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Thus, we see that F(t), which describes the time variation of #(x, t), is an oscillatory 
function with frequency f � C�h. However, according to the de Broglie relation 
(Equation 5-1), the frequency of the wave represented by #(x, t) is f � E�h; there-
fore, we conclude that the separation constant C � E, the total energy of the particle, 
and we have

 F�t� � e�iEt�6 6-17c

for all solutions to Equation 6-6 involving time-independent potentials. Equation 6-14 
then becomes, on multiplication by C(x),
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d2C�x�

dx2 � V�x�C�x� � E C�x� 6-18

Equation 6-18 is referred to as the time-independent Schrödinger equation.
The time-independent Schrödinger equation in one dimension is an ordinary dif-

ferential equation in one variable x and is therefore much easier to handle than the 
general form of Equation 6-6. The normalization condition of Equation 6-9 can be 
expressed in terms of the time-independent C(x), since the time dependence of the 
absolute square of the wave function cancels. We have

 #
�x, t�#�x, t� � C
�x�e � iEt�6C�x�e�iEt�6 � C
�x�C�x� 6-19

and Equation 6-9 then becomes
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C
�x�C�x�dx � 1 6-20

Conditions for Acceptable Wave Functions
The form of the wave function C(x) that satisfies Equation 6-18 depends on the form 
of the potential energy function V(x). In the next few sections we will study some 
simple but important problems in which V(x) is specified. Our example potentials will 
be approximations to real physical potentials, simplified to make calculations easier. 
In some cases, the slope of the potential energy may be discontinuous, for example, 
V(x) may have one form in one region of space and another form in an adjacent 
region. (This is a useful mathematical approximation to real situations in which V(x) 
varies rapidly over a small region of space, such as at the surface boundary of a 
metal.) The procedure in such cases is to solve the Schrödinger equation separately in 
each region of space and then require that the solutions join smoothly at the point of 
discontinuity.

Since the probability of finding a particle cannot vary discontinuously from 
point to point, the wave function C(x) must be continuous.9 Since the Schrödinger 
equation involves the second derivative d2C�dx2 � C�, the first derivative C� (which 
is the slope) must also be continuous; that is, the graph of C(x) versus x must be 
smooth. (In a special case in which the potential energy becomes infinite, this restric-
tion is relaxed. Since no particle can have infinite potential energy, C(x) must be zero 
in regions where V(x) is infinite. Then at the boundary of such a region, C� may be 
discontinuous.)
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If either C(x) or dC�dx were not finite or not single valued, the same would be 
true of #(x, t) and d #�dx. As we will see shortly, the predictions of wave mechanics 
regarding the results of measurements involve both of those quantities and would thus 
not necessarily predict finite or definite values for real physical quantities. Such 
results would not be acceptable since measurable quantities, such as angular momentum 
and position, are never infinite or multiple valued. A final restriction on the form of 
the wave function C(x) is that in order to obey the normalization condition, C(x) must 
approach zero sufficiently fast as x 4 {@ so that normalization is preserved. For 
future reference, we may summarize the conditions that the wave function C(x) must 
meet in order to be acceptable as follows:

1. C(x) must exist and satisfy the Schrödinger equation.

2. C(x) and dC�dx must be continuous.

3. C(x) and dC�dx must be finite.

4. C(x) and dC�dx must be single valued.

5. C(x) 4 0 fast enough as x 4{@ so that the normalization integral, Equation 6-20,
remains bounded.

Questions

1. Like the classical wave equation, the Schrödinger equation is linear. Why is this 
important?

2. There is no factor i � ��1�1�2 in Equation 6-18. Does this mean that C(x) must 
be real?

3. Why must the electric field J(x, t) be real? Is it possible to find a nonreal wave 
function that satisfies the classical wave equation?

4. Describe how the de Broglie hypothesis enters into the Schrödinger wave 
equation.

5. What would be the effect on the Schrödinger equation of adding a constant rest 
energy for a particle with mass to the total energy E in the de Broglie relation 
f � E�h?

6. Describe in words what is meant by normalization of the wave function.

EXAMPLE 6-1 A Solution to the Schrödinger Equation  Show that for a free 
particle of mass m moving in one dimension the function C(x) � A sin kx � B cos kx 
is a solution to the time-independent Schrödinger equation for any values of the 
constants A and B.

SOLUTION
A free particle has no net force acting on it, for example, V(x) � 0, in which case 
the kinetic energy equals the total energy. Thus, p � 6k � �2mE�1�2. Differentiat-
ing C(x) gives

dC

dx
� kA cos kx � kB sin kx
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and differentiating again,

 
d2C

dx2 � �k2A sin kx � k2B cos kx

 � �k2�A sin kx � B cos kx� � �k2 C�x�
Substituting into Equation 6-18,

�62

2m
� ��k2� �A sin kx � B cos kx� � � E�A sin kx � B cos kx�

62k2

2m
 C�x� � E C�x�

and, since 62k2 � 2mE, we have

E C�x� � E C�x�
and the given C(x) is a solution of Equation 6-18.

6-2 The Infinite Square Well 
A problem that provides several illustrations of the properties of wave functions 
and is also one of the easiest problems to solve using the time-independent, one-
dimensional Schrödinger equation is that of the infinite-square well, sometimes called 
the particle in a box. A macroscopic example is a bead free to move on a frictionless 
wire between two massive stops clamped to the wire. We could also build such a 
“box” for an electron using electrodes and grids in an evacuated tube as illustrated in 
Figure 6-1a. The walls of the box are provided by the increasing potential between 
the grids G and the electrode C as shown in Figures 6-1b and c. The walls can be 

Potential
energy

C CG G x

(c )

(a )

Potential
energy

C CG

C C

VV

G G

G x
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Electron

––

FIGURE 6-1 (a) The electron 
placed between the two sets 
of electrodes C and grids G 
experiences no force in the 
region between the grids, 
which are at ground potential. 
However, in the regions 
between each C and G is a 
repelling electric field whose 
strength depends on the 
magnitude of V. (b) If V is 
small, then the electron’s 
potential energy versus x has 
low, sloping “walls.” (c) If
V is large, the “walls” 
become very high and steep, 
becoming infinitely high for 
V 4 @.
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V(x) = 0, |x | > L

V(x) = − V0, |x | < LIIIIII

E > 0,

Bound State

L/2−L/2

ΔxΔp = ℏ

ΔE = p2/2m = ℏ/2mL2

V0/ΔE Strength of Potential
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IIIIII

E > 0,

L−L
ϕ(t) = e−iEnt/ℏ

Ψ(x, t) = ϕ(t)ψ(x)

V(x) = 0 For region I and III

−ℏ2

2m
d2ψ(x)

dx2
+ V(x)ψ(x) = Eψ(x)

d2ψ(x)
dx2

+
2mE
ℏ2

ψ(x) = 0

−ℏ2

2m
d2ψ(x)

dx2
= Eψ(x)

k2 = −
2mE
ℏ2

[k] = L−1
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ψI(x) = Aekx + Be−kx

ψIII(x) = Eekx + Fe−kx

For wave functions to make sense B=0 and E=0

ψI(x) = Aekx ψIII(x) = Fe−kx

Again for region II

−ℏ2

2m
d2ψ(x)

dx2
− V0ψ(x) = Eψ(x)

d2ψ(x)
dx2

= −
2m
ℏ2

[V0 + E]ψ(x) k′ 
2 =

2m
ℏ2

(V0 + E)Now Let

d2ψ(x)
dx2

= − k′ 
2 ψ(x)

ψII(x) = Csink′ x + Dcosk′ x

IIIIII
L−L
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Ae−Lk = − Csink′ L + Dcosk′ L

−Ake−Lk = − Ck′ cosk′ L − Dk′ sink′ L

FeLk = Csink′ + Dcosk′ L

FkeLk = Ck′ cosk′ L − Dk′ sink′ L

5

6

7

8

Even parity ψ(−x) = ψ(x)

Fe−Lk = Dcosk′ L
−Fke−Lk = − LDksink′ L

k = k′ tank′ L
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k′ 
2 =

2m
ℏ2

(V0 + E)k2 = −
2mE
ℏ2

k2 + k′ 
2 =

2mV0

ℏ2

k′ L = ζ

ζ2 + (kL)2 = ζ2
0

kL = ζ2
0 − ζ2 k = k′ tank′ L

kL = k′ Ltank′ L

ζtankζ = ζ2
0 − ζ2

ζ0 =
L
ℏ

2mV0
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determination of the allowed energy levels in a finite square well can be obtained 
from a detailed solution of the problem. Figure 6-12 shows the wave functions and 
the probability distributions for the ground state and for the first two excited states. 
From this figure we see that the wavelengths inside the well are slightly longer than 
the corresponding wavelengths for the infinite well of the same width, so the corre-
sponding energies are slightly less than those of the infinite well, as Figure 6-13 
illustrates. Another feature of the finite-well problem is that there are only a finite 
number of allowed energies, depending on the size of V0. For very small V0 there is 
only one allowed energy level; that is, only one bound state can exist. This will be 
quite apparent in the detailed solution in the More section.

Note that, in contrast to the classical case, there is some probability of finding the 
particle outside the well, in the regions x � L or x � 0. In these regions, the total 
energy is less than the potential energy, so it would seem that the kinetic energy must 
be negative. Since negative kinetic energy has no meaning in classical physics, it is 
interesting to speculate about the meaning of this penetration of wave function beyond 
the well boundary. Does quantum mechanics predict that we could measure a nega-
tive kinetic energy? If so, this would be a serious defect in the theory. Fortunately, we 
are saved by the uncertainty principle. We can understand this qualitatively as follows 
(we will consider the region x � L only). Since the wave function decreases as e�Ax, 
with A given by Equation 6-34, the probability density C2 � e�2Ax becomes very 
small in a distance of the order of $x y A�1. If we consider C(x) to be negligible 
beyond x � L � A�1, we can say that finding the particle in the region x � L is 
roughly equivalent to localizing it in a region $x y A�1. Such a measurement intro-
duces an uncertainty in momentum of the order of $p � h�$x � hA and a minimum 
kinetic energy of the order of �$p�2�2m � h2A2�2m � V0 � E. This kinetic energy 
is just enough to prevent us from measuring a negative kinetic energy! The penetration 
of the wave function into a classically forbidden region does have important conse-
quences in tunneling or barrier penetration, which we will discuss in Section 6-6.

Much of our discussion of the finite-well problem applies to any problem in 
which E � V(x) in some region and E � V(x) outside that region. Consider, for exam-
ple, the potential energy V(x) shown in Figure 6-14. Inside the well, the Schrödinger 
equation is of the form

 C��x� � �k2C�x� 6-35

0

Y1

Y2

L x

0

L

x

x

x

x

x

Y3

0 L 0 L

0 L
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2

Y2
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FIGURE 6-12 Wave 
functions Cn(x) and 
probability distributions 
C2
n�x� for n � 1, 2, and 3

for the finite square well. 
Compare these with 
Figure 6-4 for the infinite 
square well, where the wave 
functions are zero at x � 0 
and x � L. The wavelengths 
are slightly longer than the 
corresponding ones for the 
infinite well, so the allowed 
energies are somewhat 
smaller.
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where k2 � 2m�E � V�x� � �62 now depends on x. The solutions of this equation are 
no longer simple sine or cosine functions because the wave number k � 2P�L varies 
with x, but since C� and C have opposite signs, C will always curve toward the axis 
and the solutions will oscillate. Outside the well, C will curve away from the axis so 
there will be only certain values of E for which solutions exist that approach zero as
x approaches infinity.

More
 In most cases the solution of finite-well problems involves transcen-
dental equations and is very difficult. For some finite potentials, 
however, graphical solutions are relatively simple and provide both 
insights and numerical results. As an example, we have included 
the Graphical Solution of the Finite Square Well on the home page: 
www.whfreeman.com/tiplermodernphysics6e. See also Equations 
6-36 through 6-43 and Figure 6-15 here.

More

FIGURE 6-13  Comparison of the lowest four energy levels of an infinite square well (broken 
lines) with those of a finite square well (solid lines) of the same width. As the depth of the 
finite well decreases, it loses energy levels out of the top of the well; however, the n � 1 level 
remains even as V0 4 0.Tipler: Modern Physics 6/e

Perm fig.: 613  New fig.: 6-13
First Draft: 2011-05-16

Infinite square well
Finite square well

x
n = 1

n = 2
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V = V0
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0 L

FIGURE 6-14 Arbitrary well-
type potential with possible 
energy E. Inside the well
[E � V(x)], C(x) and C�(x) 
have opposite signs, and the 
wave function will oscillate. 
Outside the well, C(x) and 
C�(x) have the same sign, and, 
except for certain values of E, 
the wave function will not be 
well behaved.

V (x )

E
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