Quantum Mechanics

Lecture Series zy Dr Prince A Ganai

Btech-Course

Department of Physics 1117 Srinagar

Lecture 01 4. Question Machania

Introduction to Zuantum Mechanics

Laws of Motion and Theory of Electromagnetism

Most Important Idea: Deterministic world

Particle Properties of Waves

This classical picture began to crumble in 1900 when Max Planck published a theory of black-body radiation

Conceptual Black Body

Introduction of Quantum Mechanics: Dr Prince A Wavelength (µm)

Planck relation:

$$E = hv = \frac{hc}{\lambda}$$

where:

E = energy

h = Plank constant

v = frequency

c = speed of light

 λ = wavelength

$$S_{\lambda} = \frac{8\pi ch}{\lambda^5} \frac{1}{e^{hc/\lambda kT} - 1}$$
Slope = 0
Derivative = 0
Setting the derivative of the Planck radiation formula = 0 gives the peak.

Wavelength λ

Let
$$a = \frac{hc}{k}$$
 and note that the constant term does not affect the peak.

Colors are exagerrated

Photo electric effect

Wave Properties of Particles

Matter as Waves

$$\lambda = \frac{h}{mv}$$

Note: v is for velocity and not for frequency as shown before.

Louis de Broglie

Electron Diffraction

Lecture 01 Concluded