

Post Graduate Programme In Department of Physics

Credit Based Curriculum

P.G. Department of Physics National Institute of Technology Srinagar Hazratbal-Srinagar (190006), Jammu and Kashmir (India)

September, 2020

September 21, 2020

Greetings Dear New Students

On behalf of my dear colleagues and on my personnel behalf as the Programme Coordinator, we want to be among the first to congratulate and welcome you. Earning a place in NIT Srinagar is an achievement and we are delighted that you will continue your intellectual journey in this prestigious institution, which is blessed with a diverse community. You will discover that one our defining characters is our commitment to freedom of enquiry and expression. Mutual respect and civility are the vital to all of us and you will find you will be engaged in debates, discussions, deliberations and at times this may cause discomfort.

This e-brochure is now updated and contains practical information of the masters' programme in systematic manner and has been updated according to the guidelines in **New Education Policy 2020**. The programme with its core-specialization structure offers a wide variety of possibilities, enabling you to pursue your particular ambitions and interests in this fascinating area of science. Courses at different levels of specialization will enable you to deepen your physics knowledge and find out how it is applied in modern research and development. There are various electives and optional subjects which are interdisciplinary and has immense applications in all spheres of life. It is at par from the existing syllabi of other universities and other NIT's/IITs.

The department has **state** of the **art laboratory** facilities with modern sophisticated **equipment.** The laboratories once completely established in all respects shall be made open to the interested students of the country, where they can carry their summer/winter internships also. We are convinced that we have created a rewarding and challenging post graduate programme in Physics for the first time in the History of NIT Srinagar that keeps its promise which will prepare you for the future.

The academic loss due to pandemic which is our common sorrow and common pain can be compensated with extra classes. We are less in number nevertheless academically sound galaxy of eminent faculty having specializations in thrust areas are always available to our students. There is an African proverb that says, "if you want to go fast, go alone and if you want to go far, go together". At NIT Srinagar, in the Department of Physics, we choose to go together. We look forward to meeting and working with you. If you have any questions regarding this brochure, please feel free to contact shah M A at <u>shahji@nitsri.ac.in</u>.

Once again, welcome and wish you a good start!

Dr. M. A. Shah Programme Coordinator

National Institute of Technology Srinagar: A Profile

The National Institute of Technology, Srinagar (NIT), one of the leading institutes in north of the country, was established in 1960. In 2004, it had the unique distinction of becoming an Institute of National Importance under the NIT Act under the auspices of Ministry of Human Resources Development, Govt. of India.

Being fully residential, the campus located on the western bank of the Dal Lake near the famous Hazratbal Shrine, provides comfortable accommodation to all faculty and students. The institute has signed **Memorandum of Understanding (MOU)** with various national and international academies, professional and research institutes as well as industry to augment the learning process. These ties are a means for our students to gain valuable and relevant knowledge and experience, providing them with the building blocks for a successful future career. Students from all over the country epitomize a healthy amalgamation of different cultures, religions and languages on the campus and present a classical example of a mini cultural India.

The prestigious technical institute has ten departments which cater six postgraduate and ten undergraduate programmes besides offering Ph.D. degree in all Engineering and Science disciplines. Since its inception, the **Department of Physics** is offering the General Physics course Engineering Physics for all branches of B. Tech. students during first and second semesters, respectively. In addition, the department offers several electives to various branches.

The Department has full-fledged laboratories for research and offers Ph.D. program in Solid state physics, Materials science, Nanotechnology, Nuclear physics and in renewable energy sectors. Presently, the department has eight faculty members and the faculty has developed research collaborations with several premier institutions across the globe. In order to inculcate the academic culture, the department regularly organizes lecture/quiz competitions and invited talks by the eminent scientists. So far the department has produced maximum M. Phil. and Ph. D. scholars in the Institutes. Unending efforts are being made by the department to develop the well equipped research laboratories to cater the needs of master's programme which is likely to be approved. In this programme, we have offered intrinsically challenging and didactically inspiring courses.

The Institute overall has witnessed a remarkable growth in all sectors under the able guidance of our **Director Prof. Rakesh Sehgal** and his predecessors Prof Rajat Gupta and Hon'ble Chairperson Dr. M J Zarabi in launching this programme at NIT Srinagar.

Our mission

The Department embodies and delivers world class scholarship, education and research in Physical Science

We foster multidisciplinary working internally and collaborate widely externally.

We inculcate the highest degree of confidence, professionalism, academic excellence and ethics in our students.

Our Vision

- To harness the quality of our research capabilities to address the challenges of today and the future.
- To develop the next generation of Researchers, Scientists, Academics and skills they require to pursue their ambitions.
- To engage with the world and communicate the importance and benefits of science to society.

Programme Structure:

Entire two years Masters Programme has been divided into four semesters. In first year (two semesters) all the core courses have been introduced with more information with relevant updated topics with a view to link earlier (B. Sc.) programme. In second year, courses have been designed to accommodate more applied subjects (electives) and comprehensive project work in industry or any national laboratory of repute.

Duration of Course

The course is a full time two years programme of 100 credits which is perfect combination of theoretical and experimental studies in various field of Physics.

Ist Year: Semester I & II 2nd Year: Semester III & IV

Total number of seats: Thirty One (31)

Reservation for open, SC/ST, OBC and PH are as per Govt. of India rules. Please check web page of CCMN for various categories.

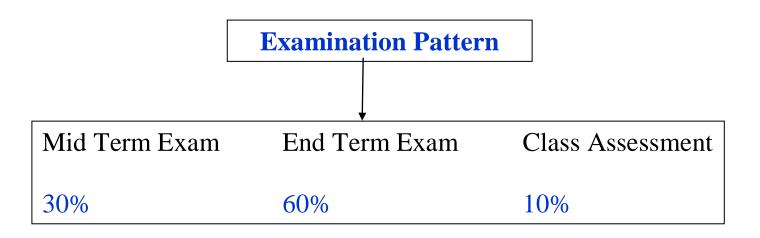
Eligibility Criteria:

Students for admission to M. Sc. Programme must satisfy the criteria:

A candidate must be graduate in Science with Physics as Major subject and must have secured at lest 60% marks or CGPA 6.5/10 or equivalent for OC/OBC/EWS/SF and for SC/ST/PWD candidates minimum marks are 50% or CGPA 5.5/10 at U.G Level from a recognized university/institution with valid JAM score/Institute entrance examination score.

Admission Procedure:

Admission is through CCMN. However, the left over seats are being filled by the institute through written test. Interested candidates satisfying the eligibility criteria will have to submit their application form in the prescribed format, which will be made available on the institute web page (www.nitsri.net). Applicant should be a citizen of India. Admission of foreign nationals, if any, shall be governed by the rules stipulated by the Government of India from time to time.


Two step processes to admit the students into M.Sc. programme shall be carried as:

- 1. Short listing of candidates as per eligibility.
- 2. Performance in written test examination.
- 3. Filling of vacant seat as per reservation guidelines.

The Scheme of Examination

The examination will be as per institute rules and shall be conducted in semester pattern with one midterm and end terms examination.

Objective of the Programme

The P.G Programme in Physics is designed to deliver a solid foundation in Physics and applied Physics with adaptability to a wide range of career objectives: Few are worth to mention:

- (i) The course will not only give the scientific training and skills but will also help to develop the ability to diversify into broad science opportunities.
- (ii) Since a strong emphasis on practical learning with extensive hands on experimental work throughout the course has been proposed. Therefore, it will help to apply learning from the class room to the Laboratories and to field.
- (iii) The Department shall provide excellent opportunities for interdisciplinary studies and research in collaboration with the other institutions of the country and beyond.

Admission Procedure

The Admission shall be made purly on the basis of JAM score conducted by Government of India. The reaming vacant seats will be filled up through the institute entrance test and on the basis of merit.

Centralized Counselling for M.Sc./M.Sc. (Tech.) Admissions in NITs and CFTIs, 2020

(CCMN 2020)

Information Brochure

(May 17, 2020)

https://ccmn.admissions.nic.in

Note:

Please remain in touch with the CCMN web page for admissions.

NATIONAL INSTITUTE OF TECHNOLOGY SRINAGAR

(An autonomous Institute of National Importance under the aegis of Ministry of Education, Govt. of India)

Department of Physics Faculty Information

S.	Faculty Name	S.	Faculty Name				
No.	Specialization/Research Interest	No.	Specialization/	Research Interest			
1.	Frof. Mohd. IkramMaterial Science, Thin Films, Swift Heavy ion Irradiation, Nanoscience, Magnetism, EPR and Superconductivity	2.		Dr. Seemin Rubab Renewable Sources of Energy, Nanoscience			
3.	Image: Constraint of the second se	4.		Dr. Prince A. Ganai Quantum Gravity, Blackhole Thermodynamics, Quantum Information, Glaxy Clustering, Theoretical Nuclear Physics			
5.	Dr. M. A. Shah Nano Science and Nanotechnology, Condensed Matter Physics Nano-Materials & their Applications	6.		Dr. Vijay Kumar Functional Materials, Solid-State Luminescent Materials, Super- absorbents, Smart Materials			
7.	Dr. Mohd Zubair Ansari Experimental Solid State Physics, Nanotechnology Thin Films, Heterostructure, Semiconductor nanomaterials, Solar Cell, Photocatalysis & Water Splitting	8.		Dr. Harkirat Singh Lightly Doped Superconducting Thin Films, Single Crystals, Quantum Information Processing, Magnetic Thin Films			

Laboratories

S. No.	Semester	Laboratory Name	Faculty
1.	Ι	Solid State Physics	Dr. M. A. Shah
2.	Ι	Advanced Optics	Dr. H. Singh
3.	II	Electronics And Instrumentation	Dr. M. A. Shah
4.	II	Characterization	Dr. H. Singh
5.	III	Computational Physics	Dr. H. Singh
6.	III	Material Science	Dr. M. Ikram

Other Facilities:

- 1. Scanning Electron Microscope
- 2. X-Ray diffractometer
- 3. UV- Visible Spectrophotometer
- 4. Raman Spectrometer
- 5. Microwave Workstations

Collaborations with other Institutions/Universities:

The faculty of the department has collaborations with other prestigious universities and institutions of the country and outside for availing the research facilities, which are not available in the institution.

Based on the above specialization, the program objectives of M.Sc. Physics are:

- 1. To Impart a world class education in physical sciences
- 2. To understand the underlying physics in respective specializations, and, be able to teach and guide successfully.
- 3. To prepare students to take up challenges as globally competitive physicists/researchers in various domains of theoretical and experimental physics.
- 4. To nurture the creation of innovative and pertinent technologies and to transfer them to the industry for effective use
- 5. To apply the theoretical and experimental aspects of physics for futuristic applications
- 6. To train students in teamwork and in lifelong learning for continuous professional development.
- 7. To train our students to work for Sustainable Developments Goals (SDG)

Programme Structure

SEMESTER – I Total Credits:						
S. No.	Course Code	Courses	L	Т	Р	Credits
1.	PSPHY 101	Mathematical Methods for Physics	3	1	0	4
2.	PSPHY 102	Classical Mechanics	3	1	0	4
3.	PSPHY 103	Quantum Mechanics	3	1	0	4
4.	PSPHY 104	Solid State Physics	3	1	0	4
		Laboratories				
6.	PSPHY LB1	Solid State Physics Lab			4	2
7.	PSPHY LB2	Advanced Optics Laboratory			4	2
	Total		12	4	8	20

SEMESTER - II

S. No.	S. No. Course Code Courses		L	Т	Р	Credits
1.	PSPHY 201	Classical Electrodynamics	3	1	0	4
2.	PSPHY 202	Solid State Electronics	3	1	0	4
3.	PSPHY 203	Thermodynamics and Statistical Mechanics	3	1	0	4
4.	PSPHY 204	Atomic and Molecular Physics	3	1	0	4
		Laboratories				
6.	PSPHY LB3	Electronics and Instrumentation Lab.	0	0	4	2
7.	PSPHY LB4	Characterization Lab.	0	0	4	2
	Total		12	4	8	20

SEMESTER – III

S. No.	S. No. Course Code Courses		L	Т	Р	Credits
1.	PSPHY 301	Condensed Matter Physics	3	1	0	4
2.	PSPHY 302	Nuclear and Particle Physics	3	1	0	4
3.	PSPHY 303	Computational Methods In Physics		1	0	4
4.	PSPHY EL	Choose one course from electives		1	0	4
		Laboratories				
4.	PSPHYLB5	Computational Physics Lab.	0	0	4	2
5.	PSPHY LB 6	Materials Science Lab.	0	0	4	2
	Total		12	4	8	20

SEMESTER – IV

S. No.	Course Code	Courses	L	Т	Р	Credits
1	PSPHY PR01	Research Methodology/One optional	2	0	0	4
2	PSPHY PR02	Project/Dissertation and Viva voce	0	0	50	36
	Total					100

List of Electives course

(Students have to choose only elective as per choice)

S. No.	Course Code	Courses	L	Т	Р	Credits
1.	PSPHY EL01	Renewable Sources of Energy	3	1	0	4
2.	PSPHY EL02	Nanoscience and Nanomaterials	3	1	0	4
3.	PSPHY EL03	Atmospheric & Environmental Physics	3	1	0	4
4.	PSPHY EL04	Semiconductor Physics	3	1	0	4
5.	PSPHY EL05	Medical Physics	3	1	0	4
6.	PSPHY EL06	Solar Photovoltaics	3	1	0	4
7.	PSPHY EL07	Advanced Condensed Matter Physics	3	1	0	4
8.	PSPHY EL08	Quantum Field Theory	3	1	0	4
9.	PSPHY EL09	Relativity and Cosmology	3	1	0	4
10.	PSPHY EL10	Materials Science	3	1	0	4

First Semester

SEMESTER – I Total Credits:						
S. No.	Course Code	Courses	L	Т	Р	Credits
1.	PSPHY 101	Mathematical Methods for Physics	3	1	0	4
2.	PSPHY 102	Classical Mechanics	3	1	0	4
3.	PSPHY 103	Quantum Mechanics	3	1	0	4
4.	PSPHY 104	Solid State Physics	3	1	0	4
		Laboratories				
6.	PSPHY LB1	Solid State Physics Lab			4	2
7.	PSPHY LB2	Advanced Optics Laboratory			4	2
	Total		12	4	8	20

PSPHY 101	Mathematical Methods For PhysicsCLTP4310								
Course Objectives	 The main objective of this course is to familiarize students with a range of mathematical methods that are essential for solving advanced problems in theoretical physics. 1. Basic concepts of vector algebra and vector calculus. 2. Understand the matrices and Tensors. 3. Introduce to complex analysis and apply Cauchy–Riemann conditions on complex function. 4. Solve first order and higher differential equations. 								
	 Vector Calculus: Vector analysis in curved coordinates, Orthogonal coordinates in R3, Special Coordinates system- Cylindrical and spherical coordinates, Laplacian in cylindrical and spherical coordinates, Vector integration- line, surface and volume-Gauss, Stokes and Greens theorem. Linear Algebra and Tensor: Matrices, Eigenvalues and eigenvectors, Cayley-Hamilton theorem, Tensor analysis, Rank of a tensor, Metric tensor, Summation convention, Contraction theorem, Direct Product, Levi-Civita Symbol, Kronecker 								
Syllabus	and alternative tensor, Christoffel symbol. Complex Analysis: Functions of Complex Variable, Analytic Properties, Cauchy– Riemann Conditions, Cauchy's Integral Theorem, Cauchy's Integral Formula, Taylor series, Laurent Expansion, Calculus of Residues and evaluation of Integral.								
	Differential Equations: First and second order differential equations, Separation of Variables, Dirac Delta function, Bessel Functions, Bessel Functions of the First Kind, Hermite Functions, Laguerre Functions, Laguerre functions.								
	• Upon completion of the course, the student should be able to understand basic theory of: Vector and tensor analysis, Functions of complex variables,								
Expected Outcome	• Student be able to apply methods of functions of complex variables for calculations of integrals: Expand functions in Taylor's Series, Work with vectors and Work with tensors.								
	Skills: Students will be aware about numerical methods and their applications in various fields.								
Text Book	 L.A. Pipes and L R. Harvil, Applied Mathematics for Engineers and Physicists, Tata McGraw-Hill (1970). E. Kreyszig, Advanced Engineering Mathematics, 8th edition, John Wiley & Sons Inc. (1999). H.K. Das and Rama Verma, Mathematical Physics, 8th edition, S Chand (2018). 								
Reference	 George Arfken, Hans Weber and Harris, Mathematical Methods for Physicists, 7th edition, Academic Press (2012). Mathematical Physics by Rajput B.S. Pragati Prakashan, Meerut Matrices and Tensors in Physics by Joshi A.W., New Age International Publishers, New Delhi. 								
Faculty	Dr. M. Z. Ansari Contact <u>mohdzubair@nitsri.ac.in</u>								

PSPHY 102	Classical MechanicsCLTP4310							
Course Objectives	 Students will be able to define basics of classical mechanics. Students will be able to explain central forces. Students will be able to understand Hamilton's principle. Students will be able to evaluate Canonical Transformations and Poisson's brackets. 							
	Newtonian mechanics and its limitations. Constrained motion. Constraints and their classification. Principle of virtual work. D' Alembert's principle. Generalized coordinates, Generalized momenta and energy, Cyclic or ignorable coordinates. Lagrange's equations and applications.							
	Central force. Definition and properties of central force. Two-body central force problem. Stability of orbits. Conditions for closure. General analysis of orbits. Kepler's laws. Kepler's equation.							
Syllabus	Principle of least action. Hamilton's principle. The calculus of variations. Derivation of Hamilton's equations of motion for holonomic systems from Hamilton's principle. Hamilton's principle and characteristic functions.							
	Canonical Transformations, Generating functions. Poisson brackets, Poisson's Theorem. Invariance of PB under canonical transformations, Angular momentum PBs, Hamilton-Jacobi equation. Connection with Classical Mechanics canonical transformation. Problems. Small oscillations, Normal modes and coordinates. Problems.							
Expected Outcome	Students are expected to understand need of classical mechanics in solving problems relate to classical systems. Skills: The candidate should be able to do extensive calculations in solving problems related to classical systems.							
Text Book	 H. Goldstein, C. Poole and J. Safko, Classical Mechanics, 3nd edition, Addison & Wesley (2000). L.D. Landau and E.M. Lifshitz, Mechanics, Buttorworth-Heinemann (1976). 							
Reference	 W. Greiner, Classical Mechanics – Point particles and Relativity, Springer- Verlag (1989). N.C Rana and P.S Joag, Classical Mechanics. 							
Faculty	Dr. Harkirat Singh Contact <u>harkirat@nitsri.ac.in</u>							

PSPHY 103	Quantum Mechanics	C 4	L T 3 1	· P 0					
Course Objectives	 aimed to build a theoretical as well as experimental understanding of t Basic concept of vector space. Dirac bra-ket formalism to present the principles of Quantum general context. Analytic solutions to the Schrodinger equation for a variety one, two and three dimensions. 	 Dirac bra-ket formalism to present the principles of Quantum Mechanics in a general context. Analytic solutions to the Schrodinger equation for a variety of potentials in one, two and three dimensions. The role of symmetries as the underlying principle of Quantum Mechanics 							
Syllabus	Linear vector space – State space, Dirac notation and Representation of State Spaces, Concept of Kets, Bras and Operators, Uncertainty Relations, Commutation and Compatibility, Change of basis, Unitary operators. State function and its interpretation, Matrix Representation of State Vectors and operators, Continuous Basis. Relation between a State Vector and its Wave function. Solution of the Linear Harmonic Oscillator with Operator Method, Coherent States. Schrödinger equation and its applications-In one dimensional consideration-Particle in one-dimensional potential well (finite and infinite depth) and its energy states; Linear harmonic oscillator; Free particle wave function; Angular momentum and the eigen functions; Energy states associated wave functions of Hydrogen atom; Expression of Bohr radius. Approximation methods - Time-independent perturbation theory for non-degenerate and degenerate states. Applications: Anharmonic oscillator, Helium atom, Stark effect in hydrogen atom, Variational methods: Helium atom. Generalised angular momentum- Infinitesimal rotation, Generator of rotation, Commutation rules, Matrix representation of angular momentum operators, Spin, Pauli spin matrices, Rotation of spin states, Coupling of two angular momentum operators, Clebsch Gordon coefficients, Symmetries- Irreducible spherical tensor								
Expected Outcome	 operators, Wigner-Eckert theorem and its applications, Space inversion On completion of this course, the student will be able to: Use the superposition principle to predict experimental measure-ment of observables on simple quantum system uncertainty principle and heuristic arguments to obtain rough quantum systems. Skills: The student should identify and understand the kinds of experimental the visual physics and which required the a quantum theory of matter and light. 	outc ns. A de-scr rimen develo	Apply ription ntal res opmer	the is of sults nt of					
Text Book	 Introduction to Quantum Mechanics – David J. Griffiths, Second E Prentice Hall 2005. Quantum Mechanics – V.K. Thankappan, Second Edition, Wiley E 1993. 								
Reference	 Quantum Mechanics- L.I. Schiff, Third Edition, Mc Graw Hill E 1955. Quantum Mechanics – B.H. Bransden and C.J. Joachain, Second E Education, 2007. 		1						
Faculty	Dr. P A Ganai Contact princeganai@nitsr	i.ac.i	<u>n</u>						

PSPHY 104	Solid St	ate Physic	rs	С	L T	Р			
				4	3 1	0			
	The course is an introduction to the concepts required for learning solid state physics and shall enable the student to understand								
Course	1. Basics of Crystal Structur	e and varie	ous associated phenomenas						
Objectives	2. Lattice vibrations (Phonor	n theory)							
	3. Band Theory of solids and	d different	models						
	4. Properties of materials								
	utron and electron diffract is of geometry of unit cell Crystal Growth Techniqu	and	symme	try,					
	Phonon: Phonon bands and ban Lattice vibrations, Vibrations of heat capacity			•					
Syllabus	Free electron theory; its advantages and limitations.Fermi energy and Fermi surface. Electrical conductivity, Thermal conductivity in metals, Thermionic emission, Quantum free electron theory, Electrical conductivity and temperature dependence of electrical resistivity.								
	Energy bands in solids, Bloch Theorem, Kronig-Penny model, Brillouin zones, The Energy gap and the calculation of energy bands. Metals, insulators and semiconductors,								
	Shortly on the different properties	s associate	d with solid state materials	•					
	Students expected to know phys on the crystalline state and are als				-				
Expected Outcome	Skills: On completion of this coproperties of materials and sho Physics.								
	1. Introduction to Solid State Phy	ysics, C. K	Littel, 8th ed; John Wiley &	Son	s (2005)			
Text Book	2. Solid State Physics, M A Wah	ab. Naroo	sa Publishing House, New	Delh	i; (200	0)			
TCAT DOOR	3. Solid State Physics, N. W. Ashcroft and N. D. Mermin; Harcourt Asia Pte. Ltd. (2001)								
	1. O. Pillay: Solid State Physics,	New Age	International Publishers 20)15					
Reference	2. M. Ali Omar, Elementary Sol	id State Ph	ysics, Pearson 2006.						
	3. Shah M A and Ahmad T, F International Pvt Ltd, New De	-	of Nanoscience and nanot	techn	ology,	IK			
Faculty	Dr. M A Shah Con	tact	<u>shahji@nitsri.a</u>	c.in					

Laboratories

PSPHY LB01	S	olid State Physics	Lab	C L T 2 0 0	Г <u>Р</u>) 4		
	1. To determine the bar method.	nd gap of given sem	niconductor crystal using fo	ur probe			
	2. To determine the Hall coefficient for given semiconductor and study its field dependence.						
	3. Study of frequency d	lependence of diele	ctric constant for a given sa	mple.			
	4. To study hysteresis of	of ferromagnetic ma	aterial.				
	5. To Study the Thermo	o luminescence of F	F-Centers in Alkali Halides	Crystals.			
	6. To study the morphology of a sample using SEM and to study elemental analysis by EDX method.						
	7. To measure the free material (BaTiO3) us		e of dielectric constant of meter'.	a ferroele	ctric		
	8. Measurement of resigner to the method at different to	• •	to highly resistive samples l	by four pro	be		
	9. To study the superconducting transition of YBCO superconductor						
	10. Measurement of						
Faculty	Dr. M A Shah	Contact	<u>shahji@nits</u>	ri.ac.in			

PSPHY LB02		Advanced Optics I	Lab	C 2	L 0	T 0	P 4	
	1. Students will be able	to understand conc	cepts of optics.		•	•		
Lab	2. Students will be able	to apply concepts	of optics.					
Objectives	3. Students will be able	to evaluate various	optical parameters.					
_	4. Students will be lear	n experimental prac	tices.					
	1. Determination of line	Determination of line width of a laser using monochromator.						
	2. Diffraction of light d	2. Diffraction of light due to a straight edge						
	3. Thickness of the ena	mel coating on a w	re - by diffraction.					
	4. Production and analy	sis of linearly, circ	ularly and elliptically polari	zed l	ight			
	5. Measurement of scre	ew parameters using	a laser beam.					
	6. Using Michelson's i	nterferometer for t	he determination of thickne	ess of	f filn	n ai	nd	
	its refractive index.							
	7. Measurement of coh	erence length of las	er using Michelson interfere	omete	er.			
	8. Construction and reconstruction of an object using holography.							
	9. Diffraction of light by straight edge.							
	10.Mach-Zehnder Inter	ferometer using a H	e-Ne laser.					
Faculty	Dr. H. Singh	Contact	<u>harkirat@nitsri.a</u>	.c.in				

Second Semester

SEMESTER - II

S. No.	Course Code	Courses	L	Т	Р	Credits
1.	PSPHY 201	Classical Electrodynamics	3	1	0	4
2.	PSPHY 202	Solid State Electronics	3	1	0	4
3.	PSPHY 203	Thermodynamics and Statistical Mechanics	3	1	0	4
4.	PSPHY 204	Atomic and Molecular Physics	3	1	0	4
		Laboratories				
6.	PSPHY LB3	Electronics and Instrumentation Lab.	0	0	4	2
7.	PSPHY LB4	Characterization Lab.	0	0	4	2
	Total		12	4	8	20

PSPHY 201	Electrodynamics $\begin{array}{c ccc} C & L & T & P \\ \hline 4 & 3 & 1 & 0 \end{array}$
	The course is an introduction to the concepts required for learning classical electrodynamics and shall enable the student to understand
Course	1. Concepts of fields and potentials
Objectives	2. Electrostatic boundary value problems
	3. Magnetic effects of current & electromagnetic induction
	4. Maxwell's equations & EM-waves in bounded media
	Electrostatics Coulomb's law, Electric field, Gauss's law, applications of Gauss's law, Electric Potential, Poisson's equation and Laplace's equation, Method of Images, Multipole expansion Electrostatic fields in matter: Dielectrics, Polarization, Field inside a dielectric, Electric displacement, Linear dielectrics. Magnetostatics, Biot-Savart Law, Divergence and Curl of B, Ampere's law and applications of Ampere's law, Magnetic vector potential, Multipole expansion.
	Magnetostatic fields in MatterFaraday's law, Maxwell's displacement current, Differential and integral forms of Maxwell's equations.
Syllabus	Scalar and vector potentials, gauge transformations, Coulomb and Lorentz Gauge; Maxwell's equations in terms of potentials. Energy and momentum in electrodynamics. Electromagnetic waves in non-conducting media: Dispersion in non-conductors, free electrons in conductors and plasmas. Guided waves. Electromagnetic radiation, Retarded potentials, Electric dipole radiation, magnetic dipole radiation.
	Radiation from a point charge: Lienard-Wiechart potentials, fields of a point charge in motion, power radiated by a point charge. Electrodynamics and Relativity: Review of special theory of relativity, Lorentz transformations, Minkowski four vectors, Transformation of electric and magnetic fields under Lorentz transformations, field tensor, invariants of electromagnetic field, Covariant formulation of electrodynamics, Lorentz force on a relativistic charged particle.
Expected Outcome	 Students will have achieved the ability to: Student is expected to know the basic principles governing the charges in motion and use Maxwell equations in analyzing the electromagnetic field due to time varying charge and current distribution. Properly handle the theoretical aspects regarding the moving charge and its interactions. Skills: The course is aimed at enhancing problem-solving and mathematical skills by requiring students to apply their mathematical skills and physics understanding to a variety of situations and systems
Text Book	 Introduction to Electrodynamics – David J. Griffiths, Second Edition, Prentice Hall India, 1989. Classical Electrodynamics – J.D. Jackson, Fourth Edition, John Wiley & Sons, 2005.
Reference	1. J. D. Jackson – Classical Electrodynamics.
Faculty	2. R.G. Brown. – Classical Electrodynamics. Dr. P A Ganai Contact princeganai@nitsri.ac.in

PSPHY 202	Solid	State Electronics		С	L	Т	Р		
101111 202	5010	State Electromes		4	3	1	0		
	The aim of this course is to introduce the student to the fundamentals of solid state electronics and devices								
Course	1.Basics of semiconductors	& band structure							
Objectives	2.Pn-junction: operation & a	applications							
	3.Transistor: operation & ch	aracteristics							
	4.Digital circuits: operation	& devices							
	Bonds and Energy bands in and indirect semiconductors of electrons and holes, mot transport in semiconductors	s, Charge Carriers and bility and the effect	l doping, Equilibrium of temperature on me	n cor obili	ty, C	ratio arri	on er		
	PN junctions, contact potential, electrical field, potential and charge density at the junction, energy band diagram, minority carrier distribution, Ideal diode equation, Light Emitting Diodes, Solar Cells, characteristics and applications.								
Syllabus	Bipolar transistors, input/output characteristics, MOSFET, Nano MOSFET performance, Device Fabrication, Emerging research devices and architectures, Shortly on Lasers and								
	Digital electronics, Boolean gates and flip-flops.	n algebra, Basic prii	nciples and operation	ns of	f univ	vers	al		
Expected	Students should perform p satisfactory standard and sh applications.								
Outcome	Skills: The candidate should	l be able to:							
	Understand the underlying the operating principles of important electronic and photonic devices used in day to day life.								
	1. Ben G. Streetman and Sanjay Kumar Banerjee, Solid State Electronic Devices, Pearson, 6/e, 2010								
Text Book	2. Sze S.M., Physics of Semiconductor Devices, John Wiley, 3/e, 2005								
	3. Donald Nearman, Semiconductor Physics and Devices 3/e Mc Graw Hill, 2012								
	1. Pierret, Semiconductor	Devices Fundament	als, Pearson, 2006						
Reference	2. M. Razeghi, Fundamer	ntals of Solid State E	ngineering, 3rd ed., S	prin	ger, 2	2009	9.		
	3. Shah M A and Shah K	A, Science of Small,	Wiley2019						
Faculty	Dr. M A Shah	Contact	<u>shahji@nitsi</u>	ri.ac.	in				

Course Objectives 1. Students will be able to define concept to entropy. 2. Students will be able to explain concept of ensembles. 3. Students will be able to classify classical and quantum statistics. 4. Students will be able to argue on concept of phase transition. Connection between statistics and thermodynamics; Concept of microstates phase space and its connection to Entropy; Classical Ideal Gas and the Maxwell Boltzmann Distribution, Entropy of mixing and Gibbs Paradox. Liouvilles Theorem, Microcanonical Ensemble, Canonical Ensemble and Partition Function calculation for various systems; Energy fluctuations in the Canonical Ensemble; Grand Canonical Ensemble. Quantum Statistics and calculation of the Density matrix for various systems; calculation of the Bose-Einstein and Fermi-Dirac Distribution for a quantum Ideal Gas; Thermodynamic behaviour of an Ideal Bose Gas, Bose-Einstein Condensate; Thermodynamic behaviour of an Ideal Bose Gas, Bose-Einstein Condensate; Thermodynamic behaviour of an Ideal Permi gas. Phase Transitions: General concepts of phase transition, concept of critical phenomena, critical exponents, Ising model and Van der Waals gas, exact solution of the Ising model in 1D Expected Outcome Students are expected to understand basics of statistical mechanics and its implementation in understanding quantum systems 1. F. Reif, Fundamentals of Statistical and Thermal Physics, International Students edition, Tata McGraw-Hill (1988). 2. R. K. Pathria, Statistical Mechanics. 3. F.W. Sears and G.L. Salinger, Thermodynamics, Kinetic Theory and Statistical Thermodynamics, 3	PSPHY 203	Thermodynamic	s and Statistica	l Mechanics	C L	T	P		
Course Objectives2. Students will be able to explain concept of ensembles. 3. Students will be able to classify classical and quantum statistics. 4. Students will be able to argue on concept of phase transition.Connection between statistics and thermodynamics: Concept of microstates phase space and its connection to Entropy; Classical Ideal Gas and the Maxwell Boltzmann Distribution, Entropy of mixing and Gibbs Paradox. Liouvilles Theorem, Microcanonical Ensemble, Canonical Ensemble and Partition Function calculation for various systems; Energy fluctuations in the Canonical Ensemble; Grand Canonical Ensemble. Quantum Statistics and calculation of the Density matrix for various systems; calculation of the Bose-Einstein and Fermi-Dirac Distribution for a quantum Ideal Gas; Thermodynamic behaviour of an Ideal Bose Gas, Bose-Einstein Condensate: Thermodynamic behaviour of an Ideal Fermi gas. Phase Transitions: General concepts of phase transition, concept of critical phenomena, critical exponents, Ising model and Van der Waals gas, exact solution of the Ising model in IDExpected OutcomeStudents are expected to understand basics of statistical mechanics and its implementation in understanding quantum systems.Text Book1. F. Reif, Fundamentals of Statistical and Thermal Physics, International Students edition, Tata McGraw-Hill (1988). 2. R. K. Pathria, Statistical MechanicsReference1. K. Haung, Statistical Mechanics, 3 rd edition, Narosa Publishing House (1998).					4 3	1	0		
Objectives 3. Students will be able to classify classical and quantum statistics. 4. Students will be able to argue on concept of phase transition. Connection between statistics and thermodynamics; Concept of microstates phase space and its connection to Entropy Classical Ideal Gas and the Maxwell Boltzmann Distribution, Entropy of mixing and Gibbs Paradox. Liouvilles Theorem, Microcanonical Ensemble, Canonical Ensemble and Partition Function calculation for various systems; Energy fluctuations in the Canonical Ensemble; Grand Canonical Ensemble. Quantum Statistics and calculation of the Density matrix for various systems; calculation of the Bose-Einstein and Fermi-Dirac Distribution for a quantum Ideal Gas; Thermodynamic behaviour of an Ideal Bose Gas, Bose-Einstein Condensate: Thermodynamic behaviour of an ideal Fermi gas. Phase Transitions: General concepts of phase transitions, order parameter, continuous transition, Landau theory of phase transition, concept of critical phenomena, critical exponents, Ising model and Van der Waals gas, exact solution of the Ising model in 1D Students are expected to understand basics of statistical mechanics and its implementation in understanding quantum systems Skills. The candidate should be able to: Do extensive calculations to solve problems related to quantum systems. 1. F. Reif, Fundamentals of Statistical and Thermal Physics, International Students edition, Tata McGraw-Hill (1988). 2. R. K. Pathria, Statistical Mechanics. 3. F.W. Sears and G.L. Salinger, Thermodynamics, Kinetic Theory and Statistical Thermodynamics, 3 rd edition, Narosa Publishing House (1998).	~								
Suddents will be able to classical and quantum statistics. 4. Students will be able to argue on concept of phase transition. Connection between statistics and thermodynamics; Concept of microstates phase space and its connection to Entropy Classical Ideal Gas and the Maxwell Boltzmann Distribution, Entropy of mixing and Gibbs Paradox. Liouvilles Theorem, Microcanonical Ensemble, Canonical Ensemble and Partition Function calculation for various systems; Energy fluctuations in the Canonical Ensemble; Grand Canonical Ensemble. Quantum Statistics and calculation of the Density matrix for various systems; calculation of the Bose-Einstein and Fermi-Dirac Distribution for a quantum Ideal Gas; Thermodynamic behaviour of an Ideal Bose Gas, Bose-Einstein Condensate: Thermodynamic behaviour of an ideal Fermi gas. Phase Transitions: General concepts of phase transition, concept of critical phenomena, critical exponents, Ising model and Van der Waals gas, exact solution of the Ising model in ID Students are expected to understand basics of statistical mechanics and its implementation in understanding quantum systems Skills, The candidate should be able to: Do extensive calculations to solve problems related to quantum systems. 1. F. Reif, Fundamentals of Statistical and Thermal Physics, International Students edition, Tata McGraw-Hill (1988). 2. R. K. Pathria, Statistical Mechanics. 3. F.W. Sears and G.L. Salinger, Thermodynamics, Kinetic Theory and Statistical Thermodynamics, 3 rd edition, Narosa Publishing House (1998).			1	•					
Syllabus Connection between statistics and thermodynamics; Concept of microstates phase space and its connection to Entropy; Classical Ideal Gas and the Maxwell Boltzmann Distribution, Entropy of mixing and Gibbs Paradox. Liouvilles Theorem, Microcanonical Ensemble, Canonical Ensemble and Partition Function calculation for various systems; Energy fluctuations in the Canonical Ensemble, Gauntum Statistics and calculation of the Density matrix for various systems; calculation of the Bose-Einstein and Fermi-Dirac Distribution for a quantum Ideal Gas; Thermodynamic behaviour of an Ideal Bose Gas, Bose-Einstein Condensate: Thermodynamic behaviour of an ideal Fermi gas. Phase Transitions: General concepts of phase transition, concept of critical phenomena, critical exponents, Ising model and Van der Waals gas, exact solution of the Ising model in 1D Students are expected to understand basics of statistical mechanics and its implementation in understanding quantum systems Skills. The candidate should be able to: Do extensive calculations to solve problems related to quantum systems. 1. F. Reif, Fundamentals of Statistical and Thermal Physics, International Students edition, Tata McGraw-Hill (1988). 2. R. K. Pathria, Statistical Mechanics 1. K. Haung, Statistical Mechanics. 3. F.W. Sears and G.L. Salinger, Thermodynamics, Kinetic Theory and Statistical Thermodynamics, 3 rd edition, Narosa Publishing House (1998).	Objectives		•	-					
space and its connection to Entropy; Classical Ideal Gas and the Maxwell Boltzmann Distribution, Entropy of mixing and Gibbs Paradox. Liouvilles Theorem, Microcanonical Ensemble, Canonical Ensemble and Partition Function calculation for various systems; Energy fluctuations in the Canonical Ensemble; Grand Canonical Ensemble. Quantum Statistics and calculation of the Density matrix for various systems; calculation of the Bose-Einstein and Fermi-Dirac Distribution for a quantum Ideal Gas; Thermodynamic behaviour of an Ideal Bose Gas, Bose-Einstein Condensate: Thermodynamic behaviour of an ideal Fermi gas. Phase Transitions: General concepts of phase transitions, order parameter, continuous transition, Landau theory of phase transition, concept of critical phenomena, critical exponents, Ising model and Van der Waals gas, exact solution of the Ising model in 1D Expected Outcome Students are expected to understand basics of statistical mechanics and its implementation in understanding quantum systems Skills. The candidate should be able to: Do extensive calculations to solve problems related to quantum systems. 1. F. Reif, Fundamentals of Statistical and Thermal Physics, International Students edition, Tata McGraw-Hill (1988). Reference Reference I. K. Haung, Statistical Mechanics. I. K. Haung, Statistical Mechanics. 3. F.W. Sears and G.L. Salinger, Thermodynamics, Kinetic Theory and Statistical Thermodynamics, 3 rd edition, Narosa Publishing House (1998).		4. Students will be able	to argue on conc	cept of phase transition.					
SyllabusFunction calculation for various systems; Energy fluctuations in the Canonical Ensemble; Grand Canonical Ensemble. Quantum Statistics and calculation of the Density matrix for various systems; calculation of the Bose-Einstein and Fermi-Dirac Distribution for a quantum Ideal Gas; Thermodynamic behaviour of an Ideal Bose Gas, Bose-Einstein Condensate; Thermodynamic behaviour of an Ideal Fermi gas.Phase Transitions: General concepts of phase transitions, order parameter, continuous transition, Landau theory of phase transition, concept of critical phenomena, critical exponents, Ising model and Van der Waals gas, exact solution of the Ising model in 1DExpected OutcomeStudents are expected to understand basics of statistical mechanics and its implementation in understanding quantum systems Skills. The candidate should be able to: Do extensive calculations to solve problems related to quantum systems.Text Book1. F. Reif, Fundamentals of Statistical and Thermal Physics, International Students edition, Tata McGraw-Hill (1988). 2. R. K. Pathr		space and its connection to Entropy; Classical Ideal Gas and the Maxwel							
Syllabus calculation of the Bose-Einstein and Fermi-Dirac Distribution for a quantum Ideal Gas; Thermodynamic behaviour of an Ideal Bose Gas, Bose-Einstein Condensate: Thermodynamic behaviour of an ideal Fermi gas. Phase Transitions: General concepts of phase transitions, order parameter, continuous transition, Landau theory of phase transition, concept of critical phenomena, critical exponents, Ising model and Van der Waals gas, exact solution of the Ising model in 1D Expected Outcome Students are expected to understand basics of statistical mechanics and its implementation in understanding quantum systems Skills. The candidate should be able to: Do extensive calculations to solve problems related to quantum systems. 1. F. Reif, Fundamentals of Statistical and Thermal Physics, International Students edition, Tata McGraw-Hill (1988). 2. R. K. Pathria, Statistical Mechanics 2. R. K. Dathria, Statistical Mechanics. 3. F.W. Sears and G.L. Salinger, Thermodynamics, Kinetic Theory and Statistical Thermodynamics, 3 rd edition, Narosa Publishing House (1998).		Function calculation for	various systems						
continuous transition, Landau theory of phase transition, concept of critical phenomena, critical exponents, Ising model and Van der Waals gas, exact solution of the Ising model in 1D Expected Outcome Students are expected to understand basics of statistical mechanics and its implementation in understanding quantum systems Skills. The candidate should be able to: Do extensive calculations to solve problems related to quantum systems. 1. F. Reif, Fundamentals of Statistical and Thermal Physics, International Students edition, Tata McGraw-Hill (1988). 2. R. K. Pathria, Statistical Mechanics 2. R. K. Pathria, Statistical Mechanics. 3. F.W. Sears and G.L. Salinger, Thermodynamics, Kinetic Theory and Statistical Thermodynamics, 3 rd edition, Narosa Publishing House (1998).	Syllabus	Quantum Statistics and calculation of the Density matrix for various systems; calculation of the Bose-Einstein and Fermi-Dirac Distribution for a quantum Ideal Gas; Thermodynamic behaviour of an Ideal Bose Gas, Bose-Einstein Condensate; Thermodynamic behaviour of an ideal Fermi gas.							
Expected Outcome implementation in understanding quantum systems Skills. The candidate should be able to: Do extensive calculations to solve problems related to quantum systems. Text Book 1. F. Reif, Fundamentals of Statistical and Thermal Physics, International Students edition, Tata McGraw-Hill (1988). 2. R. K. Pathria, Statistical Mechanics 1. K. Haung, Statistical Mechanics 3. F.W. Sears and G.L. Salinger, Thermodynamics, Kinetic Theory and Statistical Thermodynamics, 3 rd edition, Narosa Publishing House (1998).		Phase Transitions: General concepts of phase transitions, order parameter, continuous transition, Landau theory of phase transition, concept of critical phenomena, critical exponents, Ising model and Van der Waals gas, exact solution of the Ising model in 1D							
Do extensive calculations to solve problems related to quantum systems. Text Book 1. F. Reif, Fundamentals of Statistical and Thermal Physics, International Students edition, Tata McGraw-Hill (1988). 2. R. K. Pathria, Statistical Mechanics 1. K. Haung, Statistical Mechanics, Wiley Eastern (1991). 2. R. Kubo: Statistical Mechanics. 3. F.W. Sears and G.L. Salinger, Thermodynamics, Kinetic Theory and Statistical Thermodynamics, 3 rd edition, Narosa Publishing House (1998).	Expected	Students are expected to understand basics of statistical mechanics and its implementation in understanding quantum systems							
Text Book 1. F. Reif, Fundamentals of Statistical and Thermal Physics, International Students edition, Tata McGraw-Hill (1988). 2. R. K. Pathria, Statistical Mechanics 1. K. Haung, Statistical Mechanics, Wiley Eastern (1991). 2. R. Kubo: Statistical Mechanics. 3. F.W. Sears and G.L. Salinger, Thermodynamics, Kinetic Theory and Statistical Thermodynamics, 3 rd edition, Narosa Publishing House (1998).	Outcome	Skills. The candidate should be able to:							
Text Book Students edition, Tata McGraw-Hill (1988). 2. R. K. Pathria, Statistical Mechanics 1. K. Haung, Statistical Mechanics, Wiley Eastern (1991). 2. R. Kubo: Statistical Mechanics. 3. F.W. Sears and G.L. Salinger, Thermodynamics, Kinetic Theory and Statistical Thermodynamics, 3 rd edition, Narosa Publishing House (1998).		Do extensive calculations to solve problems related to quantum systems.							
 Reference R. Kubo: Statistical Mechanics, Wiley Eastern (1991). R. Kubo: Statistical Mechanics. F.W. Sears and G.L. Salinger, Thermodynamics, Kinetic Theory and Statistical Thermodynamics, 3rd edition, Narosa Publishing House (1998). 	Text Book	1. F. Reif, Fundamentals of Statistical and Thermal Physics, International Students edition, Tata McGraw-Hill (1988).							
Reference 2. R. Kubo: Statistical Mechanics. 3. F.W. Sears and G.L. Salinger, Thermodynamics, Kinetic Theory and Statistical Thermodynamics, 3 rd edition, Narosa Publishing House (1998).		2. R. K. Pathria, Statistical Mechanics							
Reference 3. F.W. Sears and G.L. Salinger, Thermodynamics, Kinetic Theory and Statistical Thermodynamics, 3 rd edition, Narosa Publishing House (1998).		1. K. Haung, Statistical Mechanics, Wiley Eastern (1991).							
3. F.w. Sears and G.L. Sainger, Thermodynamics, Kinetic Theory and Statistical Thermodynamics, 3 rd edition, Narosa Publishing House (1998).		2. R. Kubo: Statistical Mechanics.							
Examples De Harlingt Singh Contact harlingt Onitation in	Reference	3. F.W. Sears and G.L. Salinger, Thermodynamics, Kinetic Theory and Statistical Thermodynamics, 3 rd edition, Narosa Publishing House (1998).							
FacultyDr. Harkirat SinghContactharkirat@nitsri.ac.in	Faculty	Dr. Harkirat Singh	Contact	harkirat@nit	sri.ac.in				

PSPHY 204	Atomic And Molecular PhysicsCLTP4310							
	The course aim to give fundamental insight of atomic and Molecular Physics.							
	1. Students will be able to understand the structure of Hydrogen atom.							
Course	2. Students will be able to understand the spectra of the Helium Atom.							
Objectives	3. Students will be able to understand the angular momentum in many electron atoms.							
	4. Students will be able to understand the Molecular spectroscopy.							
	Hydrogen Atom Structures: Solution of Schrödinger's Equation for one Electron System, Quantum Numbers (n, l, m) and Wave Function of the H Atom, Comparison With the Bhor's Model, Relativistic Correction of Energy Terms, The Electron Spin, The Stern-Gerlach Experiment, Numerical Problems.							
	Two Valance Electron Atom: The Helium Atom, Approximation Models, Symmetry of the Wave Function, Consideration of Electron Spin, Pauli's Exclusion Principle, Spectroscopic Terms and Selection Rules, Energy Levels of the Helium Atom, Helium Spectrum, Numerical Problems.							
Syllabus	Angular Problems In Many-Electron Atoms: Coupling Schemes for Electronic Angular Momenta, The LS-Coupling Approximation, Allowed Term in LS Coupling. Interaction with External Field: Zeeman (Normal and Anomalous), Paschen-Back and Stark Effects, Numerical Problems.							
	Molecular Physics: Molecular Structure and Molecular Spectra, Rotational, Vibrational, Rotational-Vibrational and Electronic Spectra of Di-atomic Molecules, Selection Rules, ESR Spectroscopy: Introduction, Electron-Electron Coupling, Infrared Spectroscopy: Raman Spectra, Numerical Problems.							
	Understanding of two electron system as helium atom. Interpretation of L-S, and J-J coupling and interaction with external fields							
Expected	Skills: Upon successful completion of the course, student should be able to know:							
Outcome	Solution Schrödinger equation for the hydrogen atom and interpretation of quantum numbers. Spin-orbit interaction and spectroscopic terms.							
	1. Wolfgang D, Atoms, Molecules and Photons, 3 rd edition, Springer.							
Text Book	 C.N. Banwell, Fundamentals of Molecular Spectroscopy, 4th edition, McGraw-Hill, New York. 							
	3. Manas Chanda, Atomic Structure and Chemical Bond, Tata McGraw-Hill, New Delhi.							
Reference	1. B.H Bransden and C.J Joachain: Physics of atoms and Molecules.							
	2. Raj Kumar, Atomic and Molecular Physics, Campus Book.							
Faculty	Prof. M. IkramContactikram@nitsri.ac.in							

Laboratories

PSPHY LB03	Electronics And Instrumentation Lab	C 2	L	T 0	P 4		
	1. To study the gain characteristics of a double stage RC coupled BJ	-	v	v	4		
	3. To study the input and output characteristics of a differential amp	ifier					
	4. To study MOSFET as output power amplifier.						
	5. Design and performance study of inverting, non-inverting and uni	ty ga	ain,				
	differentiator, integrator amplifier using op-amp.						
	6. Design and performance study of Schmidt trigger circuit.						
	7. Design and performance study of astable multivibrator and mono- multivibrator.	stab	le				
	8. Design and performance study of active filters (Low pass, high pa	ss, t	and	pass	s,		
	band reject).			-			
	9. Combinational circuits: Adders, multipliers, magnitude comparators.						
	10. Sequential circuits: Flip flops, counters, shift registers. (Ripple counter with D-						
	type flip-flops; J-K flip flop and its application to counting).						
Faculty	Dr. M A Shah Contact <u>shahji@nitsri.a</u>	<u>c.in</u>					

PSPHY LB04	Characterization Lab	C 2	L 0	T 0	P 4			
Lab.	 Students will learn handling of equipments Students will be able to classify various characterization technic 	ues.						
Objectives	Objectives 3. Students will be able to explain basic concepts and working of equipment4. Students will learn basic experimental practices.							
	1. Structural determination of powdered crystalline materials by X	Structural determination of powdered crystalline materials by XRD.						
	2. Surface morphology of the materials by SEM.	2. Surface morphology of the materials by SEM.						
	3. Characterization of semiconductors: Determination of number of carriers, mobility.	of char	ge					
	4. Study of Dielectric Constant and Measure Curie temperature o Ceramics.	Ferro	elec	tric				
	5. Apparatus for Measurement of Susceptibility of Paramagnetic S form of Solution by Quincy's Tube Method.	ubstar	nce i	n the	3			
	6. Mossbauer Spectrometer.							
	7. Ultrasonic testing apparatus.							
	8. Experimental methods for gamma-ray (G.M. Counter).							
	9. Determination of the g of DPPH by Electron Spin Resonance Spectrometer (ESR).							
	10. Determination of band gap of semiconducting materials by UV- Visible spectrometer.							
Faculty	Dr. Harkirat Singh Contact <u>harkirat@nit</u>	sri.ac.i	in					

Third Semester

SEMESTER – III						
S. No.	Course Code	Courses	L	Т	Р	Credits
1.	PSPHY 301	Condensed Matter Physics	3	1	0	4
2.	PSPHY 302	Nuclear and Particle Physics	3	1	0	4
3.	PSPHY 303	Computational Methods In Physics	3	1	0	4
4.	PSPHY EL	Choose one course from electives	3	1	0	4
		Laboratories				
4.	PSPHYLB5	Computational Physics Lab.	0	0	4	2
5.	PSPHY LB 6	Materials Science Lab.	0	0	4	2
	Total		12	4	8	20

PSPHY 301	Condensed Matter Physics	P					
	The course aim is to understand the general aspects of the condensed matter physics	0					
Course Objectives	 Students will be able to understand the Electronic transport properties of solids. Students will be able to understand the Magnetic properties of solids and applications. Students will be able to understand the Optical properties. Students will be able to understand the Basics of the superconductivity a applications. 						
	Transport Properties: Boltzmann Equation; Relaxation Time Approximation General Transport Coefficients; Electronic Conduction in Metals; Thermoelect Effects; Transport Phenomena in Magnetic Field: Magnetoresistan Magnetotransport; Classical Theory of Magnetoconductivity; Hall Effect a Quantum Hall Effect; Numerical Problems.	tric ice;					
	Magnetism: Magnetic Properties of Insulators, Langevin Diamagnetism and Van Vleck Paramagnetism, Curie Paramagnets and Curie-Weiss Ferromagnets, Neel Antiferromagnets, Heisenberg model; Spin Waves, Ising Model; Elements of Magnetic Properties of Metals, Landau Diamagnetism, Pauli Paramagnetism, Stoner Ferromagnetism; Magnetic Resonance; NMR And EPR, Numerical Problems.						
Syllabus	Optical Processes And Exitons : Optical Reflectance: Kramers-Kronig Relations; Electronics- Interrand Transitions; Exitons: Frankel Exitons; Weakly Bound Exitons; Exiton Condensation into Electron-Hole Drops; Raman Effect in Crystals; Numerical Problems.						
	Superconductivity: History, General Properties, Measurements; Critical Fie Temperature, Current; Meissner Effect; Type-I and Type-II Superconductors; Lond Equation; Penetration Depth; Optical Properties; Cooper Pairing and BCS Theo Ginzburg-Landau Theory; Flux Quantization; Super current Tunneling; DC And Josephson Effects; High-Tc Superconductors, Numerical Problems.	don ory;					
	Upon successful completion of the course, student should be able to know:						
Expected Outcome	1. To introduce the general aspects of the electronic transport phenomena.						
	2. To introduce the general aspects of the magnetic properties of solids.						
Text Book	1. Principles of Condensed Matter Physics: P.M. Chaikin and T.C.Lubensky.						
I CAL DUUK	2. Principles of the theory of solids: J.M Ziman						
	1. Solid State Physics: Ashcroft & Mermin.						
Reference	2. Solid State Physics: A. J. Dekker, Macmillan, New Ed.						
	3. Kittel C, Introduction to solid state physics, 8 th edition (Wiley Eastern Ltd.)						
Faculty	Prof. M. Ikram Contact <u>ikram@nitsri.ac.in</u>						

PSPHY 302	Nuclear and Particle PhysicsCLTP4310					
	The course aim is to understand the general aspects of the nuclear and particle physics and shall enable the student to understand					
Course	1. Basics of nuclear structure and properties					
Objectives	2. Interaction of particles with matter					
	3. Particle accelerators and applications					
	4. Standard model					
	Basic nuclear properties, Nuclear size and distribution of nucleons, Energies of nucleons in the nucleus, Angular momentum, Parity and symmetry, Magnetic dipole moment and electric quadrupole moment, Energy levels and mirror nuclei. Characteristics of nuclear forces - Effect of Pauli's exclusion principle, Magnetic dipole moment and electric quadrupole moment of deuteron -The tensor forces.					
	Interaction of charged particles with matter. Stopping power and raige. Detectors for energetic charged particles; detector; Bubble chamber; Nuclear emulsions. Composite relations. Identification of particles. Need for accelerator of charged particles, Classification of types of accelerators, Proton Synchrotron, Betatron; alternating gradient accelerator, Colliding beam accelerator.					
Syllabus	Different types of reactions, Quantum mechanical theory, Resonance scattering, Compound nucleus formation, Statistical theory of nuclear reactions and evaporation probability. Classification and properties of elementary particles, Leptons, Baryons, mesons particles and antiparticles excited states and resonances.					
	Various types of interactions - gravitational, electromagnetic, and weak and strong interactions and their mediating quanta, Conservation rules in fundamental interactions. Charge symmetry and charge independence, Parity and charge conjugation, strangeness and decay modes, Isospin and its conservation. Idea of eight fold way and quarks.					
Expected Outcome	 On completion of this course, the student will be able to: Apply knowledge of core concepts in physics to more advanced topics in nuclear and particle physics. Expected 2. Formulate solutions to problems in nuclear and particle physics involving 					
Torit Deals	1. Heral Enge, Introduction to Nuclear Physics, Addison Wesley (1981).					
Text Book	2. D.C. Tayal, Nuclear Physics, 4th edition, Himalaya House, Bombay (1980).					
Reference	 A.D. Helfrick and W.D.Cooper: Modern Electron Instrumentation and Measurement Techniques. 					
	2. Chaikin P M and Lubensky T C, Cambridge University Press.					
Faculty	Dr. P. A. Ganai Contact <u>princeganai@nitsri.ac.in</u>					

Course Objectives 1. Students will be able to design MATLAB algorithms. 2. Students will be able to determine roots of equation by writing MATLAB codes. 3. Students will be able to calculate interpolation by writing MATLAB codes. 4. Students will be able to evaluate numerical differentiation and integration by writing MATLAB codes. Introduction to MATLAB: Brief introduction, installation of MATLAB, Use of MATLAB, key features; MATLAB Software: MATLAB window, command window, Workspace, command history, working with the MATLAB user interface, basic commands, assigning variables, operation with variables; Data files and types. Determining roots of the equation by Bisection and Newton Raphson Method, Matrix manipulation: Finding transpose, determinant and inverse, solution of simultaneous method by Gauss elimination method, Gauss Seidel iteration method. Interpolation, Newton's formula for forward and backward interpolation, Divided difference, symmetry of divided differences, Newton's general interpolation formula, Lagrange's interpolation formula, cubic splines, least square approximation, interpolation in multidimension. Numerical differentiation and integration, Trapezoidal rule, Simpson 1/3 and Simpson 3/8 rule, Solution of ordinary differential equation: Euler's method, modified Euler's method and Runge-Kutta method, system of coupled first order ordinary differential equations. Stills. The candidate should be able to: Write MATLAB codes to solve computational physics problems. 1. N. Giordano and H Nakanishi, Computational Physics, Pearson Prentice Hall, NJ. 2. Srimanta Pal, Numerical methods: Principles, Analysis and Algorithms,	PSPHY 303	Computational Methods in PhysicsCLTP4310				
MATLAB, key features; MATLAB Software: MATLAB window, command window, Workspace, command history, working with the MATLAB user interface, basic commands, assigning variables, operation with variables; Data files and types. Determining roots of the equation by Bisection and Newton Raphson Method, Matrix manipulation: Finding transpose, determinant and inverse, solution of simultaneous method by Gauss elimination method, Gauss Seidel iteration method. Interpolation, Newton's formula for forward and backward interpolation, Divided difference, symmetry of divided differences, Newton's general interpolation formula, Lagrange's interpolation formula, cubic splines, least square approximation, interpolation in multidimension. Numerical differentiation and integration, Trapezoidal rule, Simpson 1/3 and Simpson 3/8 rule, Solution of ordinary differential equation: Euler's method, modified Euler's method and Runge-Kutta method, system of coupled first order ordinary differential equations.Expected OutcomeStudents are expected to understand basics of MATLAB algorithms and its implementation in solving computational problems Skills. The candidate should be able to: Write MATLAB codes to solve computational physics, Pearson Prentice Hall, NJ. 2. Srimanta Pal, Numerical methods: Principles, Analysis and Algorithms, Oxford University Press.Text Book1. N. Giordano and H Nakanishi, Computational Physics, Pearson Prentice Hall, NJ. 2. Srimanta Pal, Numerical methods for scientists and engineers, Marcel Dekker Inc. New York		 Students will be able to determine roots of equation by writing MATLAB codes. Students will be able to calculate interpolation by writing MATLAB codes. Students will be able to evaluate numerical differentiation and integration by writing 				
Syllabusmanipulation: Finding transpose, determinant and inverse, solution of simultaneous method by Gauss elimination method, Gauss Seidel iteration method.SyllabusInterpolation, Newton's formula for forward and backward interpolation, Divided difference, symmetry of divided differences, Newton's general interpolation formula, Lagrange's interpolation formula, cubic splines, least square approximation, interpolation in multidimension.Numerical differentiation and integration, Trapezoidal rule, Simpson 1/3 and Simpson 3/8 rule, Solution of ordinary differential equation: Euler's method, modified Euler's method and Runge-Kutta method, system of coupled first order ordinary differential equations.Expected OutcomeStudents are expected to understand basics of MATLAB algorithms and its implementation in solving computational problems Skills. The candidate should be able to: Write MATLAB codes to solve computational physics, Pearson Prentice Hall, NJ.Text Book1. N. Giordano and H Nakanishi, Computational Physics, Pearson Prentice Hall, NJ. 2. Srimanta Pal, Numerical methods: Principles, Analysis and Algorithms, Oxford University Press.I. Joe D. Hoffman, Numerical methods for scientists and engineers, Marcel Dekker Inc. New York		MATLAB, key features; MATLAB Software: MATLAB window, command window, Workspace, command history, working with the MATLAB user interface, basic				
Syllabusdifference, symmetry of divided differences, Newton's general interpolation formula, Lagrange's interpolation formula, cubic splines, least square approximation, interpolation in multidimension. Numerical differentiation and integration, Trapezoidal rule, Simpson 1/3 and Simpson 3/8 rule, Solution of ordinary differential equation: Euler's method, modified Euler's method and Runge-Kutta method, system of coupled first order ordinary differential equations.Expected OutcomeStudents are expected to understand basics of MATLAB algorithms and its implementation in solving computational problems Skills. The candidate should be able to: Write MATLAB codes to solve computational physics problems.Text Book1. N. Giordano and H Nakanishi, Computational Physics, Pearson Prentice Hall, NJ. 2. Srimanta Pal, Numerical methods: Principles, Analysis and Algorithms, Oxford University Press.1. Joe D. Hoffman, Numerical methods for scientists and engineers, Marcel Dekker Inc. New York		manipulation: Finding transpose, determinant and inverse, solution of simultaneous				
3/8 rule, Solution of ordinary differential equation: Euler's method, modified Euler's method and Runge-Kutta method, system of coupled first order ordinary differential equations. Expected Outcome Students are expected to understand basics of MATLAB algorithms and its implementation in solving computational problems Skills. The candidate should be able to: Write MATLAB codes to solve computational physics problems. Text Book 1. N. Giordano and H Nakanishi, Computational Physics, Pearson Prentice Hall, NJ. 2. Srimanta Pal, Numerical methods: Principles, Analysis and Algorithms, Oxford University Press. 1. Joe D. Hoffman, Numerical methods for scientists and engineers, Marcel Dekker Inc. New York	Syllabus	difference, symmetry of divided differences, Newton's general interpolation formula, Lagrange's interpolation formula, cubic splines, least square approximation,				
Expected Outcome implementation in solving computational problems Skills. The candidate should be able to: Write MATLAB codes to solve computational physics problems. Text Book 1. N. Giordano and H Nakanishi, Computational Physics, Pearson Prentice Hall, NJ. 2. Srimanta Pal, Numerical methods: Principles, Analysis and Algorithms, Oxford University Press. 1. Joe D. Hoffman, Numerical methods for scientists and engineers, Marcel Dekker Inc. New York		3/8 rule, Solution of ordinary differential equation: Euler's method, modified Euler's method and Runge-Kutta method, system of coupled first order ordinary differential				
Outcome Skins. The candidate should be able to: Write MATLAB codes to solve computational physics problems. Text Book 1. N. Giordano and H Nakanishi, Computational Physics, Pearson Prentice Hall, NJ. 2. Srimanta Pal, Numerical methods: Principles, Analysis and Algorithms, Oxford University Press. 1. Joe D. Hoffman, Numerical methods for scientists and engineers, Marcel Dekker Inc. New York						
Text Book 2. Srimanta Pal, Numerical methods: Principles, Analysis and Algorithms, Oxford University Press. 1. Joe D. Hoffman, Numerical methods for scientists and engineers, Marcel Dekker Inc. New York		Skills. The candidate should be able to:				
Inc. New York	Text Book	2. Srimanta Pal, Numerical methods: Principles, Analysis and Algorithms, Oxford				
Reference2. Scarbrough James B, Numerical Mathematical Analysis, Oxford and IBH	Reference	 Joe D. Hoffman, Numerical methods for scientists and engineers, Marcel Dekker Inc., New York 				
Publishing Company, New Delhi Faculty Dr. Harkirat Singh Contact harkirat@nitsri.ac.in	Faculty					

Laboratories

PSPHY LB05	Compu	tational Physics 1	Lab	C L 2 0	T P 0 4
	1. Students will learn to use	MATLAB softw	are.		
Lab.	2. Students will be able to a	pply numerical te	chniques to write MATL	AB codes	s.
Objectives	3. Students will be able to s	olve scientific pro	blems using MATLAB c	codes.	
-	4. Students will be able to e	. Students will be able to execute simulation of scientific problems.			
	1. Write MATLAB script to	. Write MATLAB script to simulate the decay of radioactive nucleus.			
	2. Write MATLAB script for the numerical solution of equation of motion for a simple pendulum using the Euler method.				for a
	3. Write MATLAB script for the numerical solution of equation of motion for a simple pendulum using the Runge-Kutta method.				for a
	4. Write a MATLAB script	for the numerical	solution of damped pend	ulum.	
	5. Write a MATLAB script	to simulate the pla	netary motion of earth a	round the	sun.
	6. Write a MATLAB script	to simulate the rai	ndom walk.		
	7. Write a MATLAB script to solve time dependent Schrodinger equation in 1D for				D for
	particle in a box problem	•			
	8. Write a MATLAB script	to simulate the Isi	ng model of a ferromagn	et.	
Faculty	Dr. Harkirat Singh	Contact	<u>harkirat@nitsri</u>	<u>.ac.in</u>	

PSPHY LB06	Material Science Lab C L T P 2 0 0 4			
Lab. Objectives	To get accustomed with the practical applications of the principles of x-rays for determining the particle size/grain size estimation by Scherrer formula of the crystallite.			
	 To study the temperature dependence of Hall coefficient of a given semiconductor. Determination of Band gap of a given semiconductor material by four probe 			
	technique.3. Design/fabrication of a temperature controller and to study the performance of the designed controller using PID Controlled Oven.			
	4. Determination of Lattice parameters, particles sizes etc. of different powders samples of bulk-/nano-systems (ferrite, α -Fe2O3, γ -Fe ₂ O ₃) using X-radiffractograms.			
	5. Determination of Miller indices and lattice parameter of an unknown powder material by x-ray diffraction.			
	 6. Phase identification of an unknown sample by x-ray diffraction. 7. Determination of particle size and lattice strain of an unknown powder specime applying marq2 software and Scherrer equation. 			
	8. Preparation of nanocrystalline powder specimen by ball milling: analysis of their x-ray spectra and particle size estimation by Scherrer formula.			
Faculty	9. Study of porosity and grain size of thin film and powder sample by SEM.Prof. M. IkramContactikram@nitsri.ac.in			

Electives

PSPHY EL 01	Renewable Sources of EnergyCLT431					P 0			
		The course aim is to understand the general aspects of the renewable sources of energy and shall enable the student to understand							
Course	1. Basics of Energy, envir	conment and develop	oment Nexus						
Objectives	2. Solar thermal energy h	arvesting							
	3. Solar photovoltaic con	versions							
	4. Fuel cell and Hydroger								
	Relevance of Renewable Energy in relation to depletion of fossil fuels, Environmental considerations, Green energy, centralized and decentralized energy								
	collectors, overall heat lo applications like solar c	Sun as a source of energy, Flat plate and evacuated tubular collectors, efficiency of collectors, overall heat loss coefficient and heat transfer correlations, Solar thermal applications like solar cooker and solar water heaters, solar dryers, solar stills, thermal energy storage, active and passive heating of buildings							
Syllabus	Fundamentals of photovoltaic Energy Conversion, Physics and Materials properties basic to photovoltaic conversion, Optical properties of solids, Direct and indirect transition semiconductors, interrelationship between absorption coefficient and band gap, recombination of carriers, Types of solar cells, pn junction solar cells, transport equation, current density, brief description of single crystal silicon and amorphous silicon solar cells, e.g. tandem solar cells, solid liquid junction solar cells, Design of PV systems								
	Hydrogen Energy, Solar Hydrogen through photoelectrolysis and photocatalytic process. Physics of material characteristics for production of solar hydrogen, Brief discussion of various storage processes, , new storage modes, Various factors relevant for safety, use of Hydrogen as fuel, use in vehicular transport, hydrogen for electricity generation, Fuel Cells								
Expected Outcome	The Student is expected to understand the importance of Energy for sustenance and development. They should be able to design sustainable energy solution for various end uses.								
Text Book	 Twidel and Weir, Renewable Energy, E& F N Spon ltd. Bhattacharya, T. Terrestrial Photovoltaics, Narosa 								
Reference	 1.Duffie and Beckman, Solar Engineering of thermal processes, John Wiley and Sons, New York 2. Godfrey Boyle, Renewable Energy: Power for a sustainable Future, Oxford. 								
Faculty	Dr. Seemin Rubab	Contact	rubab@nitsri						

PSPHY EL 02	Nanoscience & Nano-MaterialsCLTP4310
	The course is an introduction to nanoscience and the aim is to introduce the student to the fundamentals of Nanomaterials and their technological applications in day to day life.
Course	1. Basics of nanoscience & its emergence with multidisciplinary concept
Objectives	2. Nanomaterials and fabrication by various techniques including the biological one
	3. Properties at nanoscale and how they are better as compared with their bulk counterparts.
	4. Technological applications in day to day life of Nanomaterials.
	The scientific revolutions – Nanoscience, Nature and scope, surface to volume ratio, quantum effects- classification of nanocrystals - dimensionality and size dependent phenomena; Quantum dots, Nanowires and Nanotubes 90,1,2 dimensions)
Syllabus	Preparations Methods, Top down and bottom up, Special nanomaterials - Carbon based nanomaterials, Graphene. Properties of materials & nanomaterials, Electronic Properties, Photoconductivity, Optical absorption & transmission, Photoluminescence, Fluorescence, Phosphorescence, Electroluminescence, Important properties in relation to nanomagnetism- Nanoscale magnetism – Transport in a magnetic field, Dielectric properties
	Industrial applications of Nanomaterials: Nanomaterials in bone substitutes & Dentistry, Biochips- analytical devices, Biosensors, Materials in Medicines, Agriculture and engineering
Expected	Students expected to apply above knowledge for advanced study and research in nanomaterial applications.
Outcome	Skills: The candidate should be able to:
	Have hands-on laboratory experience and should be able to operate all sophisticated equipments and fabrication techniques.
	1. "Nanostructures & Nanomaterials: Synthesis, Properties & Applications" G. Cao, Imperial College Press, 2004.
Text Book	2. Nanomaterials: An introduction to synthesis, properties and application, Dieter Vollath, WILE-VCH, 2008
	3. Rao, C.N.R., Thomas, P. John, Kulkarni, G.U Nanocrystals, Synthesis, Properties and Applications, Springer 2007
	1. T Pardeep, Nano the essentials, Understanding the Nanoscience and Nanotechnology, Tata McGraw-Hill 2007
Reference	2. M S R Rao and S Singh, Nanotechnology and Nanotechnology, Wiley 2013,
	3. Shah M A and Shah K A, Science of Small, Wiley 2019
Faculty	Dr. M A Shah Contact <u>shahji@nitsri.ac.in</u>

PSPHY EL 03	Atmospheric & Environmental Physics	C 4	L 3	T 1	P 0		
	The students are made capable of assimilating functional areas of environment for formulating better conservation strategies in future.						
Course	1. Formation of ionized layers						
Objectives	2. Atmospheric structure						
	3. Transport of pollution						
	4. Biological invasion						
	Introduction, source of ionization, formation of an ionized layer, regions, Distribution of ion in the topside ionosphere, Magnet and concepts of atmospheric dynamo and motor, Moments in plasma and neutral atmospheric interaction currents in ionosphere	ic fie the a	eld v	ariat	ion		
	Basics of the atmospheric structure. Electromagnetic radiation emission. The radiation balance and the greenhouse gases. Ener earth's surface. Water balance. Hydrological cycle. The wate ground and soil. Transport of pollution in water and air.	gy ba	alanc	e at	the		
Syllabus	Concept and scope of environmental Physics with respect to human environment; Energy use and efficiency in buildings. Energy losses, calculation of energy loss es, energy gains. Air regulation in buildings, heat pumps. Energy resources and the ir exploitationEnergy use pattern in different parts of the world and its impact on the environment. CO ₂ emission in atmosphere.						
	Biological Invasion: concept; pathways, process, mechanism, ir of major invasive species in India, Earthquakes, distribution Seismic waves.Environmental applications in meteorology, geophysics. Environmental Management.	and	mec	hanis	sm.		
	After the course the student shall						
Expected Outcome	 understand how physics can be applied in the atmospheric & er sciences. have basic knowledge about meteorology, hydrology and geopletered at the sciences of the sciences of			ntal			
	 Environmental Management enables candidates to have a broader view and knowledge of various facets of environmental management M. Zeilik and E.V.P Smith:Introductory Astronmy and astrophysics. 						
Text Book	 John L Monteith and Mike H Unsworth, Principles of Environmental Physics, 4th Edition Elesiver, 2004. 						
	3. Egbert Boeker and Rienk van Grondelle, Environmental Physics: Sustainable Energy and Climate Change, 3 rd Edition wiley, 2011.						
D	1. Kali Forinash, Physics and the Environment, IOP Publishers	s 201	7				
Reference	2. Brewer, R. The Science of Ecology, Sanders College Publis 1994	Ĩ			yo,		
Faculty	Dr. M A Shah Contact <u>shahji@r</u>	<u>nitsri.</u>	<u>ac.ir</u>	1			

PSPHY EL04	Semiconductor Device	C 4	L 3	P 1	T 0	
	To give knowledge about semiconductor physics and applications of different basic devices.	discu	is wo	orking	and	
Course	1. Remember the basic concept semiconductor physics.					
Objective	2. Understand the working of homo/hterojunction and H	Hall E	ffect.			
	3. Explain MOS structure and study of I-V and C-V cha	aracte	ristic o	of MO	S	
	4. Students are able to understand the working Photodetector.	of S	olar c	ell, I	LED,	
	transport phenomenon: Carrier drift and diffusion, Carrier or combination processes: direct recombination, Indirect recombinat	Classification of Semiconductors: Fermi-energy and carrier concentration, Carrier ransport phenomenon: Carrier drift and diffusion, Carrier generation and ecombination processes: direct recombination, Indirect recombination, Surface ecombination, Auger recombination, Generation, and Carrier lifetime.				
	PN junction: Energy band diagram, electrostatics of pn current, ideal current-voltage relationship, junction breacheterojunctions and homojunction semiconductor, Hall Effresistivity measurement.	akdov	vn m	echani	isms,	
Syllabus	Metal-semiconductor contacts: Schottky barrier diodes, current transport in Schotty diodes, I-V characteristics, Ohmic contacts. MOS structure: Ideal MOS structure, energy band diagrams under accumulation depletion and inversion conditions, C-V characteristics, various oxide charges in Si/SiO ₂ , MOS and their effect on C-V graph					
	Optical devices: Radiative and non-radiative transitions, (LED), Photodiode, Phototransistor, Charge couples device Solar cell, introduction of sensors and working.	0		0		
	1. Students will be get knowledge to explain the semiconductors including the band gap, charge carrier and charge carrier injection/excitation.					
Expected Outcome	2. Students will get ability to explain the working, design applications of various semiconducting devices.					
	Skills: Students will be able to describe the working and design considerations for the various photonic devices like photodetectors, solar-cells and LEDs					
	1. Millman and Halkins; Electronic Devices and Circuits.					
Text Book	2. Ben G. Streetman; Solid State Electronic Devices.					
	3. Boylestad & Nasheisky; Electronics Devices and Circuit theory.					
	1. S.M. Sze; Semiconductor Devices: Physics and Technology, 2nd edition John Wiley, New York, 2002.					
Reference	2. B.G. Streetman and S. Benerjee; Solid State Electronic Prentice Hall of India, NJ, 2000	: Dev	ices, 5	oth edi	ition,	
Faculty	Dr. M. Z. Ansari Contact <u>mohdzuba</u>	air@r	nitsri.a	c.in		

PSPHY EL05	Medical Physics	C 4	L 3	T 1	P 0
	The focus of the course provides a broad knowledge on the intera with soft matter.	-	_		
Course	1. Basics of radiological physics,				
Objectives	2. interaction of radiation with matter,				
	3. Basic dosimetric concepts and radiation detectors				
	4. Principles of telecobalt, linear accelerator				
	Cells, structure and functions, Radiation sources - Natural and artis sources - Large scale production of isotopes - Different sources radiation-their physical; properties-				
	Electrical Impedance and Biological Impedance - Principle thermography - applications – Basic principles of radiation dete systems for alpha and beta radiation -			•	
Syllabus	Principles of Radiation detection – properties of dosimeters - The detectors – Ion chamber dosimetry systems - free air ion chamber chamber - ionization chamber –	•	-		
	Laser Surgical Systems-Measurement of fluence from optical s properties of tissues – theory and experimental techniques-int radiation with tissues –microscopy in medicine - Interaction of lig positrons) and heavy charged particles with matter –Malignant T response – deformation and failure – friction and wear	eract ght (e	ion (lectr	of la ons a	iser and
	After the course the student shall				
Expected Outcome	Expected - Students will be able to understand the interaction of radiation with matter emphasis on energy transfer and dose deposition and will understand expo			onen	tial
	Skill: Should be able to deal with radiology and other related patie	nts			
	1. S. S. Martellucci and A. N. Chester, Laser Photobiology and Plenum Press, New York, 1985.	l Pho	otom	edici	ne,
Text Book	2. Markolf H. Neimz, Laser-Tissue Interactions, Springer V 1996.	erlag	, Ge	erma	ny,
	3. Radiation oncology physics: A Handbook for teachers and publications 2005.	stuc	lents	. IA	EA
	1. F.M.Khan, The Physics of Radiation Therapy, Third Edition, Lip and Wilkins, U.S.A., 2003.	pinc	ott W	/illia	.ms
Reference	2. Samantha Morris, Radiotherapy physics and equipment, Churc 2001	chill]	Livir	igsto	ne,
	3. Richad Aston, Principles of Biomedical Instrumentation an Merrill Publishing Co., London, 1990.	nd m	easu	reme	ent,
Faculty	Dr. M A Shah Contact <u>shahji@</u>	nitsri	.ac.i	<u>n</u>	

PSPHY EL06	Sola	ar Photovoltaics		C 4	L 3	T 1	P 0
Course Objective	 The course focuses on technologies using the sun as energy resource. Using Sun Energy with help of photovoltaic effect convert into electricity. 1. To identify the electrical characteristics of solar cell and understand the working principle of solar cell. 2. To understand the physical principles of the photovoltaic solar cell and what are its sources of losses. 3. Classify the solar cell technologies such as Silicon, Thin film, Organic, DSSC. Design the solar cell and able to bring innovative ideas in the field of solar photovoltaic energy. 						
	Human and World energy consumption, Sustainable Sun Energy advantages and conversion challenges, Solar spectrum, A brief review of different types of solar cells in the market.Photoelectric effect, Photoconductivity, Photo emissive effect and photovoltaic effect, A comparison, Working principle of solar cells, Generation of charge carriers, Separation and collection solar cell parameters, Equivalent circuit, External solar cell parameters, External quantum efficiency and Equivalent circuit.						
Syllabus	 The thermodynamic limit, Shockley-Quiesser limit, Losses in Solar cell design Design for high Isc, High Voc, High FF. Analytical techniques, Solar simulato Quantum efficiency measurement minority carrier life time and diffusion lengt measurement. Silicon wafer based solar cell, basic silicon solar cell, Strategies to enhance Absorption, Reduce surface recombination, Reduce series resistance, Thin film solar 				tor, igth		
Expected Outcome	 photovoltaics, Perovskite, Dye sensitized solar cells, Hybrid organic, Inorganic solar cells, Multi-junction solar cells, Spectral conversion, Multi exciton generation 1. Students will gain an understanding of the available solar energy and the current solar energy conversion and utilization processes. 2. Students will able to comprehend the challenges in sustainable energy processes, perform cost analysis, design photovoltaic systems for different applications meeting residential and industrial needs, predict and test performance. Skills: Students will gain an insight of the photovoltaic system engineering aspects including modeling and upscaling of the PV systems with different approaches, and 						
Text Book	 be able to advance photovoltaic systems. Chetan Singh Solanki, Solar Photovoltaics, Fundamentals, Technologies and applications, PHI Learning, 2011. Klaus Jäger, Olindo Isabella, Arno H.M. Smets, René A.C.M.M. van Swaaij Miro Zeman, Solar Energy Fundamentals, Technology and Systems, Delft University of Technology (2014). 						
Reference	 Jenny Nelson, The Physic Matin A.Green, Solar applications, University of 	cells Operating pri	nciples, technolog			syst	em
Faculty	Dr. M. Z. Ansari	Contact	<u>mohdzubair</u>	@ni	tsri.a	<u>ic.in</u>	2

PSPHY EL 07	Advanced Co	ndensed Matter Phy	ysics	C 4	L 3	T 1	P 0	
	The course aim is to unc matter physics.	The course aim is to understand the general aspects of the Advanced condensed matter physics.						
Comme	1. Students will be able to u	understand the Surfac	e and Interfaces of	solid	s.			
Course Objectives	2. Students will be able to u	inderstand the Phase	Transitions.					
Ū	3. Students will be able to u	inderstand optical pro	operties of Plasmon	s, Po	larito	ons.		
	4. Students will be able to u Characterization of the M		ization Techniques	used	for t	he		
	Surface And Interfaces: Works Function and Contact Potential; Thermion Emission; Low-Energy Electron Diffraction; Electronic Surface Levels; Sup Lattices; Quantum Wells; Quantum Wires, Quantum Dots and Carbon Nanotub Numerical Problems.					uper		
	Phase Transitions: Order Parameter; Critical Points; First and Second Order Phase Transitions; Mean Field Theory; Properties Near Critical Point; Landau Theory; Bragg-Williams Theory; Liquid-Gas Transition and Isotropic-Mematic Transition, Numerical Problems.							
Syllabus	Plasmons, Polaritons: Dielectric Function; Transverse Optical Modes in Plasma, Application to Optical Phonon Modes in Ionic Crystals, Interaction of E.M. Waves with Optical Modes (Polaritons). LST Relation; Mott Metal-Insulator Transition; Electron-Electron Interaction; Numerical Problems.							
	Characterization Techniques: Scanning electron Microscopy, Atomic force microscopy: Different operational mode and typical applications. Thermal analysis techniques: DTA, DSC, TGA and STA. Two and four probe resistivity measurement methods, Dielectric measurement techniques, Magnetic measurement systems: Vibrating sample Magnetometer (VSM), Superconducting Quantum Interference Device, Numerical Problems.							
	Upon successful completion		ent should be able to):				
Expected	1. The General Aspects o							
Outcome	 To Introduce the General Aspects of Phase Transitions. To Introduce The General Aspects of Plasmons, Polaritons. 							
Text Book	 Formoduce The General Aspects of Plasmons, Polaritons. Harrison P, "Quantum Wells, Wires and Dots", Wiley & Sons Ltd. Chaikin P M and Lubensky T C, "Principles of Condensed Matter Physics", CambridgeUniversity Press. Kittel, C., Introduction to Solid State physics, 8th edition, (Wiley Eastern Ltd.) 							
Reference	 Ritter, C., Infroduction to Bond State physics, 6 - edition, (Wiley Eastern Etc.) Principles of the theory of solids: J.M Ziman. Solid State Physics: A. J. Dekker, Macmillan, New Ed. A.D. Helfrick and W.D.Cooper: Modern Electron Instrummentation and Measurement techniques 							
Faculty	Prof. M. Ikram	Contact	<u>ikram@ni</u>	tsri.a	<u>c.in</u>			

PSPHY EL 08	Quant	um Field Theory		C L T P 4 3 1 0	
Course Objectives	 This course provides an introduction to quantum field theory as one of the cornerstones of modern physics, and how it inevitably emerges from combining quantum mechanics with special relativity. The course is aimed: To introduce the basic ideas of quantum field theory; To understand how quantum mechanics and special relativity combine to produce realistic theories of particle creation and annihilation; To develop calculational techniques to at least the level of tree-level Feynman diagrams for quantum electrodynamics; To provide the foundation for more advanced studies in quantum field theory. 				
Syllabus	 Klein Gordon, Dirac, Weyl and Majorana Eqns. Plane wave Solutions ar observation. Non- relativistic limits of Dirac Eqn. Foly Wouthyer transformation Canonical quantization of neutral scalar, Charged scalar, spin 1/2 and massive spin fields, Pock space and observables. Field commutation, anticommutation relations. Interaction picture. Normal product. Wick's theorem. Feynman propagator S-matri Feynman diagrams for itheory. Quantization of electromagnetic field. Gupta-Bleuk condition. Indefinite metric. Feynman diagrams of QED. Tree level calculations of Moll Bhabha, Compton ar Scattering in external field. General Formulation. Conjugate Momentum ar Quantization. Neutral Scalar Field. Commutation Relations, Normal Ordering, Bos Symmetry, Fock Space. The Dirac Equation, Relativistic Covariance. Anti-Commutators. Quantization of the Dirac Field, Electrons and Positrons. Connection between Spin and Statistic Discrete Symmetries, Parity, Charge Conjugation, Time Reversal, CPT Theorer Gauge Invariance and Gauge Fixing. Quantization of the Electromagnetic Field. 				
Expected Outcome	 Propagator, Vacuum Fluctuations On completion of this course, the student will be able to: Quantize classical fields and will know how to describe both fermionic and bosonic particles in relativistic quantum mechanics. Derive the Feynman rules for a given theory, and how to use those to calculate cross sections and decay rates at lowest order in perturbation theory. Explain how gauge symmetries lead to the construction of both Abelian and non-Abelian theories and understand the concept of spontaneously breaking these symmetries (Higgs mechanism). Understand the structure of the standard model of particle physics and can relate its ingredients to the underlying fundamental principles. Skills: Present the fundamental principles of quantum field theory, and solutions to provide the standard model of particle physics and principles.				
Text Book	 ypical problems, in a clear and pedagogic way to fellow student Bogolinbov & Shirkov : Introduction to Quantized Field Theory Bjorken & Drell : Quantum Field Theory Quantum Field Theory, L. H. Ryder, Cambridge University Press (2008) 				
Reference	 Quantum Field Theory, 0 (1985). Quantum Field Theory, 1 	L. H. Ryder, Cambrid	lge University Press	s (2008).	
Faculty	Dr. P. A. Ganai	Contact	princeganai@	nitsri.ac.in	

PSPHY EL 09	Relativity and CosmologyCLTP4310					
Course Objectives	 This course is an introduction to Einstein's theory of general relativity, and includes applications to early universe cosmology and the inflationary paradigm. The course is aimed to make student familiar with Basic concepts of special and general relativity. Provide some skill in their use. Promote skill in clear, precise, and analytical thinking and to provide practice in altering one's opinions and intuitive picture of a structure in light of new evidence. Important cosmological observations and how they are used to determine the characteristics of the Universe. 					
Syllabus	 Review of special theory of relativity and tensor calculus, Applications of genera relativity: Schwarzschild's exterior solution, singularity, event horizon and black holes isotropic coordinates, Birkhoff's theorem, Observational tests of Einstein's theory. Gravitational Collapse and Black Holes (Qualitative).White Dwarfs, Neutron stars and Black Holes, Static Black Holes (Schwarzschild and Reissner-Nordstrom) Rotating Black Holes, Kerr Metric (derivation not required), Event Horizon, and Extraction of energy by Penrose process, Kerr- Neumann Metric (no derivation). No hair theorem, Cosmic Censorship Hypothesis. Cosmology, Principles, Weyl postulates, Robertson-Walker metric (derivation is no required), Cosmological parameters, Static Universe, Expanding universe, Open and Closed universe, Cosmological red shift, Hubble's law. Olber's Paradox. Qualitative discussions on: Big Bang, Early Universe (thermal history and nucleosynthesis), Cosmic Microwave Background Radiation, Event Horizon Particle Horizon and some problems of Standard Cosmology 					
Expected Outcome	 On completion of this course, the student will be able to: Gain an appreciation for the main principles of special and general relativity and how the latter provides the natural language to describe the evolution of the early universe Describe how quantum fluctuations during inflation are the source of density fluctuations and gravitational waves. Skills: The students should learn basic analytical skills needed to solve Einstein's equations them (for example, finding simple blackhole solutions). J. V. Narlikar- General Relativity and Cosmology (MacMillion, 1978). J. V. Narlikar –Introduction to Cosmology (Cambridge Univ, Press, 1993). A. K. Roychaudhuri, S. Banerjee and A. banerjee- General Relativity, Astrophysics and Cosmology (Springer-Verlag, 1992). 					
Reference Faculty	 S. Weinberg- Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity (Wiley, 1972). P. G. Bergmann- Introduction to Theory of Relativity (Prentice-Hall, 1969). W.G.V.Rosser – Introduction to the Theory of Relativity. Dr. P. A. Ganai Contact princeganai@nitsri.ac.in 					

PSPHY EL 10	Materials ScienceCLTP4310				
Course Objectives	 The main objective of this course is to familiarize students with a range of materials that are used in various applications To provide strong foundation in materials. To introduce different synthesis method for the materials. To develop a strong understanding in different crystal structure. Microstructure characterization by direct & indirect methods. 				
Syllabus	 4. Microstructure characterization by direct & indirect methods. Classification of materials: Crystalline & amorphous materials, high Tc superconductors, alloys & composites, semiconductors, solar energy materials, luminescent and optoelectronic materials, Polymer, Liquid crystals and quasi crystals, Ceramics. Composites Preparation of materials by different techniques: Single crystal growth, zone refining, epitaxial growth. Melt-spinning and quenching methods, sol-gel, polymer processing. Preparation of ceramic materials; Fabrication, control and growth modes of organic and inorganic thin films: different technique of thin film preparations: Basic principles, Point defect, line defect, plane defect, volume defect, dislocation, stacking faults, application, and Burger vectors. Structure of metals, semiconductors and ceramics: Difference between structures of metals and ceramics, close-packed structures: BCC, FCC & HCP metals. Structure of semiconductors: Si, Ge, ZnS, pyrites, chalcopyrite's, ZnO etc.; structure of ceramics: metal oxides, nitrides, carbides, borides, ferrites, perovskites, etc. Microstructure characterization by direct & indirect methods: Diffraction techniques: interpretation of x-ray powder diffraction patterns, Identification & quantitative estimation of unknown samples by X-ray powder diffraction technique and fluorescent analysis. Theory and method of particle size analysis. Integral breadth method, Warren-Averbach's Fourier method, profile fitting method, 				
Expected Outcome	Rietveld Method. The student have the strong understanding of the classification of materials and of the materials in different applications. Student will be able to differentiate BCC and FCC crystal structure.				
Text Book	 Skills: Student will be able to develop new materials and characterize them and use them effectively 1. Materials science and Engineering by V. Raghavan, Prentice-Hall Pvt. Ltd. 2. Thin Solid Films by K. L Chopra. 3. Engineering Materials by Kenneth G. Budinski. 				
Reference	 Elements of X-ray diffraction by B. D. Cullity, Addison-Wesley Publishing Co. Elements of crystallography by M. A. Azaroff. 				
Faculty	Dr. Vijay Kumar Contact <u>vijay@nitsri.ac.in</u>				

Fourth Semester

SEMESTER – IV						
S. No.	Course Code	Courses	L	Т	Р	Credits
1	PSPHY PR01	Research Methodology/One optional	2	0	0	4
2	PSPHY PR02	Project/Dissertation and Viva voce	0	0	50	36
	Total					100

			С	L	Т	Р	
PSPHY PR01	R	esearch Methodology		4	3	1	0
Course Objectives	 The main objectives of the course are: 1. To familiarize the students with basic concepts of research and its process. 2. To identify and discuss the concepts and procedures of sampling, data collection and analysis. 3. To impart knowledge for enabling students to develop data analysis and interpretation skills in order to solve the research problem 4. To demonstrate enhanced writing skills 						
Syllabus	 4. To demonstrate enhanced writing skills Syllabus Research Methodology Meaning of research, Objectives of research, Types of research, Research approaches, Significances of research, Research methods versus methodology, Research and scientific methods, Research processes, Criteria for good research, Research problem, Selecting the problem, Necessity of defining the problem, Research Design and sample Surveys Meaning and need for research design; Dependent and independent variables, Extraneous variables, Control, Research hypothesis, Experimental and non-experimental hypothesis – Testing research, Experimental and control group, Different research designs: Research design in case of exploratory research studies, Research design in case of hypothesis- testing research studies. Data Collection and Data Preparation Experiments and surveys, Collection of primary data: Difference between questionnaire and schedule, Guidelines for constructing questionnaire/schedule, Collection, Tabulation, Graphical representation, Data celeaning, Data adjustment, Types of analysis, Statistics in research. Interpretation and Report Writing Meaning of Interpretation, Technique of Interpretation, Precautions in Interpretation, Significance of Report Writing, Different Steps in Writing Report, Layout of Research Report, Types of Reports, oral Presentation, Mechanics of Writing Research Report, Precautions for writing Research reports. 						
Expected Outcome	The student should be well versed to take a research problem for his/her master's or doctoral research. They should understand the nuances of scientific writing and IPR.						
Text Book	 The Craft of Scientific Writing (3rd Edition), Michael Alley, Springer, New York, 1996. Science and Technical Writing – A Manual of Style (2nd Edition), Philip Reubens (General editor), Routledge, New York, 2001. 						
Reference	 Writing Remedies – Practical Exercises for Technical Writing Edmond H. Weiss, Universities Press (India) Ltd., Hyderabad, 2000. Effective Technical Communication, M. Ashraf Rizvi, Tata Mc Graw – Hill, New Delhi, 2005. 						
Faculty	Dr. S Rubab	Contact	rubab@r	<u>itsri</u> .	ac.ir	<u>1</u>	
- ucuity	21.010000	Contact	ruouo en		II	-	

Research Based Project

PSPHY PR02	C L T P 36 0 0 0			
	Guidelines for Project in M.Sc. Course:			
	1. Projects would be allotted to M.Sc. (Previous) students which have to be carried out and completed in M.Sc. (Final)			
	2. A list of projects will be finalized and announced by the Department. The students will have an option to select the project in their field of interest.			
	3. The project will comprise of the following:			
	a. Study of background material identity period of a given crystal using Rotation method.			
	b. Collection of data, procurement and fabrication of experimental Set up and writing of computer programs if needed.			
	c. Giving a preliminary seminar before the final presentation for the purpose of internal assessment whose weight age would be 25%.			
	d. Writing a dissertation or project report. This will be submitted by the M.Sc. (Final) students in the first week of March.			
	4. The Final evaluation of the project work completed will be done by external and internal examiners appointed by the Board of Studies on the basis of an oral presentation and the submitted Project-Report.			
	5. The weight age of the final evaluation would be 75%.			

LET'S ALL WORK TOGETHER TO MAKE THE PHYSICS DEPARTMENT AT NIT SRINAGAR A WELCOMING ENVIRONMENT.