

For

Post Graduate Program in Physics

New

Credit Based Curriculum

Under

National Education Policy

By

FIST Supported P G Department of Physics National Institute of Technology Srinagar Jammu and Kashmir July, 2023

P. G. Department of Physics, NIT Srinagar (J&K) 29th July 2023

Dear Students

Greetings from the Department of Physics

On behalf of my dear colleagues and on my personal behalf as the Program Founder and Patron, we want to be among the first to congratulate and welcome you. **Earning a place in NIT Srinagar is an achievement and we are delighted that you will continue your intellectual journey in this prestigious institution, which is blessed with a diverse community. It is well known as Mini-India.** You will discover that one of our defining characteristics is our commitment to freedom of enquiry and expression. Mutual respect and civility are vital to all of us and you will find that you will be engaged in debates, discussions, deliberations and at times this may cause discomfort to you. I have been advocating for "that a university should be the open house of dialogue".

This e-brochure is now updated and contains practical information on the Master's program in **Physics** and has been updated according to the guidelines in **National Education Policy 2020**, the 3rd anniversary of which we are celebrating today. The program with its core-specialization structure offers a wide variety of possibilities, enabling you to pursue your particular ambitions and interests in these fascinating areas of Physics. Courses at different levels of specialization will enable you to deepen your physics knowledge and find out how it is applied in modern research and development. There are **various electives and optional subjects** to choose from, which are interdisciplinary and have immense applications in all spheres of life. We will keep on adding more electives as per your requirements and interests. Trust, the credit-based curriculum is at par with the existing syllabi of other universities and other NITs/IITs.

The department is equipped with modern and state-of-the-art laboratory facilities with sophisticated equipment. It is envisaged that in future the laboratories shall be made open to the interested students of the country, where they can carry their summer/winter internships also. Presently, a group of 18 Nanotechnology students from Islamia College Srinagar is under internship program in the department. We are convinced and satisfied that we have created a rewarding and challenging **postgraduate program in Physics** for the first time in the history of NIT Srinagar that keeps its promise to prepare you for future endeavors and struggles.

An African proverb says, **"If you want to go fast, go alone and if you want to go far, go together".** At NIT Srinagar, in the PG Department of Physics, we choose to go together. We look forward to meeting and working with you in the mid of August 2023. If you have any questions regarding this brochure, please feel free to contact Shahji @ <u>shahji@nitsri.ac.in</u>. **Once again, welcome and wish you a good start!**

Among Snah

Prof (Dr.) M. A. Shah Founder & Head, P G Department of Physics

Physics Curriculum as per NEP @ NIT Srinagar

Credit Based Curriculum For

M Sc Physics @

National Institute of Technology Srinagar From Year 2023 (Autumn)

Revised Syllabus at a Glimpse									
SEMESTER - I Total Program Credits: 75									
S.No.	Course Code	Theory Core Courses		L	T	P	Cr.	Page	
1.	PSPHY 101	Classical Mechanics	(Dr. H. Singh)	2	1	0	3		
2.	PSPHY 102	Ouantum Mechanics	(Prof. P. A. Ganai)	2	1	0	3		
3.	PSPHY 103	Mathematical Physics	(Dr. M. Z. Ansari)	2	1	0	3		
4.	PSPHY 104	Solid State Physics	(Prof. M. A. Shah)	2	1	0	3		
-		Elective Courses (Students have to or	ot for 2 electives)					.1	
5.	PSPHY EL1	Renewable Sources of Energy	(Prof. S. Rubab)	2	0	0	2		
6.	PSPHY EL2	Ouantum Computation and Information	(Dr. H. Singh)	2	0	0	2		
7.	PSPHY EL3	Thermoelectric Materials and Devices	(Prof. M. Ikram)	2	0	0	2	1	
8.	PSPHY EL4	Biophysics and Biomaterials	(Dr. V. Kumar)	2	0	0	2		
0.		Laboratory Courses	(Dr. V. Rumu)	-	Ŭ	Ŭ	-		
9	PSPHY I B1	Solid State Physics & Materials I ab	(Prof M A Shah)	0	0	3	15		
10	PSPHY L R2	Optics & Photonics Lab	(Dr H Singh)	0	0	3	1.5	+	
10.	PSPHY L B3	Applied Physics Lab & Workshop	(Dr. M. Z. Zubair)	0	0	3	1.5		
11.	Total		(DI. WI. Z. Zubali)	U	U	5	20.5		
SI	FMFSTFR - II						20.5	1	
S No	Course Code	Theory Core Courses		T.	Т	Р	Cr	Раде	
12	PSPHY 201	Thermodynamics and Statistical Mechani	CS (Dr H Singh)	2	1	0	3	Iugu	
13	PSPHY 202	Atomic & Molecular Physics	(Prof M Ikram)	2	1	0	3		
14	PSPHY 203	Flectromagnetism and Electrodynamics	(Prof. P. A. Ganai)	2	1	0	3		
14.	PSPHY 204	Nuclear and Particle Physics	(FIOL F. A. Gallal)	2	1	0	3		
15.	151111 204	Flective Courses (Students have to or	(DI. Nadeelli/)	2	1	0	5		
16	PSPHY FI 5	Physics at Nano-scale	(Prof M A Shah)	2	0	0	2	<u> </u>	
10.	PSPHY FL 6	Quantum Logic and Simulations	(Dr. H. Singh)	2	0	0	2		
17.	PSPHY EL 7	Physics of Semiconductors	(DI. H. Shigh)	2	0	0	2		
10.	PSPHY FI 8	Solar Photovoltaic	Z Angeri/Dr Bubab)	2	0	0	2		
17.		I aboratory Course	. Z. Alisali/ DI. Kubab)	2	0	0	2		
20	DCDHV I BA	Electronics Tinkering Lab	(Dr. M. 7 Ansori)	0	0	3	15		
20.	PSPHV I B5	Synthesis of Nano Materials Lab	(Dr. M. Z. Alisari)	0	0	3	1.5		
$\frac{21}{22}$		Bio Engineering lab	(PIOL M. A. Shan)	0	0	3	1.5		
22.	Total		(DI. V. Kullar)	0	0	5	20.5		
ST	TOTAL						20.3		
S No	Course Code	Theory Core Courses		т	т	P	Cr	Page	
23	PSPHV 301	Astrophysics & Space Science	(Prof P A Canai)	2	1	1	3	1 age	
23.	PSPHY 302	Atmospheric & Environmental Physics	(Prof. M. A. Shah)	2	1	0	3		
25	PSPHY 303	Condensed Matter Physics	(Prof. M. Ikrom)	2	1	0	3		
25.	PSDHV 304	Computational Physics	(FIOL W. IKIAIII)	2	1	0	3		
20.		Courses (Students have to ont for pro pr		- -			5		
27		Medical Physics	(Drof C. Dubah)	2 0		0	2	1	
<u>21.</u> 28		Superconductivity and superfluidity	(FIUL S. KUDAD)	2	0	0	2	<u> </u>	
20.		Concered Theory of Polotivity	(Dr. H. Singh)	2	0	0	2		
<u>2</u> 9.	DODIVEL 12	Dringinlag of Spectroscopy	(Prof. P. A. Ganai)	2	0	0	2		
<u> </u>	PSPIT EL12	Pro project Seminar	(Prof. M. Ikram)	2 1	0	0	<u> </u>		
31.	rsphi pps	rie-project Seminar	a	1	U	U	1		
20	DODIN L D7	Laboratory Course	8	0	0	2	1 5		
32. 22	PSPHY LB/	Computational District Lab	(Prof. M. A. Shah)	0	0	3	1.5		
33.	Total	Computational Physics Lab	Dr. H Singh)	U	U	3	1.5		
	Total					1	20	1	

SEMESTER – IV

S.No	Course Code	Courses	L	Т	Р	Cr.	Page
34.	PSPHY PR1	Research Based Project with Faculty of choice (Even	0	0	28	14	
		outside in Collaboration with institutions having MoUs) (Full Semester Dissertation, evaluated by External Expert)					
	Total					75	
		Students can take any courses from NPTEL of 5 credits	(Esse	ential	l)		

CREDITS POINTS SUMMARY							
CREDIT POINTS SUMMARY							
Semesters	Sem-I	Sem-II	Sem-III	Sem-IV	Overall		
Credits	20.5	20.5	20	14	75		

(B) List of Departmental Pre Ph.D.-Course Work

S. No.	Course Code	Courses	L	Τ	Р	Credits
1.	PSPHD-1	Scientific Writing and IPR	3	0	0	3
2.	PSPHD-2	Functional Materials and Applications	3	0	0	3
3.	PSPHD-3	Quantum Field Theory	3	0	0	3
4.	PSPHD-4	Simulation in material science	3	0	0	3
5.	PSPHD-5	Group Theory for Physicists.	3	0	0	3
6.	PSPHD-6	Nanoscience and nanotechnology	3	0	0	3
7.	PSPHD-7	Characterization Techniques	3	0	0	3

Summary Table

Course details	L + T + L	Total Credits
Fundamental Courses	2 + 1 + 0	12 x 3 = 36
Electives	2 + 0 + 0	6 x 2 = 12
Laboratories	0 + 0 + 3	8 x 1.5 = 12
Pre Project-Seminar	1 + 0 + 0	01
Project	14	14
Total		75

Note: - For 5 credits, students can take NPTEL courses of their choice / interest.

SEMESTER - I

S. No	Course Code	Theory Courses	L	Т	Р	Credits
Core C	Courses					
1.	PSPHY 101	Classical Mechanics	2	1	0	3
2.	PSPHY 102	Quantum Mechanics	2	1	0	3
3.	PSPHY 103	Mathematical Physics	2	1	0	3
4.	PSPHY 104	Solid State Physics	2	1	0	3
Electiv	ve Courses (Stu	dents have to choose 2 electives)				
5.	PSPHY EL1	Renewable Sources of Energy	2	0	0	2
6.	PSPHY EL2	Quantum Computation and Information	2	0	0	2
7.	PSPHY EL3	Thermoelectric Materials and Devices	2	0	0	2
8.	PSPHY EL4	Biophysics and biomaterials	2	0	0	2
Labora	atory Courses					
9.	PSPHY LB1	Solid State Physics & Materials Lab	0	0	3	1.5
10.	PSPHY LB2	Optics & Photonics Lab	0	0	3	1.5
11.	PSPHY LB3	Applied Physics Lab and Workshop	0	0	3	1.5
	Total					20.5

Subject: Classical	Year & Seme	Credits	L	Т	Р			
Mechanics	1^{st} year & 1^{st}	1 st year & 1 st Semester.				2	1	0
Course Code: PSPHY								
<mark>101</mark>								
Evaluation Policy	Mid-Term	Class	Quiz	Attendance	End-Term			
		Assessment						
	26 Marks	8 Marks	8 Marks	8 Marks		50 Ma	rks	

Sr.No.	Course outcomes
CO1	Solve problems using Lagrangian mechanics.
CO2	Analyze the significance of Hamilton's equation.
CO3	Solve transformation equations
CO4	Analyze Lagrangian and Hamiltonian of simple harmonic oscillators

Course	contents		Lectures	
Unit	Particulars		required	
01	Lecture 1-3: The Lagrangian Approach to Mechanics: degree	es of freedom, constraints and	10	
	generalized coordinates			
	Lecture 4: Virtual displacement, Virtual work and Generalized for	orce.		
	Lecture 5: D'Alembert's principle and the Generalized equation	of motion.		
	Lecture 6: The Lagrangian and the Euler Lagrange equation of r	notion		
	Lecture 7: Cyclic coordinates and canonical momenta			
	Lecture 8-10: Applications; pendulums, Particle in electromagne	etic field		
02	Lecture 1-2: Variational calculus and Hamiltonian dynamics: the	he variational calculus and the	10	
	Euler equation			
	Lecture 3-4: The principle of least action and the Euler Lag	range equation, constraints in		
	variational dynamics			
	Lecture 5-6: Legendre transformations			
	Lecture 7-8: Hamilton's equations, Conservation laws			
	Lecture 9-10: Phase space and Liouville's theorem			
03	Lecture 1-2: Theoretical Mechanics: canonical transformations a	nd generating functions,	10	
	Lecture 3-5: Poisson Brackets (PB); the angular momentum P	B relations, invariance of PBs		
	under canonical transformations, action-angle variables and adia	batic invariance		
	Lecture 6-9: The Hamilton Jacobi (HJ) Equation; HJ equation	n for Hamilton's characteristic		
	function, separation of variables			
	Lecture 10: Particle motion under central force			
04	Lecture 1-4: Oscillations: the simple harmonic oscillator; the dar	nped harmonic oscillator,	10	
	Lecture 5-7: Coupled simple harmonic oscillators; couple pendul	um, general method of solution		
	Lecture 8-10: Lagrangian and Hamiltonian of continuous syste	ms: transition from discrete to		
	continuous systems, the Hamiltonian formulation			
Recomm	ended Books			
Sr. No.	Text Books	Author		
01	Classical Mechanics	Goldstein, Poole and Safko	(Pearson	
		Education)		
	Reference Books			
01	Classical Mechanics	Landau and Lifshitz (Pergamor	n press)	
02	Analytical Mechanics	L. N. Hand and J. D. Finch (Cambridge	
		University Press)	-	

Subject: Quantum	Year & Seme	Year & Semester: M.Sc. Physics				L	Т	Р
Mechanics.	1 st year & 1 st Semester.			3	2	1	0	
Course Code: PSPHY						•		
<mark>102</mark>								
Evaluation Policy	Mid-Term	Class	Quiz	Attendance	End-Term			
		Assessment						
	26 Marks	8 Marks	8 Marks	8 Marks		50 Ma	rks	
	•							

Sr. No	Course outcomes: Students will
CO1	Understand basic formalism of quantum Mechanics.
CO2	Make analysis of angular momenta and its physical applications.
CO3	Apply different approximate methods to solve the problems which are not exact.
CO4	Evaluate the dynamics of hydrogen atom.

Course	contents		Lectures	
Unit	Particulars		required	
01	Mathematical tools of Quantum Mechanics:			
	Lecture 1: Linear vector spaces and operators in Hilbert space			
	Lecture 2-5: Measurements, observables and the uncertainty rel	ations, Change of basis		
	Lecture 6: Coordinate and Momentum representations	C C		
	Lecture7: Equations of motion in Schrodinger and Heisenberg	representations		
	Lecture 8: One dimensional potential problem	•		
	Lecture 9-10: Linear harmonic oscillator, operator method, mat	rix method and Analytic method		
02	Theory of Angular Momentum:		10	
	Lecture1-3: Angular momentum operators, Eigenvalues and Ei	genfunctions		
	Lecture 4: Relation between rotation and angular momentum			
	Lecture 5: Rotational symmetry and conservation of angular me	omentum.		
	Lecture 6: Reflection invariance and parity, Commutation rules	1		
	Lecture 7-9: Matrix representations, addition of angular 1	nomenta and Clebsch-Gordon		
	coefficients.			
	Lecture 10: Pauli spin matrices			
03	Approximation methods:		10	
	Lecture 1: Time independent perturbation theory			
	Lecture 2: Perturbation theory for degenerate states, Dalgarno's	s method		
	Lecture 3-4: Zeeman and Stark effects, WKB approximation ar	d its applications		
	Lecture 5-7: Variational method and its applications to helium	atom and many particle systems		
	Lecture 8-9: Time dependent Perturbation theory, Fermi's Gold	len rule		
	Lecture 10: Semi classical theory of interaction of atoms with r	adiation		
04	Lecture 1-2: Motion in a centrally symmetric field		10	
	Lecture 3: Spherical waves			
	Lecture 5: Resolution of a plane wave			
	Lecture 6: Fall of a particle to the Centre			
	Lecture 7-9: Motion in a coulomb field (spherical polar coordinates), Discrete and continuous			
	Lecture 10: Coulomb problem in parabolic coordinate system			
Recom	nended Books			
Sr. No	Text Books	Author		
01	Quantum Mechanics	Landau, E. M. Lifshitz (Pergan	non press)	
02	Quantum Mechanics	Ajoy Ghatak (Springer)		

Subject: Mathematical	Year & Seme	Year & Semester: M.Sc. Physics			Credits	L	Т	Р
Physics	1 st year & 1 st Semester.			3	2	1	0	
Course Code: PSPHY								
<mark>103</mark>								
Evaluation Policy	Mid-Term	Class	Quiz	Attendance]	End-Te	erm	
		Assessment						
	26 Marks	8 Marks	8 Marks	8Marks		50 Ma	rks	

Sr.No.	Course outcomes:
CO1	Learn different methods of solving complex integrals, appearing in vast applications of physics.
CO2	Solve special differential equations, which have potential applications in physics.
CO3	Apply different Transforms to solve mathematical problems of interest in science.
CO4	Learn different functions used to evaluate the potential applications of Greens function.

Course	contents		Lectures	
Unit	Particulars		required	
01	Vector Calculus:		10	
	Lecture 1-2: Vector analysis in spherical and curved coordinate	es		
	Lecture 3-4: Orthogonal coordinates in R3			
	Lecture 5-6: Special Coordinates system- Cylindrical and spherical coordinates			
	Lecture 7-8: Laplacian in cylindrical and spherical coordinates			
	Lecture 9-10: Vector integration- line, surface and volume- Ga	uss, Stokes and Green's theorem		
02	Linear Algebra and Tensor:		10	
	Lecture 1-4: Matrices, Eigenvalues and eigenvectors, Cayley-I	Hamilton theorem		
	Lecture 5-6: Tensor analysis, Rank of a Tensor			
	Lecture 7: Metric tensor, Summation convention, Contraction	theorem,		
	Lecture 8-10: Direct Product, Levi-Civita Symbol, Kronecker and alternative Tensor,			
	Christoffel symbol			
03	Complex Analysis:		10	
	Lecture 1-2: Functions of Complex Variables, Analytic Proper	ties		
	Lecture 3-5: Cauchy–Riemann Conditions, Cauchy's Integr	al Theorem, Cauchy's Integral		
	Formula			
	Lecture 6-8: Taylor series, Laurent Expansion, Calculus of Residues and evaluation of Integral,			
	Lecture 9-10: Introduction of Fourier transform and Laplace tra	ansform.		
04	Differential Equations:		10	
	Lecture 1-3: First and second-order differential equations, Sepa	ration of Variables		
	Lecture 4-7: Greens function, Delta function, Legendre function	n		
D	Lecture 8-10: Hermite function, Bessel Functions, Laguerre Fu	nctions		
Recom	mended Books			
Sr.	Text Book	Author		
NO.				
01	Mathematical Methods for Physicists	G.B. Artken, H.J. Weber and F	Harris	
0.1	Reference Book			
01	Mathematical methods in physical sciences	Mary L Boas (Wiley)	* •• \	
02	Introduction of Mathematical Physics	Charlie Harper (Prentice Hall of	India)	

Subject: Solid State	Year & Semester: M.Sc. Physics				Credits	L	Т	Р
Physics	1 st year & 1 st Semester.			3	2	1	0	
Course Code: PSPHY								
<mark>104</mark>								
Evaluation Policy	Mid-Term	Class	Quiz	Attendance	End-Term			
		Assessment						
	26 Marks	8 Marks	8 Marks	8Marks		50 Ma	rks	

Sr.No.	Course outcomes:
CO1	Basic knowledge of Crystal Systems and Symmetries
CO2	Be able to perform structure determination of simple structures
CO3	Concept of band theory and classification of Materials
CO4	Evaluate the potential applications of magnetic materials.

Course	contents		Lectures	
Unit	Particulars		required	
01	Crystal Physics		12	
	Lecture 1: Review of Crystallography			
	Lecture2: Crystal symmetry, crystallographic point groups and t	heir applications.		
	Lecture 3: General introduction of Space Groups (Brief)			
	Lecture 4: Concept of diffraction and Diffraction of waves by ca	rystal		
	Lecture 5: X- ray Scattering amplitude			
	Lecture 6: Reciprocal lattice and its applications to diffraction te	chniques		
	Lecture 7: Crystal structure factor and atomic scattering factor			
	Lecture 8-12: Examples and Numerical Problems			
02	Theory of Metals		12	
	Lecture 1: Free electron theory of Metals			
	Lecture 2-3: Density of state function, Electrons in a periodic lat	tice		
	Lecture 4-5: Bloch theorem, Bloch modes and Utility, Tight bind	ding approximation		
	Lecture 6: Cyclotron resonance, Electron motion in a uniform m	agnetic field		
	Lecture 7: Landau Levels, Electronic structure of a two-dimensional electron gas			
	Lecture 8-12: Examples and Numerical Problems			
03	Band Theory of solids		12	
	Lecture 1: One dimensional system; DOS, 1D sub-bands			
	Lecture 2: Electron Conduction in Solids			
	Lecture 3: Fermi Dirac probability function			
	Lecture 4: Formation of energy bands			
	Lecture 5/6: Kronig Penney Model			
	Lecture 7: Thermal & Electric Properties			
	Lecture 8-12: Examples and Numerical Problems			
04	Dielectric Properties and Magnetism		6	
	Lecture 1: Dielectric Materials (Brief)			
	Lecture 2: Ferromagnetism: Weiss theory of ferromagnetism			
	Lecture 3: Curie-Weiss law for susceptibility			
	Lecture 4-6: Examples and Numerical Problems			
Recomm	nended Books	1		
Sr. No.	Text Books	Author		
01	Solid State Physics	Nell W Ashcroft and N D Me	rmin)	
02	Elementary Solid-State Physics	M A Omar (Pearson)		
03	Introduction to solid state physics	Charles kittel		

Subject: Renewable	Year & Seme	Year & Semester: M.Sc. Physics			Credits	L	Т	Р
Sources of Energy	1 st year & 1 st Semester.			2	2	0	0	
Course Code:								
PSPHY EL1								
Evaluation Policy	Mid-Term	Class	Quiz	Attendance	End-Term			
		Assessment						
	26 Marks	8 Marks	8 Marks	8 Marks		50 Ma	rks	

Sr.No.	Course outcomes: Students will
CO1	Understand the various types of energy sources.
CO2	Design solar thermal energy systems.
CO3	Able to evaluate the hydrogen production and storage

Course	contents		Lectures	
Unit	Particulars		required	
01	Lecture 1-2: Relevance of Renewable Energy in relation to dep	letion of fossil fuels	10	
	Lecture 3-4: Environmental considerations, green energy, susta	inable energy		
	Lecture 5-6: Centralized and decentralized energy			
	Lecture 7-8: Wind Energy, wind turbines, economics and environmental impact			
	Lecture 9-10: Biomass, Energy from waste, Ocean thermal energy	rgy, Tidal energy		
02	Lecture 1: Sun as a source of energy		10	
	Lecture 2: Basic Sun earth geometry			
	Lecture 3-6: Flat plate and evacuated tubular collectors, effici	iency of collectors, overall heat		
	loss coefficient and heat transfer correlations.	-		
	Lecture 7-8: Solar thermal applications like solar cooker and solar water heaters, solar dryers			
	Lecture 9-10: Active and passive heating of buildings, Daylight	ting, Refrigeration and Cooling		
03	Lecture 1-2: Hydrogen Energy, Solar Hydrogen through photo electrolysis and photocatalytic 10			
	process.			
	Lecture 3: Physics of material characteristics for production of	solar hydrogen		
	Lecture 4: Brief discussion of various storage processes, new st	torage modes		
	Lecture 5-6: Various factors relevant for safety, use of Hydr	rogen as fuel, use in vehicular		
	transport, hydrogen for electricity generation, Fuel Cells	-		
	Lecture 7-9: Magnetic and Electrical energy storage systems, S	MES		
	Lecture 10: Supercapacitor			
Recom	nended Books			
Sr.	Text Book	Author		
No.				
01	Renewable Energy.	Twidell and Wier, (E & FN Spo	on Ltd.)	
	Reference Books			
02	Renewable Energy: Power for sustainable future,	Godfrey Boyle, (Oxford Univer	sity Press)	
03	Hydrogen and Fuel Cells:	Bent Sorensen & Giusepp St	oazzafumo,	
		(Academic Press)		

Subject: Quantum	Year & Seme	Year & Semester: M.Sc. Physics			Credits	L	Т	Р
Computation and	1 st year & 1 st Semester.			2	2	0	0	
Information								
Course Code: PSPHY								
EL2								
Evaluation Policy	Mid-Term	Class	Quiz	Attendance	E	End-Te	erm	
		Assessment						
	26 Marks	8 Marks	8 Marks	8 Marks	4	50 Ma	rks	

Sr.No.	Course outcomes: Students will
CO1	Argue basics of Quantum Computation and Information.
CO2	Familiarized with the concept of qubits, entanglement, etc.
CO3	Construct quantum algorithms

Course	contents		Lectures	
Unit	Particulars		required	
01	Lecture 1: Introduction to the Second Quantum Revolution		10	
	Lecture2: Overview of basic quantum phenomena, particles,	waves, interference, quantized		
	energy levels, measurements	-		
	Lecture 3: Stern-Gerlach experiment, spins			
	Lecture 4 -5: Two-level quantum systems, qubits, Represent	ing quantum states as complex		
	vectors (Hilbert space)			
	Lecture 6-8: Superposition states, Dirac bra-ket notation, Opera	ators, observables		
	Lecture 9-10: Bloch Sphere, Distinguishability of states, Repres	sentation of multi-qubit states as		
	direct products			
02	Lecture 1-3: Entanglement, EPR, Bell inequalities		10	
	Lecture 4-6: CHSH inequality, GHZ states			
	Lecture 7: Causality and the no-signaling condition on 'spooky action at a distance'			
	Lecture 8: Cloning theorem			
	Lecture 9-10: Quantum teleportation, quantum dense coding			
03	Lecture 1-3: Concept of Quantum Algorithm,		10	
	Lecture 4-5: Deutsch Algorithm,			
	Lecture 6-8: Deutsch - Jozsa Algorithm,			
	Lecture 9-10 : Quantum Fourier transform, Quantum Search A	lgorithm		
Recom	nended Books	1		
Sr.	Text Book	Author		
No.				
01	Quantum Computation and Quantum Information	Michael A. Nielsen and Isaac	L. Chaung	
		(Cambridge University Press)		
	Reference Books			
01	An Introduction to Quantum Computing	Philip Kaye, Raymond Laflamr	ne (Oxford	
		university Press)		

Subject:	Year & Seme	Year & Semester: M.Sc. Physics				L	Т	Р
Thermoelectric	1 st year & 1 st	1 st year & 1 st Semester.				2	0	0
Materials And Devices								
Course Code: PSPHY								
EL3								
Evaluation Policy	Mid-Term	Class	Quiz	Attendance	Enc	l-Tern	n	
	26 Marks	8 Marks	8 Marks	8 Marks	50	Mark	s	

Sr. No	Course outcomes: Students will
CO1	Analyze the general aspects of thermoelectric materials
CO2	Learn the techniques for characterizing & synthesis of thermoelectric materials
CO3	Design thermoelectric devices and evaluate recent development in properties of pentatellurides

Course contents			Lectures
Unit	Particulars		required
01	INTRODUCTION:		10
	Lecture 1: Concept of Heat Transfer.		
	Lecture 2-3: Fourierslaw ,Newtons law of cooling, Energy conv	version.	
	Lecture 4-5 Seebeckeffect ,Pelteir effect , Thomson effect.		
	Lecture6-7: Conversion efficiencies, Figure of Merit, thermal co	onductivity, electrical resistivity.	
	Lecture 8-9: Techniques for the synthesis of thermoelectric mat	terials.	
	Lecture 10: Thermal Analysis Methods: DSC, DTA & TGA.		10
02	THERMOELECTRIC DEVICES		10
	Lecture 1-2: Design, fabrication,		
	Lecture 3:Optimization.		
	Lecture 4: Efficiencies.		
	Lecture 5-7: characteristics and challenges.		
	Lecture 8-9: Thermoelectric generators and cooling.		
	Lecture 10: Numerical Problems.		
03	RECENT DEVELOPMENT IN PROPERTIES OF PENTA	TELLURIDES :	10
	Lecture 1-2:Doping on the Transition Metal Site $[M_xA_yTe_5,M=$	Hf,ZrA=Zr,Ti].	
	Lecture 3-5: Doping on the Chalcogeni Site $[M_x 1e_{5-x}Ch, M=Hf]$,	Zr;A=Se,Sb].	
	Lecture 6: Magnetotransport.		
	Lecture 79: Overview of Recent Results, Summary of Thermo	belectric Properties.	
Pacomr	nended Books		
Sr No	Text Books	Author	
51.110		Aution	
01	Recent Trends in Thermoelectric Materials.	Terry M. Tritt.	
02	Thermoelectric Energy ConversionBasic Concepts and Device	Diana Dávila Pineda AlirezaRe	ezania.
02	Applications.	White C.V. (Assistant D.)	[]
03.	white, G.K., Measurement of solid conduction at low temperature, in Thermal Conductivity.	white, G.K.(Academic Press, J	London,)

Subject: Biophysics and	Year & Seme	Year & Semester: M.Sc. Physics			Credits	L	Т	Р
Biomaterials	1 st year & 1 st Semester.			2	2	0	0	
Course Code: PSPHY								
EL4								
Evaluation Policy	Mid-Term	Class	Quiz	Attendance	E	End-Te	erm	
		Assessment						
	26 Marks	8 Marks	8 Marks	8 Marks	4	50 Ma	rks	

Sr.No.	Course outcomes: Students will Understand
CO1	Basic properties of nanoparticles and biomaterials
CO2	Various methods for synthesis of nano-biomaterials
CO3	Application of nano-biomaterials with novel optical behaviour

Course	contents		Lectures	
Unit	Particulars		required	
01	Introduction to nano biomaterials; development of nano biomaterials (current applications, nanostructured materials used in pharmaceutical/biomedical applications			
02	Micro-, meso- and macroporous structures; nanostructured surfaces; examples of polymeric, metallic, inorganic, hybrid and composite nano biomaterials preparation			
03	Functionalization/bioconjugation of nano biomaterials, biosensors; smart and stimuli-responsive nano biomaterials			
Recom	mended Books			
Sr.	Text Book	Author		
No.				
01	Biomaterials: An Introduction	Park, Joon, Lakes, R. S.(Spring	er)	
	Reference Books			
01	Nano biomaterials. Development and Applications Kee Yi, D. Papaefthymiou, G.C.,		.,	
02	Nano biomaterials. Classification, Fabrication and Biomedical	Wang, X., Ramalingam, M.,	Kong, X.,	
	Applications	Zhao, L (Wiley)		

Subject: Solid State Physics &	Year & Semester: M.Sc. Physics	Credits	L	Т	Р	
Materials Lab	1 st year & 1 st Semester.	1.5	0	0	3	
Course Code: PSPHY LB1						
New Education /	Continuous Assessment		End	-Term		
Evaluation Policy	60 Marks		401	Marks		

Sr.No.	Course outcomes:
CO1	Understand, how resistivity, Hall coefficient and other parameters of semiconductor vary with temperature.
CO2	Calculate band gap, hall coefficient, coercivity, remanence and saturation magnetization, dielectric constant
	of materials
CO3	Learn field dependence of magnetoresistance of a given semiconductor sample.
CO4	Analyse Para magnetism, Ferromagnetism and antiferromagnetism by measuring magnetic susceptibility

List of Experiments

Experiment No.1: To Study the temperature dependence of resistivity of semiconductor and to determine band gap of experimental material (Ge).

Experiment No. 2: To determine Hall Coefficient, carrier concentration of semiconductor at room temperature.

Experiment No. 3: To study the variation of Hall coefficient with temperature.

Experiment No. 4: To determine Planck's constant and work function using photoelectric effect.

Experiment No. 5: To Verify inverse square law of radiation using photoelectric effect.

Experiment No.6: To measure dielectric constant of a ferroelectric material as a function of temperature and to observe ferroelectric to Para electric transition.

Experiment No. 7: To study the magnetic field dependence of magnetoresistance of a given semiconductor sample.

Experiment No. 8: To plot the magnetic hysteresis loop for a ring-shaped massive iron core and to determine coercivity, remanence and saturation magnetization.

Experiment No. 9: Study of Thermoluminescence of F- centers in alkali halides crystals

Experiment No.10: To measure the magnetic susceptibility of paramagnetic solid by Gouy's method.

Recommended Text Books					
Sr. No.	Name of the book	Author			
01	Lab in sky	MA Shah & Surbhi (New Publishers)			
02	Advanced practical physics for students	BL Worsnop & HT Flint (Little Hampton			
		Book Service Ltd)			

Subject: Optics & Photonics Lab Course Code: PSPHY LB8	Year & Semester: M.Sc. Physics 1 st year & 1 st Semester.	Credits 1.5	L 0	T 0	P 3	
Evaluation Policy	Continuous Assessment		End-T	'erm		
	60 Marks	40 Marks		arks		

Sr.No.	Course outcomes
CO1	Apply the concepts of optics to evaluate various parameters
CO2	Analyze behavior of light under different apparatus settings
CO3	Develop understanding of optical instruments
CO4	Calculate and interpret scientific data

List of Experiments

Experimen	Experiment No. 1 To find the wavelength of sodium light using Newton's rings.						
Experimen	Experiment No. 2 Determination of wavelength of monochromatic light with the help of Fresnel Bi-Prism.						
Experimen	t No. 3 To find angle of prism, angle of minimum deviation	and refractive index of prism.					
Experimen	t No. 4 Determination of Plank's constant by measuring rad	liation in a fixed spectral range.					
Experimen	t No. 5 To verify Malus Law.						
Experimen	t No. 6 To determine splitting of lines by Zeeman effect exp	periment.					
Experimen	t No. 7 Measurement of coherence length of laser using Mid	chelson interferometer.					
Experimen	t No. 8 To determine the specific rotation of sugar Lauren's	s half shade polarimeter.					
Experimen	Experiment No. 9 Determine of line width of a laser using monochromator.						
Experiment No. 10 Thickness of enamel coating on a wire by diffraction.							
Recommer	nded Text Books						
Sr. No.	Name of the book	Author					
01	Lab in Sky	MA Shah & Surbhi (New Delhi Publishers)					
02	Advanced practical physics for students	BL Worsnop & HT Flint					

Subject: Applied Physics Lab With	Year & Semester: M.Sc. Physics	Credits	L	Т	Р
Workshop	1 st year & 1 st Semester.	1.5	0	0	3
Course Code: PSPHY LB3					
Evaluation Policy	Continuous Assessment	End-Term			
	60 Marks	40 Marks			

Sr.No.	Course outcomes
CO1	Determine Planks constant its implications in real world.
CO2	Develop Experimental skills for understanding the natural Laws
CO3	Interaction of radiation with matter

List of Experiments						
Experiment No. 1						
To determine Planck's constant and work function using photoelectric ef	fect.					
Experiment No. 2						
To determine value of acceleration due to gravity with Bar pendulum.						
Experiment No. 3						
Experiment Name: To determine value of acceleration due to gravity wit	h Kater's pendulum.					
Experiment No. 4						
To verify Stoke's law and determine the coefficient of viscosity of a high	nly viscous liquid.					
Experiment No. 5						
Determination of absorption coefficient of a liquid or solution with the h	elp of a photovoltaic cell					
Determination of absorption electricient of a neuro of solution with the n	cip of a photovorale cen					
Experiment No. 6						
To determine the Young's modulus of the material of a given beam sup	ported on two knife edges and lo	aded at the				
middle point.						
Experiment No. 7						
Experiment No. 7	ng current					
To study variation of magnetic field along the axis of chedial concerny						
Experiment No. 8						
To find angle of prism, angle of minimum deviation and refractive index	of prism					
Experiment No. 9 :						
various activities in workshop						
Recommended Books						
Sr. No. Name of the book	Author					
01 Physics Lab In Sky	Shah And Surbhi (New Delhi P	ublishers)				

Workshop visit once in a week

Physics Curriculum as per NEP @ NIT Srinagar

SEMESTER – II

S. No	Course Code	Theory Courses	L	Т	Р	Credit
Core (Courses					
12.	PSPHY 201	Thermodynamics and Statistical Mechanics	2	1	0	3
13.	PSPHY 202	Atomic & Molecular Physics	2	1	0	3
14.	PSPHY 203	Electromagnetism and Electrodynamics	2	1	0	3
15.	PSPHY 204	Nuclear and Particle Physics	2	1	0	3
Electiv	ve Courses (Stu	dents have to choose 2 electives)				
16.	PSPHY EL5	Physics at Nano-scale	2	0	0	2
17.	PSPHY EL6	Quantum Logic and Simulations	2	0	0	2
18.	PSPHY EL7	Physics of Semiconductors	2	0	0	2
19.	PSPHY EL8	Solar Photovoltaics	2	0	0	2
Labora	atory Courses					
20.	PSPHY LB4	Electronics Tinkering Lab	0	0	3	1.5
21.	PSPHY LB5	Synthesis of Nano-materials Lab	0	0	3	1.5
22.	PSPHY LB6	Bio Engineering Lab	0	0	3	1.5
	Total					20.5

Subject: Thermodynamics and	Year & Semester: M.Sc. Physics 1 st year & 2 nd Semester.				Credits 3	L 2	T 1	P 0
Statistical Mechanics Course Code: PSPHY 201								
Evaluation Policy	Mid-Term	Class Assessment	Quiz	Attendance		End-Te	erm	
	26 Marks	8 Marks	8 Marks	8 Marks		50 Ma	rks	

Sr.No.	Course outcomes:
CO1	Illustrate the fundamental concepts of thermodynamics and statistics.
CO2	Distinguish various ensembles and their significance.
CO3	Explain Bose-Einstein Condensate and Fermi Level.
CO4	Relate different types of phase transitions.

Course	contents		Lectures	
Unit	Particulars		required	
01	Lecture 1 -3: Basic laws of thermodynamics, Thermodynamic F	Potentials, Maxwell Equations,	10	
	Connection between statistics and thermodynamics;	-		
	Lecture 4 -6: Concept of microstates, phase space and its connec	tion to Entropy		
	Lecture 7: Classical Ideal Gas and the Maxwell Boltzmann Distribution,			
	Lecture 8: Entropy of mixing			
	Lecture 9-10: Gibbs Paradox; Liouville's Theorem, problems			
02	Lecture 1-2: Ensembles, Classifications of ensembles.		10	
	Lecture 3-4: Partition Function calculation for various systems;			
	Lecture 5-7: Partition Function calculation for various system	is; Energy fluctuations in the		
	Canonical Ensemble			
	Lecture 8: Grand Canonical Ensemble;			
	Lecture 9: Number Density and Energy Fluctuations in the Grand Canonical ensemble,			
	Lecture 10: numerical problems			
03	Lecture 1: Quantum Statistics and calculation of the Density mat	rix for various systems;	10	
	Lecture 2: Indistinguishability of Particles, Symmetric and Anti-	Symmetric wave functions		
	Lecture 3-4: Calculation of the Bose-Einstein and Fermi-Dirac D	istribution for a quantum Ideal		
	Gas;			
	Lecture 5-6: Thermodynamic behaviour of an Ideal Bose Gas, B	ose-Einstein Condensate;		
	Lecture 8-9: Thermodynamic behaviour of an ideal Fermi gas			
0.4	Lecture 10: Pauli Para magnetism		10	
04	Lecture 1-2: Phase Transitions: General concepts of phase	transitions, order parameter,	10	
	continuous transition			
	Lecture 3-4: Landau theory of phase transition			
	Lecture 5-6 : Concept of critical phenomena, critical exponent	ts		
	Lecture 7-8 : Ising model and Van der Waals gas, exact solution	on of the Ising model in 1D		
	Lecture 9 : Description of Einstein-Smoluchowski theory of Bro	ownian motion as a stochastic		
	process,			
Lecture 10 : The fluctuation-dissipation theorem				
Recommended Books				
Sr. No.	Text Books	Author		
01	Statistical Mechanics	Pathria, R. K. (Academic Pres	s)	
02	Statistical Mechanics	Kerson Haung (Wiley)		

Subject:Atomic andMolecular PhysicsCourseCode:PSPHY 202	Year & Seme 1 st year & 2 nd	Credits 3	L 2	T 1	P 0			
Evaluation Policy	Mid-Term	Class Assessment	Quiz	Attendance	End-Term			
	26 Marks	8 Marks	8 Marks	8 Marks	5	0 Mai	rks	

Sr.No.	. Course outcomes: Students will be to				
CO1	Learn the solution Schrödinger equation for the hydrogen atom and interpretation of quantum numbers.				
CO2	Understand the theoretical models for multielectron system.				
CO3	Recognize and learn the Molecular Structure and Molecular Sp	ectra.			
CO4	Distinguish different components of Laser Spectroscopy				
Course	contents		Lectures		
Unit	Particulars		required		
01	HYDROGEN ATOM:		10		
	Lecture 1-2: Solution of Schrödinger's Equation for one Electr	on System.			
	Lecture 3: Quantum Numbers (n, l, m) and Wave Function of t	he H Atom.			
	Lecture 4-5: Normal and Analomous Zeeman effect.				
	Lecture 6: Relativistic Interaction and Fine Structure, Hyperf	ine Structure.			
	Lecture 7-8: The Electron Spin, The Stern-Gerlach Experimen	t.			
	Lecture 9: Spin-Orbit, Correction of Energy Terms.				
	Lecture 10. Lamb Shift, Vector Atomic Model.				
02	ATOMS WITH MORE THAN ONE ELECTRON:		10		
	Lecture 1-2: The central field approximation models, Spin orbital and Slater determinants.				
	Lecture 3-4: Thomas-Fermi model of atoms, Thomas-Fermi theory of multi-electron atoms.				
	Lecture 5-6: Introduction Hatree –Fock Method, Correlation e	ffects, LS Coupling and JJ			
	Coupling.				
	Lecture 6-10: Possible terms of a multi -electron configuration	in LS coupling.			
03	MOLECULAR PHYSICS:		10		
	Lecture 1 : Molecular Structure and Molecular Spectra.				
	Lecture 2-3: Rotational, Vibrational, Rotational-Vibrational S	pectra.			
	Lecture 4-5: Electronic Spectra of Di-atomic Molecules, Selec	tion Rules.			
	Lecture 6-8: ESR and Raman Spectroscopy				
	Lecture 9-10: Pure Rotational Raman Spectra, Vibrationa	ll Raman Spectra.			
04	LASER SPECTROSCOPY:		10		
	Lecture 1: Absorption, spontaneous and stimulated emission.				
	Lecture 2: Einstein coefficient and numerical problems.				
	Lecture 3: Transition probability and life time of an atom in ar	n exited state.			
	Lecture 4: Population inversion, Laser rate equation for two le	vel systems.			
	Lecture 5: Rate equating for three level lasers.				
	Lecture 6: Line broadening mechanism, shape and width of sp	ectral line.			
	Lecture 7-8: Optical resonator; Quality factor, Losses inside the cavity, threshold condition,				
D	Lecture 9-10: Laser systems, He-Ne laser, CO ₂ laser.				
Recomm	nended Books	A .1			
Sr. No.	Text Book	Author	TT'11		
01	Fundamentals of Molecular Spectroscopy	C.N. Banwell (4 th edition, McGr	raw-Hill)		
02	Atoms, Molecules and Photons	Wolfgang D (3 rd edition, Sprin	ger)		

Year & Seme	ster: M.Sc. Phys		Credits	L	Т	Р	
1 st year & 2 nd Semester.				3	2	1	0
				. <u></u>			
Mid-Term	Class	Quiz	Attendance		End-Te	erm	
	Assessment						
26 Marks	8 Marks	8 Marks	8 Marks		50 Ma	rks	
	Year & Seme 1 st year & 2 nd Mid-Term 26 Marks	Year & Semester: M.Sc. Phys 1 st year & 2 nd Semester. Mid-Term Class Assessment 26 Marks 8 Marks	Year & Semester: M.Sc. Physics 1 st year & 2 nd Semester. Mid-Term Class Quiz Assessment 26 Marks 8 Marks 8 Marks	Year & Semester: M.Sc. Physics1st year & 2nd Semester.Mid-TermClassAssessmentAttendance26 Marks8 Marks8 Marks	Year & Semester: M.Sc. Physics Credits 1 st year & 2 nd Semester. 3 Mid-Term Class Assessment 4 26 Marks 8 Marks 8 Marks	Year & Semester: M.Sc. Physics Credits L 1 st year & 2 nd Semester. 3 2 Mid-Term Class Quiz Attendance End-Te Mid-Term Class Quiz Attendance 50 Mat 26 Marks 8 Marks 8 Marks 8 Marks 50 Mat	Year & Semester: M.Sc. Physics 1st year & 2nd Semester.CreditsLT321Mid-TermClass AssessmentQuizAttendance CEnd-Term26 Marks8 Marks8 Marks8 Marks50 Marks

Sr.	Course outcomes: Students will
CO1	Evaluate Poisson and Laplace equations, Greens Function, Boundary value problems for dielectrics.
CO ₂	Analyze Maxwell's equations, Gauge transformations, Poynting's theorem
CO3	Evaluate Radiating Systems and Multipole fields.
CO4	Develop Relativistic Electrodynamics, covariant formalism of Maxwell equations.

Course	contents		Lectures	
Unit	Particulars		required	
01	Lecture 1-2: Poisson and Laplace equations, Dirichlet and Neur	nann boundary conditions;	10	
	Lecture 3: Method of images			
	Lecture 4: Laplace equation in Cartesian, spherical and cylindri	cal coordinate		
	Lecture 5: Green function formalism: Green function for th	e sphere, expansion of Green		
	function in spherical coordinates			
	Lecture 6: Multipole expansion; Boundary value problems for o	lielectrics		
	Lecture 7: Magnetic materials, boundary value problems			
	Lecture 9: Magnetic shielding, magnetic field in conductors, nu	merical problems		
02	Lecture 1: Maxwell's equations		10	
	Lecture 2: Gauge transformations			
	Lecture 3-4: Poynting's theorem, Energy and momentum conservation.			
	Lecture 5: Electromagnetic waves: wave equation, propagation of electromagnetic waves			
	Lecture 6-9: Refraction, Total internal reflection, Goos-Hänchen shift, Brewster's angle			
03	Lecture 1: Retarded potential		10	
	Lecture 2-3: Field and radiation of a localized oscillating source	e electric dipole fields		
	Lecture 4-5: Multipole expansion, energy and angular momentum	m, multipole radiations		
	Lecture 6-7: Scattering: scattering at long wavelengths, perturb	ation theory, scattering		
	Lecture 8: Radiation by Moving Charges: Lienard- Weichert po	otential		
	Lecture 9: radiation by nonrelativistic and relativistic charges, and	ngular distribution of radiations,		
	Lecture 10: Thomson's scattering, bremsstrahlung in Coulomb	collisions, numerical problems		
04	Lecture 1: Electromagnetic Field Tensor		10	
	Lecture 2: Electrodynamics in tensor notation			
	Lecture 3-4: Covariant formalism of Maxwell's equations			
	Lecture 5: Transformation laws for fields, their physical signific	cance		
	Lecture 6-7: Relativistic generalization of Larmor's formula, nu	merical problems and skills.		
Lecture 8-9: Relativistic formulation of radiation by single moving charge,				
Recom	nended Books			
Sr.	Text Books	Author		
01	Classical Electrodynamics	J. D. Jackson (John Wiley)		
01	Electromagnetic Waves and Radiating Systems	E. C. Jordan and Balmain (Pret	ntice Hall)	

Subject : Nuclear and	Year & Semester: M.Sc. Physics			Credits	L	Т	Р	
particle Physics	1 st year & 2 nd	1 st year & 2 nd Semester.			3	2	1	0
Course Code: PSPHY						•		
<mark>204</mark>								
Evaluation Policy	Mid-Term	Class	Quiz	Attendance		End-Te	erm	
		Assessment						
	26 Marks	8 Marks	8 Marks	8 Marks		50 Ma	rks	

Sr.No.	Course outcomes: Students will Learn
C 01	Analysis of Deuteron problem
CO2	Evaluate Form Factors
CO3	Develop different nuclear models
CO4	Analysis of Quark model

Course	contents		Lecturers
Unit	Particulars		
01	Lecture 1: Fundamental Interactions,		10
	Lecture 2 -3: The deuteron problem		
	Lecture 4: Deuteron magnetic moment,		
	Lecture 5: Deuteron electric quadrupole moment,		
	Lecture 6: Tensor forces and deuteron D-state		
	Lecture 7: Symmetry and conservation laws		
	Lecture 8: Pion-Nucleon Interaction		
	Lecture 9-10: Properties of Nucleon-Nucleon Force, Yukawa	theory of nuclear forces	
02	Lecture 1-2: Nuclear size, Rutherford and Mott Scattering,		10
	Lecture 3-4: Electron scattering form factor, Charge radius an	d Charge density.	
	Lecture 5: Nucleon Elastic form factors		
	Lecture 6: High energy lepton scattering,		
	Lecture 7: Nuclear shape and electromagnetic moments,		
	Lecture 8: Magnetic dipole moment of odd nuclei, Ground sta	te spin and isospin,	
	Lecture 9-10: Nuclear binding energy, Semi-empirical mass for	ormulae,	
03	Models of Nuclear Structure:		10
	Lecture 1: Vibrational Model,		
	Lecture 2-3: Magic number and single-particle energy, Spin of	orbit interaction,	
	Lecture 4-6: Many bodies basic states, Hartree-Fock single-p	article Hamiltonian	
	Lecture 7: Single Particle Shell model, Generalization of Singl	e-Particle Model	
	Lecture 8-9: Nuclear deformation, Rotational spectra of spinle	ss Nuclei,	
	Lecture 10: Fermi gas model		
04	Lecture 1: The Gellmann-Nishijima scheme, the eight-fold wa	ay, the quark model.	10
	Lecture 2: Quark structure of hadrons: the baryon decouplet, of	uark spin and color	
	Lecture 3-5: Electroweak Interactions: prediction and discove	ery of W /Z, weak isospin and,	
	Lecture 6-7: Feynman rules for electroweak interaction, Electr	on-positron annihilation	
	Lecture 7-8: Lepton and quark scattering:		
-	Lecture 9-10: Strong Interactions: the evidence for quarks and	color charge, strange particles,	
Recomm	ended Books	A .1	
Sr. No.	Text Book	Author	
01	Introduction to Nuclear Physics	Heral Enge (Addison Welsey)	
02	Introduction to Elementary Particles	David J. Griffths (Wiley)	

Subject: Physics at	Year & Seme	ster: M.Sc. Phys	sics		Credits	L	Т	Р
Nanoscale	1 st year & 2 nd Semester.		2	2	0	0		
Course Code: PSPHY EL5								
Evaluation Policy	Mid-Term	C.A	Quiz	Attendance]	End-Te	erm	
	26 Marks	8 Marks	8 Marks	8 Marks		50 Ma	rks	

Sr.No.	Course outcomes: Students will learn
CO1	Fabrication of nano materials
CO2	Analyze properties of Nano materials
CO3	Learn different characterization techniques.

Course	contents		Lectures	
Unit	Particulars		required	
01	Lecture 1: The scientific revolutions - Nanoscience, Nature and	d Scope,	7	
	Lecture 2: Surface to volume ratio, quantum effects- classificat	ion of nanocrystals		
	Lecture 3: Dimensionality and size dependent phenomena;			
	Lecture 4-: Quantum dots, Nanowires and Nanotubes and their	properties		
	Lecture 5: Concepts of Top down and Bottom-up Approach.			
	Lecture 6: Carbon based nanomaterials and their general proper	rties		
	Lecture 7: Graphene and its properties, Potential applications of	Graphene		
02	Properties of nanomaterials		5	
	Lecture 1: Electrical and Transport properties			
	Lecture 2: Mechanical Properties and tribology			
	Lecture 3-: Optical properties			
	Lecture 4: Nanostructures under the influence of electrical or	r magnetic fields		
	Lecture 5: Dielectric properties			
03	Characterization Techniques:		7	
	Lecture 1: Photoluminescence			
	Lecture 2: Scanning Electron Microscopy, HRTEM			
	Lecture 3: X ray Diffraction (In Detail)			
	Lecture 4: Vibrating Sample Magnetometer (VSM)			
	Lecture 5: Atomic Force Microscope (AFM)			
	Lecture 6: Fourier Transform Infrared Spectroscopy (FTIR)			
	Lecture 7: Electron spin resonance (ESR) and Nuclear Magneti	c Resonance (NMR)		
Recomm	nended Books	Γ		
Sr. N	Text Books	Author		
01	Introductory nanoscience: physical and chemical concepts	Masaru Kuno, (Garland Science	e)	
	Reference Books			
01	Nanoparticle and nanostructure film preparation,	J. H. Fredler (Wiley)		
	characterisation and application			
02	Nanoscience and Technology	Shah & Ahmad (IK Internation	nal)	

Subject: Quantum	Year & Semester: M.Sc. Physics			Credits	L	Т	Р	
Logic and Simulations	1 st year & 2 nd Semester.			2	2	0	0	
Course Code: PSPHY								
EL6								
Evaluation Policy	Mid-Term Class Quiz Attendance		Attendance	End-Term				
		Assessment						
	26 Marks	8 Marks	8 Marks	8 Marks		50 Ma	rks	

Sr.No.	Course outcomes
CO1	Demonstrate fundamentals of quantum computing
CO2	Evaluate fundamentals of Quantum Cryptography and Entanglement.
CO3	Design quantum algorithms to solve problems

Course	contents	Lectures
Unit	Particulars	required
01	Fundamentals	10
	Lecture 1-3: Classical and quantum computers principals	
	Lecture 4-5: Probability; Statistics; Matrices	
	Lecture 6: Advantages of quantum computation	
	Lecture 7-8: Superposition; Entanglement; Interference	
	Lecture 9-10: Single qubit operations and measurements	
02	Quantum Cryptography:	10
	Lecture1: Classical and Quantum Cryptography; Physical imp	lementations.
	Lecture 2-3: Entanglement: Entangled states	
	Lecture 4-5: Bells inequality; von-Neumann entropy	
	Lecture 6-8: Quantification of pure state entanglement. Mixed	state entanglement
	Lecture 9-10: quantification of mixed state entanglement Cond	currence.
03	Quantum Algorithms and Computation	10
	Lecture 1-2: Quantum no-cloning; The Deutsch-Jozsa algorith	Im
	Lecture 3-4 : Quantum Algorithms and Computation Quantum	simulations
	Lecture 5-6 : Quantum logic gates and circuits; Universal quan	tum gates
	Lecture 7-8: Quantum Fourier Transform; Phase Estimation	on; Shor's algorithm; Grovers
	algorithm	
	Lecture 9-10:Quantum phase estimation. Decoherence an	d Quantum Error Correction:
	Decoherence; Errors in quantum computation and communication	ation; Quantum error correcting
	codes; Elementary discussion of entanglement concentration a	nd distillation.
Recomm	ended Books	
Sr. No.	Text Book	Author
01	An Introduction to Quantum Computing	Philip Kaye, Raymond Laflamme(Oxford
		university Press)
02	Quantum Computation and Quantum information,	Nielsen and Chuang (Cambridge
		University Press)

Subject: Physics of	Year & Seme	Year & Semester: M.Sc. Physics			Credits	L	Т	Р
Semiconductors	1 st year & 2 nd Semester.			2	2	0	0	
Course Code: PSPHY EL7						•		
Evaluation Policy	Mid-Term	Class	Quiz	Attendance	End-Term			
		Assessment						
	26 Marks	8 Marks	8 Marks	8 Marks	4	50 Ma	rks	

Sr. No.	Course outcomes: Students will be able to
CO1	Explain the basic properties of semiconductors
CO2	Analyse the working, design considerations and applications of various semiconducting devices including
	p-n junctions, BJTs and FETs.
CO3	Describe the working and design considerations for the various photonic devices like photodetectors, solar-
	cells and LEDs

Course	contents		Lectures		
Unit	Particulars		required		
01	Junctions: p-n junction and contact potential, Fern Forward bias, Zener and Avalanche breakdown. C barriers; Schottky barrier height, C-V characteristics thermionic emission, Rectifying contact and Ohmic co	ni levels, Space charge, Reverse and Capacitance of p-n junction, Schottky , current flow across Schottky barrier: contact.	10		
02	Field Effect Transistors: JEFT amplifying and switch control, I-V characteristics. MOSFET, Operation, length, Effect of real surfaces; Work function differ voltage and its control, MOS C-V analysis and time of transfer characteristics of MOSFET.	ing, Pinch off and saturation, Gate MOS capacitor, Debye screening rence, Interface charge, Threshold dependent capacitance. Output and	10		
03	Bipolar Junction Transistors (BJT): Fundamentals of BJT operation. Minority carrier distribution, Solution of diffusion equation in base region, Terminal current, Current transfer ratio, Ebers-Moll equations, Charge control analysis. BJT switching: Cut off, Saturation, Switching cycle. Photonics: LED: Radiative transition, Emission spectra, Luminous efficiency and LED materials, Solar cell and photodetectors: Ideal conversion efficiency, Fill factor, Equivalent circuit, Voc, Isc and Load resistance, Spectral response. Reverse saturation aureant in photodetector.				
Recom	Recommended Books				
Sr.No.	Text Book	Author			
01	Solid State Electronics	Streetman, B. and Banerjee (Prentice]	Hall India)		
	Reference Books				
01	Physics of Semiconductor Devices,	S.M.Sze (John Wiley, (1981))			

Subject: Solar	Year & Seme	ster: M.Sc. Phys	sics		Credits	L	Т	Р
Photovoltaics	1 st year & 2 nd Semester.			2	2	0	0	
Course Code:								
PSPHY EL8								
Evaluation Policy	Mid-Term	Class	Quiz	Attendance]	End-Te	erm	
		Assessment						
	26 Marks	8 Marks	8 Marks	8 Marks		50 Ma	rks	

Sr.No.	Course outcomes: Students will be able
CO1	Analyze the current solar energy conversion and utilization processes.
CO2	Gain an insight of the photovoltaic system engineering aspects including modeling and up scaling of the PV
	systems with different approaches, and be able to advance photovoltaic systems.
CO3	Evaluate difference between Hybrid organic, Inorganic solar cells, multi-junction solar cells etc

Course contents			Lectures	
Unit	Particulars		required	
01	Lecture 1: Human and World energy consumption		10	
	Lecture 2-3: Method of energy conversion, Need for sustainable	e energy sources		
	Lecture 4: Limited fossil fuel, Renewable energy sources			
	Lecture 5: Current status of wind energy, Solar thermal, Biomas	ss and Hydroelectricity		
	Lecture 6: Sustainable Sun energy, Solar radiation			
	Lecture 7: Black body radiation,			
	Lecture 8: Terrestrial solar radiation			
	Lecture 9: Solar spectrum			
	Lecture10: A brief review of different types of solar cells in the	market.		
02	Lecture 1 : Photoelectric effect Photoconductivity, Photo em	issive effect and photovoltaic	10	
	effect, A comparison,			
	Lecture 2 : Working principle of solar cells, Generation of charg	ge carriers		
	Lecture 3 : Separation and collection solar cell parameters			
	Lecture 4 : Equivalent circuit, External solar cell parameters			
	Lecture 5 : External quantum efficiency and Equivalent circuit.			
	Lecture 6 : The thermodynamic limit, Shockley-Quiesser limit			
	Lecture 7 : Losses in Solar cell design, Design for high Isc, High	n Voc, High FF		
	Lecture 8 : Analytical techniques, Solar simulator			
	Lecture 9-10 : Quantum efficiency, measurement minority carrie	er life time		
03	Lecture 1 : Silicon wafer based solar cell, basic silicon solar cell		10	
	Lecture 2: Strategies to enhance Absorption reduce surface recombination, reduce series			
	resistance			
	Lecture 3-6 : Thin film solar cells, Transparent conducting oxides, Chalcogenide solar cells,			
	Organic photovoltaics, Perovskite			
	Lecture 7-9: Dye sensitized solar cells, Hybrid organic, Inorganic solar cells, multi-junction			
Lecture 10 : Multi exciton generation, Photovoltaic system Design				
Sr.	Text Books	Author		
01	Solar Photovoltaics, Fundamentals, Technologies and applications,	Chetan Singh Solanki (PHI Le	arning)	
02	Solar Energy Fundamentals, Technology and Systems	Klaus Jäger, Olindo Isabe	lla (Delft	
		University of Technology)		

Subject : Electronics Tinkering Lab Course Code: PSPHY LB4	Year & Semester: M.Sc. Physics 1 st year & 2 nd Semester.	Credit 1.5	L 0	T 0	P 3	
Evaluation Policy	Continuous Assessment	nent End-Term		Term		
	OU Marks		40 N	larks		

Sr.No.	Course outcomes
CO1	The course aims through a theoretical and experimental approach to give fundamental insights into solid
	state physics.
CO2	Should know about: p-n junction diodes and transistors
CO3	Understanding the principle of Solar cell and working.
CO4	With the help of ExpEYES-17 kit students will be able to make circuit on breadboard using theoretical
	knowledge.

List of Exp	periments						
Experimen	Experiment No. 1 Study of characteristics of semiconductor diode.						
Experimen	t No. 2 Study of P-N junction with temperature.						
Experimen	t No. 3: Investigation of transistor characteristics of n-p-n	and p-n-p transistors					
Experimen	t No. 4: To determine the h-parameters of a transistor.						
Experimen	t No. 5 To plot the V-I Characteristics of the solar cell a	nd hence determine the fill factor					
Experimen	t No. 6: To study the Schmitt trigger characteristic using	g IC 741					
Experimen	t by EXPEYES-17 kit						
Title of ex	periments:						
Half wave	Rectifier Full wave Rectifier	Diode Clipping					
Diode Clar	nping Diode Characteristics	Transistor Amplifier					
Inverting A	Amplifier Non-inverting Amplifier	Logic Gate					
Recommen	nded Text Books						
Sr. No.	Name of the book	Author					
01	Digital Principles and Applications,	D. P. Leach, A. P. Malvino (McGraw-Hill					
		Education)					
02	Digital Fundamentals:	Floyd & Jain (Pearson Education)					
03	EXP EYES- 17 Kit Manual	Manual, PHDENIX Project, IUAC, New Delhi					

Subject: Synthesis of Nanomaterials Lab Course Code: PSPHY LB5	Year & Semester: M.Sc. Physics 1 st year & 2 nd Semester.	Credit 1.5	L 0	T 0	P 3
Evaluation Policy	Continuous Assessment		End-To	erm	
	OU IVIAIKS		40 Ma	цк5	

Sr. No.	Course outcomes: Students will
CO1	Develop understanding about crystallization and synthesis
CO2	Learn the techniques of nanomaterials preparation
CO3	Understand the mechanism behind the preparation methods
CO4	Prepare materials of choice

List of Experiments						
Experiment	Experiment No. 1: Synthesis of nanomaterial sample using Sol-gel technique.					
Experiment No. 2: Synthesis of polycrystalline sample using solid state reaction technique						
Experiment	Experiment No. 3: Synthesis of nanomaterials using microwave technique.					
Experiment	Experiment No. 4: Synthesis of nanomaterial using Ball Milling of bulk sample.					
Experiment	Experiment No. 5: Synthesis of nanomaterial using hydrothermal method					
Experiment No. 6: Synthesis of nanomaterial using auto combustion method.						
Experiment No. 7: Synthesis of nanomaterial using Co-precipitation method.						
Experiment No. 8: Synthesis of nanomaterial using Sono chemical and spark discharge route.						
Recommended Text Books						
Sr No	Sr. No. Name of the book					
01	Synthesis and Applications of Nanoparticles	Atul Thakur, Preeti Thakur				
02	Science of Small	Shah and Shah (Wiley)				

Subject: Bio-Engineering Lab Course Code: PSPHY LB6	Year & Semester: M.Sc. Physics 1 st year & 2 nd Semester.	Credit 1.5	L 0	T 0	P 3	
Evaluation Policy	Continuous Assessment	End-Term				
	60 Marks	40 Marks				

Sr. No.	Course outcomes: Students will
CO1	Synthesis of various polymers, hydrogel
CO2	learn characterization techniques of Biomaterials
CO3	Learn about synthesis of medical fibers

List of Experiments

Experiment No. 1: Synthesis of Polymers

- Experiment No. 2: Synthesis and Characterization of smart Materials
- Experiment No. 3: Synthesis of Hydrogels
- Experiment No. 3: Determination of Properties of Hydrogels
- Experiment No. 4: Synthesis and Characterization of materials for energy applications
- Experiment No. 5: Synthesis of Medical Fibers

Experiment No. 6: Medical Physics and Bio Physics experiments in collaboration with Skims

Experiment No. 7: Medical Implants, orthopedic materials

Recommended Text Books

Sr. No.	Name of the book	Author
01	Synthesis and Characterization of Biomedical Materials	Leszek Adam D et al
02	Biomedical Polymers: synthesis and processing	Vinod B. Damodaran

SEMESTER – III

S. No	Course Code Theory Courses		L	Т	Р	Credit
Core Courses						
23.	PSPHY 301	Astrophysics & Space Science	2	1	0	3
24.	PSPHY 302	Atmospheric & Environmental Physics	2	1	0	3
25.	PSPHY 303	Condensed Matter Physics	2	1	0	3
26.	PSPHY 304	Computational Physics	2	1	0	3
Electiv	ve Courses (Stud	ents have to opt for pre-project seminar a	ind ty	NO 6	elect	tives)
27.	PSPHY EL9	Medical Physics	2	0	0	2
28.	PSPHY EL10	Superconductivity and superfluidity	2	0	0	2
29.	PSPHY EL11	General theory of relativity	2	0	0	2
30.	PSPHY EL12	Principles of Spectroscopy	2	0	0	2
31.	PSPHY PPS	Pre-project Seminar	0	0	0	1
Laboratory Courses						
32.	PSPHY LB7	Characterization Lab	0	0	4	2
33.	PSPHY LB8	Computational Physics Lab	0	0	4	2
	Total					21

SubjectAstrophysicsPhysics & Space ScienceCourse Code:PSPHY 301	Year & Semester: M.Sc. Physics 2 nd year & 3 rd Semester.			Credits 3	L 2	T 1	P 0		
Evaluation Policy	Mid-Term	Class Assessment	Quiz	Attendance	End-Term				
	26 Marks	8 Marks	8 Marks	8 Marks	4	50 Mai	rks		

Sr.No.	Course outcomes: Students will be able
CO1	Apply mathematical tools and physics laws to understand the nature of planets, stars, galaxies.
CO2	Use online resources to analyse the data obtained from various astronomical observations.
CO3	Evaluate the results of this analyses and interpret the nature of the Solar system, variety ofstars
	and galaxies.

Course	contents		Lectures	
Unit	Particulars		required	
01	Lesson 1-3 Celestial Mechanics and Astrometry: The Proper motions of stars and planets, Distances of near Lesson 4-8: Tools of Astronomy: Telescopes: Basic Telescopes, Infrared, Ultraviolet, X-ray, and Gamma-R observatories	ne celestial Sphere, Positions of stars, bystars. Optics, Optical Telescopes, Radio Ray Astronomy – detectors and	8	
02	Lesson 1-3: The Solar System: The Sun, The Physical Processes in the solar system, The8Terrestrial and the Giant Planets, Formation of Planetary Systems.8Lesson 4-8: Basic Stellar Parameters: The brightness of the stars, Color- magnitude diagrams (The HR diagrams), The luminosities of the stars, Angular radii of stars, Effective temperatures of stars, Masses and radii of stars: Binarystars, Search for Extrasolar Planets			
03	Lesson 1-8: The Nature of Stars: Spectral classification, understanding stellar spectra, Population II stars, Stellar rotation, Stellarmagnetic fields, Stars with peculiar spectra, Pulsating stars, Explosive stars, Interstellar absorption Our Galaxy and The Interstellar Matter: The shape and size of our Galaxy, Interstellar extinction and reddening, Galactic coordinates, Galactic rotation, Stellar population, Inter Stellar Medium, The galactic magnetic field and cosmic rays Lesson9-12: Lessons on Space Science and its importance			
G N				
Sr. No.	Text Books	Author	TT 1	
01	Introduction to Stellar Astrophysics, Volume 1, <i>Basic stellar observations and</i> data	Erika Bohm-Vitense, (Cambridge Press)	University	
02	Astrophysics for Physicists	Arnab Rai Choudhuri, (Cambridge Ur Press, 2010)	niversity	

SubjectAtmospheric&Environmental PhysicsCourseCode:PSPHY 302	Year & Semester: M.Sc. Physics 2 nd year & 3 rd Semester.			Credits 3	L 2	T 1	P 0		
Evaluation Policy	Mid-Term	Class Assessment	Quiz	Attendance	End-Term				
	26 Marks	8 Marks	8 Marks	8 Marks	5	50 Mai	rks		

Sr.No.	Course outcomes: Students will be able to
CO1	Learn basics of Atmospheric physics
CO2	Learn the concept of Electromagnetic Radiation, Energy balance at the earth's surface, transport of
	pollution in water and air.
CO3	Evaluate the implications of Environmental Physics

Course contents						
Unit	Particulars		required			
01	Lesson 1: Basics of the atmospheric structure:		12			
	Lesson 2: Electromagnetic radiation, absorption and em	ission.				
	Lesson 3-5: The radiation balance and the greenhouse ga	ses.				
	Lesson 6: Energy balance at the earth's surface.					
	Lesson 7-10: Water balance. Hydrological cycle.					
	Lesson 11-12: The water movements in ground and so	1. Transport of pollution in water and				
	air. Solar and terrestrial radiation. The Clausius Clapeyr	con equation.				
02	Lesson 1: Source of ionization,		12			
	Lesson 2: Formation of an ionized layer,					
	Lesson 3-5: The ionospheric regions,					
	Lesson 6: Distribution of ions in the top side of ionosphere	ere,				
	Lesson 7-10: Magnetic field variation and concepts of at	nospheric dynamo and motor, Lession				
	Lesson 11-12: Moments in the atmospheric plasma and neutral atmospheric interaction,					
0.0	currents in ionosphere, Dynamics of Monson		10			
03	Lesson 1-2: Scope of Environmental Physics,		12			
	Lesson 3: Properties of Liquids and Gaseous laws of	Thermodynamics and Human body,				
	Lesson 5-7: Transport of Radiant. Energy Resources and Conservation of Environment.					
	Lesson 8-10: Pollution, Environmental Hazards and Risk Management, Smart Pollution					
	Controlling Devices.	anotiona. Thermodynamics of dry				
	Lesson 11-12: Momentum continuity and energy equations, Thermodynamics of dry					
	notential vorticity and vorticity equations					
	potential volticity and volticity equations					
Sr No	Text Books	Author				
01	An Introduction to atmospheric Physics 2 nd Edition	David G Andrews (Cambridge)				
02	Environmental Diserver Contribution	Estert Destance d Discharge (C. 11)	1. (W/1)			
02	Environmental Physics: Sustainable Energy and Climate Change	Egbert Boeker and Rienk van Grondel	lie (wiley)			

Subject:CondensedMatter Physics.(Code:PSPHY 303	Year & Semester: M.Sc. Physics 2 nd year & 3 rd Semester.			Credits 3	L 2	T 1	P 0	
Evaluation Policy	Mid-Term	Class Assessment	Quiz	Attendance	End-Term			
	26 Marks	8 Marks	8 Marks	8 Marks		50 Ma	rks	

Sr. No	Course outcomes: Students will
CO1	Understand the general aspects of the electronic transport phenomena.
CO2	Analyze the magnetic properties of solids
CO3	Understand of the optical properties of the materials
CO4	Learn general aspects of the superconductivity.

Course	Course contents					
Unit	Particulars		required			
01	TRANSPORT PROPERTIES:		10			
	Lecture 1: Boltzmann Equation					
	Lecture 2-3: Relaxation Time Approximation; Genera	l Transport Coefficients.				
	Lecture 4-5: Electronic Conduction in Metals and The	ermoelectric Effects.				
	Lecture 6-7: Magnetoresistance; Magnetotransport.					
	Lecture 8-9: Classical Theory of Magnetoconductivity	y; Hall Effect and Quantum Hall Effect.				
	Lecture 10: Numerical Problems.					
02	MAGNETISM:		10			
	Lecture1: Magnetic Properties of Insulators.					
	Lecture 2-3: Langevin Diamagnetism and Van Vleckl	Paramagnetism.				
	Lecture 4-5: Curie Paramagnets and Curie-Weiss Ferr	omagnets.				
	Lecture 6-7:Neel Antiferromagnetsand Heisenberg me	odel; Spin Waves.				
	Lecture 8: Elements of Magnetic Properties of Metals	, Landau Diamagnetism, Pauli				
	Paramagnetism.					
	Lecture 9-10: Magnetic Resonance and Numerical Pr	oblems.				
03	OPTICAL PROCESSES AND EXITONS: 10					
	Lecture 1: Optical Reflectance.					
	Lecture 2-4:Kramers-Kronig Relations, Electronics- I	nterrand Transitions.				
	Lecture 5-6:Exitons: Frankel Exitons.					
	Lecture 7-8:Exiton Condensation into Electron-Hole	Drops.				
	Lecture 9-10: Raman Effect in Crystals; Numerical Pr	oblems.				
04	SUPERCONDUCTIVITY:		10			
	Lecture 1-3: History, General Properties, Measuremer	nts; Critical Field; Temperature, Current.				
	Lecture 4: Type-I and Type-II Superconductors and N	leissner Effect,London Equation.				
	Lecture 5-6: Penetration Depth; Optical Properties, C	Cooper Pairing and BCS Theory;.				
	Lecture 7-8: Ginzburg-Landau Theory; Flux Quantiza	ition.				
	Lecture 9-10: Super current Tunnelling; DC And AC	Josephson Effects; High-Tc				
	Superconductors, Numerical Problems.					
Recom	nended Books					
Sr. No	Text Books	Author				
01	Introduction to Solid State physics.	Kittel, C.,(Wiley Eastern Ltd.)				
02	Solid State Physics.	A. J. Dekker, Macmillan, New Ed.				
03.	Principles of Condensed Matter Physics.	Chaikin and Lubensky (Cambridge Univ	versity			
		Press).	-			

Subject: Computational Physics Course Code: PSPHY 304	Year & Seme 2 nd year & 3 rd	Year & Semester: M.Sc. Physics 2 nd year & 3 rd Semester.				L 2	T 1	P 0
Evaluation Policy	Mid-Term	C.A	Quiz	Attendance	End-Term			
	26 Marks	8 Marks	8 Marks	8 Marks	50 Marks			

Sr.No.	Course outcomes:
CO1	Apply fundamental of MATLAB to run scripts.
CO2	Construct scripts to evaluate roots of equation.
CO3	Construct scripts to generate interpolation points.
CO4	Construct scripts to evaluate differential equations.

Course	contents		Lectures
Unit	Particulars		required
01	Lecture 1: Introduction to MATLAB: Brief introduction, ins MATLAB, key features; Lecture 2: MATLAB Software: MATLAB window, command history, Lecture 3: working with the MATLAB user interface, basic cor Lecture 4-5: operation with variables, Data files and types: Cha Lecture 6-7: arrays and vectors; Basic mathematics: Arithmetic Lecture 8-9: mathematical and logic operators; M files: Writing Lectures 10: executing script files, MATLAB editor, saving m	tallation of MATLAB, Use of window, Workspace, command mmands, assigning variables, aracter and strings, operations g script files, n files; Plots: 2D and 3D plots,	10
02	Lecture 1: Determining roots of the equation by Bisection meth Lecture 2: Newton Raphson Method Lecture 3-4: Matrix manipulation: Creating rows and columns r Lecture 5-6: matrix operations, Finding transpose Lecture 7-8: determinant and inverse, simultaneous method by Lecture 9-10: Gauss Seidel iteration method, problems	od matrix Gauss elimination method	10
03	Lecture 9-10: Oddss Selder Relation method, problems Lecture 1-2: Interpolation, Newton's formula for forward interpolation Lecture 3-4: Newton's backward interpolation, Divided difference Lecture 5-6: Newton's general interpolation formula, Lagrange's interpolation formula Lecture 7-8: cubic splines, least square approximation		
04	Lecture 2-4: Trapezoidal rule, Simpson 1/3 and Simpson 3/8 rule Lecture 5-6: Solution of ordinary differential equation: Euler's method Lecture 7: Modified Euler's method Lecture 8-9: Runge-Kutta method Lecture 10: Problems		
Recom	nended Books		
Sr. N	Text Books	Author	
01	Getting Started with MATLAB	Rudra Pratap (Oxford)	
	Reference Books		
02			

Subject: Medical Physics Course Code: PSPHY EL9	Year & Semester: M.Sc. Physics 2 nd year & 3 rd Semester.				Credits 2	L 2	T 0	P 0
Evaluation Policy	Mid-Term	Class Assessme nt	Quiz	Attendan ce	End-Term			
	26 Marks	8 Marks	8 Marks	8 Marks		50 Ma	rks	

Sr.No.	Course outcomes: students will
CO1	Learn Physics behind life.
CO2	Understand basics of dosimetry concepts and radiation detectors
CO3	Learn treatment of tumors

Course	contents		Lectures	
Unit	Particulars		required	
01	What is life, requirement and domain of life, atomic constituents of life, Molecular essential for life, water, protein, lipid, carbs, cholesterol, Nucliec Acid, Characterization of living cells, Forces and Molecular bonds, heat transfer in biomaterials, open system and chemical thermodynamics, diffusion and transport in living systems.			
02	Electrical Impedance and Biological Impedance, Principle and theory of thermography its applications, Basic principles of radiation detection - Counting systems for alpha and beta radiation			
03	Principles of Radiation detection ,properties of dosimeters, Theory of gas filled detectors, Ion chamber dosimetry systems, free air ion chamber, parallel plate chamber ,ionization chamber Laser Surgical Systems, Measurement of fluence from optical sources, Optical properties of tissues, theory and experimental techniques, interaction of laser radiation with tissues , microscopy in medicine Interaction of light (electrons and positrons) and heavy charged particles with matter ,Malignant Tumors, material response, deformation and failure ,friction and wear			
Recommended Books				
Sr. No.	Text Book	Author		
01	Laser Photobiology and Photomedicine, Plenum Press	S. S. Martellucci and A. N. Ches York, 1985)	ster (, New	
	Reference Books			
01	Laser-Tissue Interactions	Markolf H. Neimz (Springe Germany)	er Verlag,	
02	Principles of Biomedical Instrumentation and measurement,	Richad Aston (Merrill Publis London)	shing Co.,	

Subject:	Year & Seme	ster: M.Sc. Phys	sics		Credits	L	Т	Р
Superconductivity and	2 nd year & 3 rd	2 nd year & 3 rd Semester.				2	0	0
superfluidity								
Course Code:								
PSPHY EL10								
Evaluation Policy	Mid-Term	C.A	Quiz	Attendance]	End-Te	erm	
	26 Marks	8 Marks	8 Marks	8 Marks		50 Ma	rks	

Sr.No.	Course outcomes: Students will
CO1	Analyze the application of superconductivity
CO2	Distinguish type I and type II superconductors and its applications
CO3	Understand significance of superfluidity

Course	contents		Lectures		
Unit	Particulars		required		
01	Survey of Superconductivity, Perfect Conductivity, Magnetoquasistatic, London's Equations, Classical Model of a Superconductor, Electromagnetic Power, Transmission Lines, Perfect Diamagnetism, Macroscopic Quantum Model, Supercurrent Equation.				
02	Basic Josephson Junctions, SQUID, Generalized Josephson Junctions, Josephson Circuits Type II Superconductors and Circuit Fields, Flux Flow, Pinning, Ginzburg- Landau Theory, Microscopic Interactions and Cooper Problem, BCS I, BCS II, High Temperature Superconductivity, Cuprates and Fe based Superconductors.				
03	Phase diagram of Helium, Basic properties of superfluidity, Bose Einstein condensation, Quantized Vortex, Elementary excitation, Two fluid model and sound waves, Two dimensional superfluidity.				
Recom	Recommended Books				
Sr. N	Text Books	Author			
01	Introduction to superconductivity	M. Tinkham			
	Reference Books				
01	Superconductivity	Ketterson and Song			
02	Superconductivity Vol I and II	R D Parks			
03	Superconductivity, superfluids and condensates.	James F. Annett			

Subject General Theory of	of Year & Semester: M.Sc. Physics			Credits	L	Т	Р	
Relativity and Cosmology	2 nd year & 3 rd Semester.				2	2	0	0
Course Code: PSPHY								
EL11								
Evaluation Policy	Mid-Term	Class	Quiz	Attendance	E	End-Te	erm	
		Assessment						
	26 Marks	8 Marks	8 Marks	8 Marks	4.	50 Mai	rks	

Sr.No.	Course outcomes: Students will
CO1	Understand theoretical framework and experimental necessity of Einstein theory of general relativity
CO2	Analyze principles of general relativity and physics in curved spacetime
CO3	Develop tools to enable the quantitative calculation of general relativistic effects

Course	e contents		Lectures	
Unit	Particulars		required	
01	Riemannian Geometry: Vectors and Tensors; parallel transport, covariant differentiation; Geodesics; Riemann-Christoffel curvature tensor - its symmetry properties, Ricci tensor; Bianchi identities; vanishing of the curvature tensor as a condition for flatness, Geodesic deviation equation. Principle of general covariance and principle of equivalence; Einstein field equations, derivation from a variational principle			
02	Schwarzschild exterior solution, Birkhoff's theorem. Geodesics in a Schwarzschild geometry. Crucial tests of general relativity - perihelion shift, bending of light, gravitational redshift. Schwarzschild blackhole - event horizon and static limit, Kruskal - Szekere's diagram			
03	Cosmological Models: Universe at large scales – Homogeneity and isotropy – distance ladder– Newtonian cosmology - expansion and redshift - Cosmological Principle - Hubble's law - Robertson-Walker metric - Observable quantities – luminosity and angular diameter distances- Horizon distance- Dynamics of Friedman- Robertson-Walker models: Friedmann equations for sources with p=wu and w = $-1, 0, 1/3$ discussion of closed open and flat Universes			
Recom	mended Books			
Sr. N	Text Book	Author		
01	Lecture on General Relativity and Cosmology	J. V. Narlikar, (The Macmillar of India Limited	n Company	
	Reference Books			
01	Introduction to General Relativity,	R. Adler, M. Bazin and M (McGraw-Hill)	A. Schiffer	
02	Cosmological Physics	J. A. Peacock (Cambridge University Press)		
03	Introduction to Cosmology	J. V. Narlikar(Cambridge Unive 1993 (For the lectures on Cosm	ersity Press, ology)	

Subject Principles of	Year & Seme	Year & Semester: M.Sc. Physics				L	Т	Р
Spectroscopy	Spectroscopy 2 nd year & 3 rd Semester.			2	2	0	0	
Course Code: PSPHY								
EL12								
Evaluation Policy	Mid-Term	Class	Quiz	Attendance	E	End-Te	erm	
		Assessment						
	26 Marks	8 Marks	8 Marks	8 Marks	4	50 Mai	rks	

Sr.No.	Course outcomes
CO1	Analysis of selection rules for transition spectra
CO2	Evaluate molecular spectra of various molecules
CO3	Evaluate Vibronic transition

Course	contents		Lectures	
Unit	Unit Derticulars		required	
01	Transition rotes Einstein coefficients cleatric dinole (E1) a	pprovimation El salastion	10	
01	Transition fates, Emstern coefficients, electric dipole (E1) a	widths, retardation offacts	10	
	nues, oscillator strengths, fille intensities, fille shapes and fille	e widths, fetaluation effects,		
	photoelectric effect Bremsstrahlung Numerical Problems	ennies of excited states,		
02	2 Spectroscopia transitional rotational spectra of molecular rotational selection rules:		10	
02	vibrational spectra of diatomic molecules, vibrational selection	ion rules vibration-rotation	10	
	spectra of diatomic molecules. Numerical Problems	ion rules, vioration-rotation		
03	Vibronic transitions Franck-Condon principle rotational structure of vibronic transitions			
05	Fortrat diagram dissociation energy of molecules continuous spectra Numerical Problems		10	
Recommended Books				
Sr N	Text Book	Author		
01	Physics of Atoms and Molecules	Bransden B H and Ioachain C I		
01	Reference Books		0	
01	Fundamentals of Molecular Spectroscopy	C N Banwell		
02	Melecular Quantum Machanias	Duantum Machanica Atking D and Eriadman D		
02	Wolecular Quantum Mechanics	Atkins r. and rhedinan R		

Subject: Characterization Lab Course Code: PSPHY LB7	Year & Semester: M.Sc. Physics 2 nd year & 3 rd Semester.	Credit 1.5	L 0	T 0	P 3	
Evaluation Policy	Continuous Assessment		End	Term		
	60 Marks		40 N	Aarks		

Sr.No.	Course outcomes: Students will
CO1	Develop understanding of principles of various characterization instruments
CO2	Analyze working of XRD, SEM, UV Visible Spectrometer.
CO3	Learn X-ray Diffractometry, SEM and Spectroscopic techniques
CO4	Develop thin flims

List of Experiments

Experiment No 1: Phase identification of an unknown sample by X-ray diffraction spectroscopy.

Experiment No 2: Determination of Miller indices, space group, lattice parameters and unit cell volume of an unknown powder crystalline material by X-ray diffraction technique.

Experiment No 3: To carry out Williamson Hall plot analysis of X-ray diffraction data to estimate the strain and grain size for given samples.

Experiment No 4: To carry out X-ray diffraction measurements on single crystalline substrate (R-cut Sapphire, C-cut sapphire crystalline quartz).

Experiment No 5: To determine of Lattice parameters, particles sizes etc. of different powder samples of bulk-/nanosystems (ferrite, α -Fe₂O₃, γ -Fe₂O₃) using X-ray diffractograms.

Experiment No 6: To determine the particle size and lattice strain of an unknown powder specimen using Origin software and Scherrer equation.

Experiment No 7: To study the porosity and grain size of thin film and powder samples by Scanning Electron Microscopy.

Experiment No 8: To study microstructure of pure metals.

Experiment No 9: Spectroscopy Experiments. (a)- UV Visible (b)- Photoluminescence (c)-Raman Recommended Text Books Sr. No. Name of the book Author 01 Elements of X-ray Diffraction B.D Cullity (Pearson) 02 Material characterization Techniques S. Zhang, L. Li&A. Kumar 03 Material characterization: Introduction to Microscopic and Yang Leng spectroscopic Methods 04 Nanotechnology MA Shah & Tokeer

Physics Curriculum as per NEP @ NIT Srinagar

Subject: Computational Physics Lab (Code: PSPHY LB2)	Year & Semester: M.Sc. Physics 2 nd year & 3 rd Semester.	Credits 1.5	L 0	T 0	P 3	
New Education /	Continuous Assessment		End-T	erm		
Evaluation Policy	60 Marks		40 Ma	ırks		

Sr.No.	Course outcomes
CO1	Able to explain fundamentals of MATLAB.
CO2	Able to write MATLAB Scripts.
CO3	Able to apply programming knowledge to solve mathematical problems
CO4	Able to construct, visualize and analyze algorithm to simulate systems and problems

List of Experiments

Experiment No. 1: Write MATLAB script to simulate the decay of radioactive nucleus.

Experiment No. 2: Write MATLAB script for the numerical solution of equation of motion for a simple pendulum using the Euler method.

Experiment No. 3: Write MATLAB script for the numerical solution of equation of motion for a simple pendulum using the Runge Kutta method.

Experiment No. 4: Write a MATLAB script for the numerical solution of damped pendulum.

Experiment No. 5: Write a MATLAB script to simulate the planetary motion of earth around the sun.

Experiment No. 6: Write a MATLAB script to simulate the random walk.

Experiment No. 7: Write a MATLAB script to solve time dependent Schrodinger equation in 1D for particle in a box problem.

Experiment No. 8: Write a MATLAB script to simulate the Ising model of a ferromagnet.

Recommended Books

Sr. No.	Name of the book	Author
01	Getting start with MATLAB	Rudra Pratap (Oxford University Press)
	A Quick Introduction for Scientists & Engineers	

SEMESTER – IV

S. No.	Course Code	Courses	L	Т	Р	Credits
34.	PSPHY PR1	Research Based Project (Full Semester)/	0	0	28	14
		Dissertation/ Presentation/ Group Discussion				
	Total					14

Subject Research Based Project (Full <mark>semester)</mark> Course Code: PSPHY PR1	Year & Semester: M.Sc. Physics 2 nd year & 4 th Semester			
Evaluation Policy: Mid Term (20%) + End Term (80%)	Supervisor	External	HOD.	Sister Dept.
	50 Marks	20 Marks	20 Marks	10 Marks

Course co	ntents
Unit	Particulars
	Guidelines for Project in M.Sc. Course:
	1. Projects would be allotted to M.Sc. (Previous) students which have to be carried out and completed in M.Sc. (Final).
	2. A list of projects will be finalized and announced by the Department. The students will have an option to select the project in their field of interest with any other faculty even outside of Institute.
	 3. The project will comprise of the following: a. Collection of data, procurement and fabrication of experimental set up and writing of computer programs if needed. b. Writing a dissertation or project report. This will be submitted by the M.Sc. (Final) students in the first week of May. c. Giving a preliminary seminar before the final presentation for the purpose of internal assessment whose weightage would be 25%.
	4. The Final evaluation of the project work completed will be done by external and internal examiners appointed by the Board of Studies on the basis of an oral presentation and the submitted Project-Report.
	5. The weight age of the final evaluation would be 75%.

Cos:

- 1. Design, Develop and carry out scientific experiments as well as accurately record the results of designed experiments
- 2. Communicate scientific knowledge related to Physics/ Materials Science/ Nanotechnology in oral, written and electronic formats
- **3.** Explore new areas of research in the area of science and technology to meet the needs of society.
 - 42 Physics Curriculum as per NEP @ NIT Srinagar