n. Thus the classical and quantum pictures begin to resemble each other
more and more the larger the value of n, in agreement with the correspondence prin-
ciple, although they are very different for small n.

lirol?
P
x=—-A x=+4A

Iyl r ﬂ

x=-A x=+A

Figure 5.13 Probability densities for the n = 0 and n = 10 states of a quantum-mechanical harmonic
oscillator. The probability densities for classical harmonic oscillators with the same energies are shown
in white. In the n = 10 state, the wavelength is shortest at x = 0 and longest at x = —A.
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Figure 5.12 The first six harmonic-
oscillator wave functions. The ver-
tical lines show the limits —A and
+A between which a classical os-
cillator with the same energy
would vibrate.
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Example 5.7
Find the expectation value (x) for the first two states of a harmonic oscillator.
Solution

The general formula for (x) is
=[xyl de

In calculations such as this it is easier to begin with y in place of x and afterward use Eq. (5.67)
to change to x. From Eq. (5.72) and Table 5.2,

W = ( 2my )1/4efyz/2

h

_ [ 2my /s 1\12 ey
o () ) o

The values of (x) for n = 0 and n = 1 will respectively be proportional to the integrals

” ” 2 1 > |*
n=02J Yol dy:J ye ™ dy = —[36”] =0

- ” : S G Y
n=12f y|¢1|2dy=f ye dy=—[(;+y7)e_’] =0

The expectation value (x) is therefore 0 in both cases. In fact, {(x) = 0 for all states of a harmonic
oscillator, which could be predicted since x = 0 is the equilibrium position of the oscillator
where its potential energy is a minimum.
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The Tunnel Effect

E < U that approaches a potential barrier U high and L wide. Outside
the barrier in regions I and III Schrodinger’s equation for the particle takes

W e consider the situation that was shown in Fig. 5.9 of a particle of energy

the forms
dzlpl 2m
A + ?Ewl =0 (5.73)
d? 2m
dfén + ?Elpm =0 5.74)

The solutions to these equations that are appropriate here are

P = Ae™* + Be X (5.75)
iy = Fe™™ + Ge ™ (5.76)
where
Wave number 2mE 14 21
k = = - = — .
outside barrier ! fi fi A G.77)

is the wave number of the de Broglie waves that represent the particles outside the
barrier.

Because
i0

e =cosO +isinf

e =cosf —isinh
these solutions are equivalent to Eq. (5.38)—the values of the coefficients are differ-
ent in each case, of course—but are in a more suitable form to describe particles that
are not trapped.
The various terms in Eqs. (5.75) and (5.76) are not hard to interpret. As was shown
schematically in Fig. 5.9, Ae™™ is a wave of amplitude A incident from the left on the
barrier. Hence we can write

Incoming wave Py = Ae* (5.78)

This wave corresponds to the incident beam of particles in the sense that | |” is their
probability density. If v, is the group velocity of the incoming wave, which equals the
velocity of the particles, then

S= |l//1+|2U1+
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is the flux of particles that arrive at the barrier. That is, S is the number of particles
per second that arrive there.
At x = 0 the incident wave strikes the barrier and is partially reflected, with

Reflected wave = Be ¥ (5.79)
representing the reflected wave. Hence
=Y + (5.80)
On the far side of the barrier (x > L) there can only be a wave
Transmitted wave Y+ = Felfix (5.81)

traveling in the +x direction at the velocity vy since region I1I contains nothing that
could reflect the wave. Hence G = 0 and

Yy = e = Fe™ (5.82)
The transmission probability T for a particle to pass through the barrier is the ratio

.. 2
Transmission T = |l//111+| U1+ _ FF*uy
probability [y [Por s AA*U

(5.83)

between the flux of particles that emerges from the barrier and the flux that arrives at
it. In other words, T is the fraction of incident particles that succeed in tunneling
through the barrier. Classically T = 0 because a particle with E < U cannot exist inside
the barrier; let us see what the quantum-mechanical result is.

In region II Schrodinger’s equation for the particles is

dzlpn Zm dzlpll Zm
—a T E- D= —5 — 25U~ B =0 (5.84)
Since U > E the solution is
f i -
Wave function = Ce kx4 gl (5.85)

inside barrier

where the wave number inside the barrier is

Wave number V2m(U — E)
o . ky= —7—"7"— (5.86)
inside barrier i

Since the exponents are real quantities, ¢y, does not oscillate and therefore does not
represent a moving particle. However, the probability density [¢|* is not zero, so there
is a finite probability of finding a particle within the barrier. Such a particle may emerge
into region III or it may return to region I.
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Applying the Boundary Conditions

In order to calculate the transmission probability T we have to apply the appropriate
boundary conditions to ¥, ¢y, and ¢yy. Fig. 5.14 shows the wave functions in regions
I, 11, and III. As discussed earlier, both i and its derivative dir/dx must be continuous
everywhere. With reference to Fig. 5.14, these conditions mean that for a perfect fit at
each side of the barrier, the wave functions inside and outside must have the same
value and the same slope. Hence at the left-hand side of the barrier

=y (5.87)
Boundary conditions i J 0
atx = 0 lwlll _ 17[111 X =
—_— = 5.88
I . (5.88)
and at the right-hand side
Y = Yu (5.89)
Boundary conditions m m _
atx =L W _ W X 5.90
dx dx (5:90)

Now we substitute ¢, i1, and ¢y from Egs. (5.75), (5.81), and (5.85) into the
above equations. This yields in the same order

A+B=C+D (5.91)

ikiA — ikiB = —k,C + kyD (5.92)

Ce b + Delk = Fellt (5.93)
—kyCe "k + kyDelot = ik Fel™- (5.94)

Equations (5.91) to (5.94) may be solved for (A/F) to give

A YR B Y LR Y
K I e R B ) L . S B ettt (5 95
(F) [2 4<kl kzﬂe AV YN (5.93)

AN AP

/ T

x=0 x=L

Figure 5.14 At each wall of the barrier, the wave functions inside and outside it must match up
perfectly, which means that they must have the same values and slopes there.
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Let us assume that the potential barrier U is high relative to the energy E of the
incident particles. If this is the case, then ky/k; > k;/k, and

- = (5.96)

Let us also assume that the barrier is wide enough for ¢ to be severely weakened
between x = 0 and x = L. This means that k,L. => 1 and

ehol > kb

Hence Eq. (5.95) can be approximated by

A 1 iky \ e+t
)= = 4 —2 ) plikitk, 9
F)=(5+ 5 597

The complex conjugate of (A/F), which we need to compute the transmission prob-
ability T, is found by replacing i by —i wherever it occurs in (A/F):

AN 1 ikz (—ik, +Rk)L
— == - = iy ke 5.98
(F) =5 -w) 559

Now we multiply (A/F) and (A/F)* to give

AA* __( 1 k3 ) oL

+
4 16kt

FF*

Here v+ = v+ S0 vy /vi+ = 1 in Eq. (5.83), which means that the transmission
probability is

Transmission FF*vy 4 AA*\TL 16 kL
is _ =< ) =[_____7] : (5.99)
probability AA*vu FF* 4+ (ky/ky)
From the definitions of ky, Eq. (5.77), and of k,, Eq. (5.86), we see that
ko2 2m(U — E)/#* U
«z)=____7;_=___1 (5.100)
k, 2mE/h E

This formula means that the quantity in brackets in Eq. (5.99) varies much less with
E and U than does the exponential. The bracketed quantity, furthermore, always is of
the order of magnitude of 1 in value. A reasonable approximation of the transmission
probability is therefore

Approximate
transmission T = ¢ 2kt (5.101)

probability

as stated in Sec. 5.10.
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EXERCISES

Press on, and faith will catch up with you. —Jean D’Alembert

5.1 Quantum Mechanics

1. Which of the wave functions in Fig. 5.15 cannot have physical
significance in the interval shown? Why not?

2. Which of the wave functions in Fig. 5.16 cannot have physical
significance in the interval shown? Why not?

<
<
<=

(a) (b) ©

<
<=
<

//

(d) () 0D
Figure 5.15

<
<=
<=

(@) (b) (o)

<=
<=
<=

(d) (e) o)
Figure 5.16

3. Which of the following wave functions cannot be solutions of
Schrodingers equation for all values of x? Why not? (a) l,[l =
Asec x; (D) =Atanx; (O P = Ac*; (D) Y = Ae™.

4. Find the value of the normalization constant A for the wave
2
function ¥ = Axe * /2.

5. The wave function of a certain particle is i/ = A cos”x for
—7/2 <x < /2. (a) Find the value of A. (b) Find the proba-
bility that the particle be found between x = 0 and x = /4.

5.2 The Wave Equation

6. The formulay = A cos w(t — x/V), as we saw in Sec. 3.3, de-
scribes a wave that moves in the +x direction along a stretched
string. Show that this formula is a solution of the wave equa-
tion, Eq.(5.3).

7. As mentioned in Sec. 5.1, in order to give physically meaning-
ful results in calculations a wave function and its partial deriva-
tives must be finite, continuous, and single-valued, and in addi-
tion must be normalizable. Equation (5.9) gives the wave
function of a particle moving freely (that is, with no forces
acting on it) in the +x direction as

P = Ae*(i/ﬁ)(Et*px)

where E is the particle’s total energy and p is its momentum.
Does this wave function meet all the above requirements? If
not, could a linear superposition of such wave functions meet
these requirements? What is the significance of such a superpo-
sition of wave functions?

5.4 Linearity and Superposition

8. Prove that Schrodinger’s equation is linear by showing that
W =a ¥ (x, ) + a;Wy(x, 0

is also a solution of Eq. (5.14) if ¥, and ¥, are themselves
solutions.

5.6 Operators

9. Show that the expectation values (px) and (xp) are related by
fi
(px) = bep) = 7

This result is described by saying that p and x do not commute
and it is intimately related to the uncertainty principle.

10. An eigenfunction of the operator d?/dx? is sinnx, where n
=1,2,3,....Find the corresponding eigenvalues.
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5.7 Schrodinger’s Equation: Steady-State Form

11.

Obtain Schrodinger’s steady-state equation from Eq. (3.5) with
the help of de Broglies relationship A = h/mv by letting y = i/
and finding ¢ /dx>.

5.8 Particle in a Box

12.

13.

According to the correspondence principle, quantum theory
should give the same results as classical physics in the limit of
large quantum numbers. Show that as n — %, the probability of
finding the trapped particle of Sec. 5.8 between x and x + Ax
is Ax/L and so is independent of x, which is the classical
expectation.

One of the possible wave functions of a particle in the potential
well of Fig. 5.17 is sketched there. Explain why the wavelength
and amplitude of ¢ vary as they do.

L

Figure 5.17

14.

15.

16.

17.

18.

In Sec. 5.8 a box was considered that extends from x = 0 to

x = L. Suppose the box instead extends from x = xy to x =

Xo + L, where xo # 0. Would the expression for the wave func-
tions of a particle in this box be any different from those in the
box that extends from x = 0 to x = L2 Would the energy levels
be different?

An important property of the eigenfunctions of a system is that
they are orthogonal to one another, which means that

fi Yt AV =0

Verify this relationship for the eigenfunctions of a particle in a
one-dimensional box given by Eq. (5.46).

n#m

A rigid-walled box that extends from —L to L is divided into
three sections by rigid interior walls at —x and x, where x < L.
Each section contains one particle in its ground state. (a) What
is the total energy of the system as a function of x? (b) Sketch
E(x) versus x. (¢) At what value of x is E(x) a minimum?

As shown in the text, the expectation value (x) of a particle
trapped in a box L wide is I/2, which means that its average
position is the middle of the box. Find the expectation value (x*).

As noted in Exercise 8, a linear combination of two wave func-
tions for the same system is also a valid wave function. Find
the normalization constant B for the combination

2mx

Yy =B sinﬂ-—x + sin——
L L

19.

20.

(@

(b

21.

22.

23.

of the wave functions for the n = 1 and n = 2 states of a parti-
cle in a box L wide.

Find the probability that a particle in a box L wide can be
found between x = 0 and x = L/n when it is in the nth state.

In Sec. 3.7 the standard deviation o of a set of N measurements
of some quantity x was defined as

o= 1/i (i _Xo)z
N i=1

Show that, in terms of expectation values, this formula can be
written as

M=z

o =V{x— (D) = V) — (x)?

If the uncertainty in position of a particle in a box is taken as
the standard deviation, find the uncertainty in the expectation
value (x) = L/2 for n = 1. (¢) What is the limit of Ax as n
increases?

A particle is in a cubic box with infinitely hard walls whose
edges are L long (Fig. 5.18). The wave functions of the particle
are given by

=1,2,3,...

L NTX Ny . NTE .
Y = Asin sin . sin 3 n,=1,2,3,...
n,=1,2,3,...

Find the value of the normalization constant A.

Figure 5.18 A cubic box.

The particle in the box of Exercise 21 is in its ground state of
ne =n, = n, = 1. (a) Find the probability that the particle will
be found in the volume defined by 0 = x = L/4, 0=y <
L/4,0 = z=1/4 (b) Do the same for L/2 instead of L/4.

(a) Find the possible energies of the particle in the box of
Exercise 21 by substituting its wave function ¢ in Schrodingers
equation and solving for E. (Hint: Inside the box U = 0.)

(b) Compare the ground-state energy of a particle in a one-
dimensional box of length L with that of a particle in the three-
dimensional box.

5.10 Tunnel Effect

24.

Electrons with energies of 0.400 eV are incident on a barrier
3.00 eV high and 0.100 nm wide. Find the approximate proba-
bility for these electrons to penetrate the barrier.
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25.

A beam of electrons is incident on a barrier 6.00 eV high and
0.200 nm wide. Use Eq. (5.60) to find the energy they should
have if 1.00 percent of them are to get through the barrier.

5.11 Harmonic Oscillator

26.

27.

28.

29.

30.

31.

32.

33.

Show that the energy-level spacing of a harmonic oscillator is in
accord with the correspondence principle by finding the ratio
AE, /E, between adjacent energy levels and seeing what hap-
pens to this ratio as n — oo

What bearing would you think the uncertainty principle has on
the existence of the zero-point energy of a harmonic oscillator?

In a harmonic oscillator, the particle varies in position from —A to
+A and in momentum from —pg to +po. In such an oscillator,
the standard deviations of x and p are Ax = A/V2 and Ap =
po/ V/2. Use this observation to show that the minimum energy of
a harmonic oscillator is ;hv.

Show that for the n = 0 state of a harmonic oscillator whose
classical amplitude of motion is A, y = 1 at x = A, where y is
the quantity defined by Eq. (5.67).

Find the probability density [¢ho|* dx at x = 0 and at x = *A of
a harmonic oscillator in its n = 0 state (see Fig. 5.13).

Find the expectation values (x) and (x) for the first two states
of a harmonic oscillator.

The potential energy of a harmonic oscillator is U = +hx?.
Show that the expectation value (U) of U is E,/2 when the
oscillator is in the n = 0 state. (This is true of all states of the
harmonic oscillator, in fact.) What is the expectation value of
the oscillator’s kinetic energy? How do these results compare
with the classical values of U and KE?

A pendulum with a 1.00-g bob has a massless string 250 mm
long. The period of the pendulum is 1.00 s. (a) What is its
zero-point energy? Would you expect the zero-point oscillations
to be detectable? (b) The pendulum swings with a very small

34.

35.
36.

amplitude such that its bob rises a maximum of 1.00 mm
above its equilibrium position. What is the corresponding
quantum number?

Show that the harmonic-oscillator wave function ¢, is a solu-
tion of Schrodinger’s equation.

Repeat Exercise 34 for is,.

Repeat Exercise 34 for 5.

Appendix: The Tunnel Effect

37.

38.

Energy

Consider a beam of particles of kinetic energy E incident on a
potential step at x = 0 that is U high, where E > U (Fig. 5.19).
(@) Explain why the solution De ™™™ (in the notation of
appendix) has no physical meaning in this situation, so that D
= 0. (b) Show that the transmission probability here is T =
CC*' JAA* v, = 4k3/(ky + kD?. (0) A 1.00-mA beam of elec-
trons moving at 2.00 X 10° m/s enters a region with a sharply
defined boundary in which the electron speeds are reduced to
1.00 X 10° m/s by a difference in potential. Find the transmit-
ted and reflected currents.

An electron and a proton with the same energy E approach a
potential barrier whose height U is greater than E. Do they have
the same probability of getting through? If not, which has the
greater probability?

I L

Figure 5.19
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