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200 Chapter 5 The Wavelike Properties of Particles

Thus, Davisson and Germer showed conclusively that particles with mass moving at 
speeds v7c do indeed have wavelike properties, as de Broglie had proposed.

Here is Davisson’s account of the connection between de Broglie’s predictions 
and their experimental verification:

Perhaps no idea in physics has received so rapid or so intensive devel-
opment as this one. De Broglie himself was in the van of this develop-
ment, but the chief contributions were made by the older and more 
experienced Schrödinger. It would be pleasant to tell you that no sooner 
had Elsasser’s suggestion appeared than the experiments were begun 
in New York which resulted in a demonstration of electron diffraction—
pleasanter still to say that the work was begun the day after copies of 
de Broglie’s thesis reached America. The true story contains less of per-
spicacity and more of chance. . . . It was discovered, purely by accident, 
that the intensity of elastic scattering [of electrons] varies with the ori-
entations of the scattering crystals. Out of this grew, quite naturally, an 
investigation of elastic scattering by a single crystal of predetermined 
orientation. . . . Thus the New York experiment was not, at its inception, 
a test of wave theory. Only in the summer of 1926, after I had discussed 
the investigation in England with Richardson, Born, Franck and others, 
did it take on this character.7

A demonstration of the wave nature of relativistic electrons was provided in 
the same year by G. P. Thomson, who observed the transmission of electrons with 
energies in the range of 10 to 40 keV through thin metallic foils (G. P. Thomson, 
the son of J. J. Thomson, shared the Nobel Prize in Physics in 1937 with Davisson). 
The experimental arrangement (Figure 5-8a) was similar to that used to obtain 
Laue  patterns with x rays (see Figure 3-11). Because the metal foil consists of 

FIGURE 5-8 (a) Schematic 
arrangement used for producing 
a diffraction pattern from a 
polycrystalline aluminum target. 
(b) Diffraction pattern produced by
x rays of wavelength 0.071 nm 
and an aluminum foil target.  
(c) Diffraction pattern produced
by 600 eV electrons (de Broglie 
wavelength of about 0.05 nm) and 
an aluminum foil target. The pattern 
has been enlarged by 1.6 times 
to facilitate comparison with (b).
[Courtesy of Film Studio, Education 
Development Center.]
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The success of the de Broglie relations in predicting the diffraction of electrons and 
other particles, and the realization that classical standing waves lead to a discrete 

set of frequencies, prompted a search for a wave theory of electrons analogous to the 
wave theory of light. In this electron wave theory, classical mechanics should appear 
as the short-wavelength limit, just as geometric optics is the short-wavelength limit of 
the wave theory of light. The genesis of the correct theory went something like this, 
according to Felix Bloch,1 who was present at the time.

. . . in one of the next colloquia [early in 1926], Schrödinger gave a beauti-
fully clear account of how de Broglie associated a wave with a particle 
and how he [i.e., de Broglie] could obtain the quantization rules . . . by 
demanding that an integer number of waves should be fitted along a 
stationary orbit. When he had finished Debye2 casually remarked that he 
thought this way of talking was rather childish . . . [that to] deal properly 
with waves, one had to have a wave equation.

Toward the end of 1926, Erwin Schrödinger3 published his now-famous wave 
equation, which governs the propagation of matter waves, including those of elec-
trons. A few months earlier, Werner Heisenberg had published a seemingly different 
theory to explain atomic phenomena. In the Heisenberg theory, only measurable 
quantities appear. Dynamical quantities such as energy, position, and momentum are 
represented by matrices, the diagonal elements of which are the possible results of 
measurement. Though the Schrödinger and Heisenberg theories appear to be differ-
ent, it was eventually shown by Schrödinger himself that they were equivalent, in that 
each could be derived from the other. The resulting theory, now called wave mechan-
ics or quantum mechanics, has been amazingly successful. Though its principles may 
seem strange to us whose experiences are limited to the macroscopic world and 
though the mathematics required to solve even the simplest problem is quite involved, 
there seems to be no alternative to describe correctly the experimental results in 
atomic and nuclear physics. In this book we will confine our study to the Schrödinger 
theory because it is easier to learn and is a little less abstract than the Heisenberg theory. 
We will begin by restricting our discussion to problems with a single particle moving 
in one space dimension.
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 6-1 The Schrödinger Equation in One Dimension 231

then use this relation to work backward and see how the wave equation for electrons 
must differ from Equation 6-1. The total energy (nonrelativistic) of a particle of 
mass m is

 E �
p2

2m
� V  6-4

where V is the potential energy. Substituting the de Broglie relations in Equation 6-4, 
we obtain

 6V �
62k2

2m
� V  6-5

This differs from Equation 6-2 for a photon because it contains the potential energy V 
and because the angular frequency V does not vary linearly with k. Note that we get a 
factor of V when we differentiate a harmonic wave function with respect to time and a 
factor of k when we differentiate with respect to position. We expect, therefore, that 
the wave equation that applies to electrons will relate the first time derivative to the 
second space derivative and will also involve the potential energy of the electron.

Finally, we require that the wave equation for electrons will be a differential 
equation that is linear in the wave function #(x, t). This ensures that, if #1(x, t) and 
#2(x, t) are both solutions of the wave equation for the same potential energy, then any 
arbitrary linear combination of these solutions is also a solution—that is, #(x, t) � 
a1#1(x, t) � a2#2(x, t) is a solution, with a1 and a2 being arbitrary constants. Such a 
combination is called linear because both #1(x, t) and #2(x, t) appear only to the first 
power. Linearity guarantees that the wave functions will add together to produce con-
structive and destructive interference, which we have seen to be a characteristic of 
matter waves as well as all other wave phenomena. Note in particular that (1) the lin-
earity requirement means that every term in the wave equation must be linear in #(x, t) 
and (2) that any derivative of #(x, t) is linear in #(x, t).4

Erwin Schrödinger. [Courtesy of the 
Niels Bohr Library, American Institute 
of Physics.]

TIPLER_06_229-276hr.indd   231 8/22/11   11:57 AM

230 Chapter 6 The Schrödinger Equation

6-1 The Schrödinger Equation
in One Dimension 
The wave equation governing the motion of electrons and other particles with mass, 
which is analogous to the classical wave equation (Equation 5-11), was found by 
Schrödinger late in 1925 and is now known as the Schrödinger equation. Like the 
classical wave equation, the Schrödinger equation relates the time and space deriva-
tives of the wave function. The reasoning followed by Schrödinger is somewhat dif-
ficult and not important for our purposes. In any case, it must be emphasized that we 
can’t derive the Schrödinger equation just as we can’t derive Newton’s laws of 
motion. Its validity, like that of any fundamental equation, lies in its agreement with 
experiment. Just as Newton’s second law is not relativistically correct, neither is 
Schrödinger’s equation, which must ultimately yield to a relativistic wave equation. 
But as you know, Newton’s laws of motion are perfectly satisfactory for solving a 
vast array of nonrelativistic problems. So, too, will be Schrödinger’s equation when 
applied to the equally extensive range of nonrelativistic problems in atomic, molecu-
lar, and solid-state physics. Schrödinger tried without success to develop a relativistic 
wave equation, a task accomplished in 1928 by Dirac.

Although it would be logical merely to postulate the Schrödinger equation, we 
can get some idea of what to expect by first considering the wave equation for pho-
tons, which is Equation 5-11 with speed v � c and with y(x, t) replaced by the electric 
field J(x, t).

 
�2J

�x2 �
1
c2 

�2J

�t2  6-1

As discussed in Chapter 5, a particularly important solution of this equation is the 
harmonic wave function J�x, t� � J0 cos�kx � Vt�. Differentiating this function 
twice, we obtain

�2J

�t2 � �V2J0 cos �kx � Vt� � �V2J�x, t�
and

�2J

�x2 � �k2J�x, t�
Substitution into Equation 6-1 then gives

�k2 � �  
V2

c2

or

 V � kc 6-2

Using V � E�6 and p � 6k for electromagnetic radiation, we have

 E � pc 6-3

which, as we saw earlier, is the relation between the energy and momentum of a photon.
Now let us use the de Broglie relations for a particle such as an electron to find 

the relation between V and k, which is analogous to Equation 6-2 for photons. We can 
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which, as we saw earlier, is the relation between the energy and momentum of a photon.
Now let us use the de Broglie relations for a particle such as an electron to find 

the relation between V and k, which is analogous to Equation 6-2 for photons. We can 
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then use this relation to work backward and see how the wave equation for electrons 
must differ from Equation 6-1. The total energy (nonrelativistic) of a particle of 
mass m is

 E �
p2

2m
� V  6-4

where V is the potential energy. Substituting the de Broglie relations in Equation 6-4, 
we obtain

 6V �
62k2

2m
� V  6-5

This differs from Equation 6-2 for a photon because it contains the potential energy V 
and because the angular frequency V does not vary linearly with k. Note that we get a 
factor of V when we differentiate a harmonic wave function with respect to time and a 
factor of k when we differentiate with respect to position. We expect, therefore, that 
the wave equation that applies to electrons will relate the first time derivative to the 
second space derivative and will also involve the potential energy of the electron.

Finally, we require that the wave equation for electrons will be a differential 
equation that is linear in the wave function #(x, t). This ensures that, if #1(x, t) and 
#2(x, t) are both solutions of the wave equation for the same potential energy, then any 
arbitrary linear combination of these solutions is also a solution—that is, #(x, t) � 
a1#1(x, t) � a2#2(x, t) is a solution, with a1 and a2 being arbitrary constants. Such a 
combination is called linear because both #1(x, t) and #2(x, t) appear only to the first 
power. Linearity guarantees that the wave functions will add together to produce con-
structive and destructive interference, which we have seen to be a characteristic of 
matter waves as well as all other wave phenomena. Note in particular that (1) the lin-
earity requirement means that every term in the wave equation must be linear in #(x, t) 
and (2) that any derivative of #(x, t) is linear in #(x, t).4

Erwin Schrödinger. [Courtesy of the 
Niels Bohr Library, American Institute 
of Physics.]
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The Schrödinger Equation
We are now ready to postulate the Schrödinger equation for a particle of mass m. In 
one dimension, it has the form

 �  
62

2m
 
�2#�x, t�

�x2 � V�x, t�#�x, t� � i6 
�#�x, t�

�t  6-6

We will now show that this equation is satisfied by a harmonic wave function in the 
special case of a free particle, one on which no net force acts, so that the potential 
energy is constant, V(x, t) � V0. First note that a function of the form cos(kx � Vt) 
does not satisfy this equation because differentiation with respect to time changes the 
cosine to a sine but the second derivative with respect to x gives back a cosine. Simi-
lar reasoning rules out the form sin(kx � Vt). However, the exponential form of the 
harmonic wave function does satisfy the equation. Let

 #�x, t� � Aei�kx�Vt�
 � A�cos�kx � Vt� � i sin�kx � Vt� �  6-7

where A is a constant. Then

�#
�t � � iVA ei�kx�Vt� � � iV#

and

�2#

�x2 � �ik�2A ei�kx�Vt� � �k2#

Substituting these derivatives into the Schrödinger equation with V(x, t) � V0 gives

�62

2m
��k2#� � V0# � i6�� iV�#

or

62k2

2m
� V0 � 6V

which is Equation 6-5.
An important difference between the Schrödinger equation and the classical 

wave equation is the explicit appearance5 of the imaginary number i � ��1�1�2. The 
wave functions that satisfy the Schrödinger equation are not necessarily real, as we 
see from the case of the free-particle wave function of Equation 6-7. Evidently the 
wave function #(x, t) that solves the Schrödinger equation is not a directly measur-
able function like the classical wave function y(x, t) since measurements always yield 
real numbers. However, as we discussed in Section 5-4, the probability of finding the 
electron in some region dx is certainly measurable, just as is the probability that a 
flipped coin will turn up heads. The probability P(x) dx that the electron will be found 
in the volume dx was defined by Equation 5-23 to be equal to #2dx. This probabilistic 
interpretation of # was developed by Max Born and was recognized, over the early 
and formidable objections of both Schrödinger and Einstein, as the appropriate way 
of relating solutions of the Schrödinger equation to the results of physical measure-
ments. The probability that an electron is in the region dx, a real number, can be mea-
sured by counting the fraction of time it is found there in a very large number of 
identical trials. In recognition of the complex nature of #(x, t), we must modify 
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slightly the interpretation of the wave function discussed in Chapter 5 to accommo-
date Born’s interpretation so that the probability of finding the electron in dx is real. 
We take for the probability

 P�x, t�dx � #
�x, t�#�x, t�dx � U #�x, t� U 2dx 6-8

where #*, the complex conjugate of #, is obtained from # by replacing i with �i 
wherever it appears.6 The complex nature of # serves to emphasize the fact that we 
should not ask or try to answer the question “What is waving in a matter wave?” or 
inquire as to what medium supports the motion of a matter wave. The wave function 
is a computational device with utility in Schrödinger’s theory of wave mechanics. 
Physical significance is associated not with # itself, but with the product 
#
# � U # U 2, which is the probability distribution P(x, t) or, as it is often called, the 
probability density. In keeping with the analogy with classical waves and wave func-
tions, #(x, t) is also sometimes referred to as the probability density amplitude, or just 
the probability amplitude.

The probability of finding the electron in dx at x1 or in dx at x2 is the sum of sepa-
rate probabilities, P(x1) dx � P(x2) dx. Since the electron must certainly be somewhere 
in space, the sum of the probabilities over all possible values of x must equal 1. That is,7
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� @

� @

#
# dx � 1 6-9

Equation 6-9 is called the normalization condition. This condition plays an important 
role in quantum mechanics, for it places a restriction on the possible solutions of the 
Schrödinger equation. In particular, the wave function #(x, t) must approach zero suf-
ficiently fast as x 4 {@ so that the integral in Equation 6-9 remains finite. If it does 
not, then the probability becomes unbounded. As we will see in Section 6-3, it is this 
restriction together with boundary conditions imposed at finite values of x that leads 
to energy quantization for bound particles.

In the chapters that follow, we are going to be concerned with solutions to the 
Schrödinger equation for a wide range of real physical systems, but in what follows in 
this chapter our intent is to illustrate a few of the techniques of solving the equation and 
to discover the various, often surprising properties of the solutions. To this end we will 
focus our attention on single-particle, one-dimensional problems, as noted earlier, and 
use some potential energy functions with unrealistic physical characteristics, for exam-
ple, infinitely rigid walls, which will enable us to illustrate various properties of the 
solutions without obscuring the discussion with overly complex mathematics. We will 
find that many real physical problems can be approximated by these simple models.

Separation of the Time and Space Dependencies 
of #(x, t )
Schrödinger’s first application of his wave equation was to problems such as the 
hydrogen atom (Bohr’s work) and the simple harmonic oscillator (Planck’s work), in 
which he showed that the energy quantization in those systems can be explained natu-
rally in terms of standing waves. We referred to these in Chapter 4 as stationary states, 
meaning they did not change with time. Such states are also called eigenstates. For 
such problems that also have potential energy functions that are independent of time, 
the space and time dependence of the wave function can be separated, leading to a 
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greatly simplified form of the Schrödinger equation.8 The separation is accomplished 
by first assuming that #(x, t) can be written as a product of two functions, one of x 
and one of t, as

 #�x, t� � C�x�F�t� 6-10

If Equation 6-10 turns out to be incorrect, we will find that out soon enough, but if 
the potential function is not an explicit function of time, that is, if the potential is 
given by V(x), our assumption turns out to be valid. That this is true can be seen as 
follows:

Substituting #(x, t) from Equation 6-10 into the general, time-dependent 
Schrödinger equation (Equation 6-6) yields

 
�62

2m
 
�2C�x�F�t�

�x2 � V�x�C�x�F�t� � i6 
�C�x�F�t�

�t  6-11

which is

 
�62

2m
 F�t�  

d2C�x�
dx2 � V�x�C�x�F�t� � i6C�x�  

dF�t�
dt

 6-12

where the derivatives are now ordinary rather than partial ones. Dividing Equation 6-12 
by # in the assumed product form CF gives

 
�62

2m
 

1
C�x�  

d2C�x�
dx2 � V�x� � i6 

1
F�t�  

dF�t�
dt

 6-13

Notice that each side of Equation 6-13 is a function of only one of the independent 
variables x and t. This means that, for example, changes in t cannot affect the value of 
the left side of Equation 6-13, and changes in x cannot affect the right side. Thus, both 
sides of the equation must be equal to the same constant C, called the separation con-
stant, and we see that the assumption of Equation 6-10 is valid—the variables have 
been separated. In this way we have replaced a partial differential equation containing 
two independent variables, Equation 6-6, with two ordinary differential equations 
each a function of only one of the independent variables:

 
�62

2m
 

1
C�x�  

d2C�x�
dx2 � V�x� � C 6-14

 i6 
1

F�t�  
dF�t�

dt
� C 6-15

Let us solve Equation 6-15 first. The reason for doing so is twofold: (1) Equation 6-15 
does not contain the potential energy V(x); consequently, the time-dependent part 
F�t� of all solutions #(x, t) to the Schrödinger equation will have the same form 
when the potential is not an explicit function of time, so we only have to do this once. 
(2) The separation constant C has particular significance that we want to discover 
before we tackle Equation 6-14. Writing Equation 6-15 as

 
dF�t�
F�t� �

C
i6

 dt � �  
iC
6

 dt 6-16

the general solution of Equation 6-16 is

 F�t� � e�iCt�6 6-17a
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which can also be written as

F�t� � e�iCt�6 � cos4Ct
6
5 � i sin4Ct

6
5 � cos42P

Ct
h
5 � i sin42P

Ct
h
5  6-17b

Thus, we see that F(t), which describes the time variation of #(x, t), is an oscillatory 
function with frequency f � C�h. However, according to the de Broglie relation 
(Equation 5-1), the frequency of the wave represented by #(x, t) is f � E�h; there-
fore, we conclude that the separation constant C � E, the total energy of the particle, 
and we have

 F�t� � e�iEt�6 6-17c

for all solutions to Equation 6-6 involving time-independent potentials. Equation 6-14 
then becomes, on multiplication by C(x),

 
�62

2m
 
d2C�x�

dx2 � V�x�C�x� � E C�x� 6-18

Equation 6-18 is referred to as the time-independent Schrödinger equation.
The time-independent Schrödinger equation in one dimension is an ordinary dif-

ferential equation in one variable x and is therefore much easier to handle than the 
general form of Equation 6-6. The normalization condition of Equation 6-9 can be 
expressed in terms of the time-independent C(x), since the time dependence of the 
absolute square of the wave function cancels. We have

 #
�x, t�#�x, t� � C
�x�e � iEt�6C�x�e�iEt�6 � C
�x�C�x� 6-19

and Equation 6-9 then becomes

 )
� @

� @

C
�x�C�x�dx � 1 6-20

Conditions for Acceptable Wave Functions
The form of the wave function C(x) that satisfies Equation 6-18 depends on the form 
of the potential energy function V(x). In the next few sections we will study some 
simple but important problems in which V(x) is specified. Our example potentials will 
be approximations to real physical potentials, simplified to make calculations easier. 
In some cases, the slope of the potential energy may be discontinuous, for example, 
V(x) may have one form in one region of space and another form in an adjacent 
region. (This is a useful mathematical approximation to real situations in which V(x) 
varies rapidly over a small region of space, such as at the surface boundary of a 
metal.) The procedure in such cases is to solve the Schrödinger equation separately in 
each region of space and then require that the solutions join smoothly at the point of 
discontinuity.

Since the probability of finding a particle cannot vary discontinuously from 
point to point, the wave function C(x) must be continuous.9 Since the Schrödinger 
equation involves the second derivative d2C�dx2 � C�, the first derivative C� (which 
is the slope) must also be continuous; that is, the graph of C(x) versus x must be 
smooth. (In a special case in which the potential energy becomes infinite, this restric-
tion is relaxed. Since no particle can have infinite potential energy, C(x) must be zero 
in regions where V(x) is infinite. Then at the boundary of such a region, C� may be 
discontinuous.)
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Thus, we see that F(t), which describes the time variation of #(x, t), is an oscillatory 
function with frequency f � C�h. However, according to the de Broglie relation 
(Equation 5-1), the frequency of the wave represented by #(x, t) is f � E�h; there-
fore, we conclude that the separation constant C � E, the total energy of the particle, 
and we have

 F�t� � e�iEt�6 6-17c

for all solutions to Equation 6-6 involving time-independent potentials. Equation 6-14 
then becomes, on multiplication by C(x),
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d2C�x�

dx2 � V�x�C�x� � E C�x� 6-18

Equation 6-18 is referred to as the time-independent Schrödinger equation.
The time-independent Schrödinger equation in one dimension is an ordinary dif-

ferential equation in one variable x and is therefore much easier to handle than the 
general form of Equation 6-6. The normalization condition of Equation 6-9 can be 
expressed in terms of the time-independent C(x), since the time dependence of the 
absolute square of the wave function cancels. We have

 #
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If either C(x) or dC�dx were not finite or not single valued, the same would be 
true of #(x, t) and d #�dx. As we will see shortly, the predictions of wave mechanics 
regarding the results of measurements involve both of those quantities and would thus 
not necessarily predict finite or definite values for real physical quantities. Such 
results would not be acceptable since measurable quantities, such as angular momentum 
and position, are never infinite or multiple valued. A final restriction on the form of 
the wave function C(x) is that in order to obey the normalization condition, C(x) must 
approach zero sufficiently fast as x 4 {@ so that normalization is preserved. For 
future reference, we may summarize the conditions that the wave function C(x) must 
meet in order to be acceptable as follows:

1. C(x) must exist and satisfy the Schrödinger equation.

2. C(x) and dC�dx must be continuous.

3. C(x) and dC�dx must be finite.

4. C(x) and dC�dx must be single valued.

5. C(x) 4 0 fast enough as x 4{@ so that the normalization integral, Equation 6-20,
remains bounded.

Questions

1. Like the classical wave equation, the Schrödinger equation is linear. Why is this 
important?

2. There is no factor i � ��1�1�2 in Equation 6-18. Does this mean that C(x) must 
be real?

3. Why must the electric field J(x, t) be real? Is it possible to find a nonreal wave 
function that satisfies the classical wave equation?

4. Describe how the de Broglie hypothesis enters into the Schrödinger wave 
equation.

5. What would be the effect on the Schrödinger equation of adding a constant rest 
energy for a particle with mass to the total energy E in the de Broglie relation 
f � E�h?

6. Describe in words what is meant by normalization of the wave function.

EXAMPLE 6-1 A Solution to the Schrödinger Equation  Show that for a free 
particle of mass m moving in one dimension the function C(x) � A sin kx � B cos kx 
is a solution to the time-independent Schrödinger equation for any values of the 
constants A and B.

SOLUTION
A free particle has no net force acting on it, for example, V(x) � 0, in which case 
the kinetic energy equals the total energy. Thus, p � 6k � �2mE�1�2. Differentiat-
ing C(x) gives

dC

dx
� kA cos kx � kB sin kx
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